AIMS Mathematics, 8(1): 102—-124.
DOI: 10.3934/math.2023005
AIMS Mathematics Received: 21 May 2022

Revised: 02 September 2022
Accepted: 15 September 2022

http://www.aimspress.com/journal/Math Published: 27 September 2022

Research article

A solution of a nonlinear Volterra integral equation with delay via a faster
iteration method

Godwin Amechi Okeke'?, Austine Efut Ofem’*, Thabet Abdeljawad>®*, Manar A. Alqudah’
and Aziz Khan’

1

Abstract:

Department of Mathematics, College of Science and Technology, Covenant University,
Canaanland, KM 10, Idiroko Road, Ota, Ogun State, Nigeria

Department of Mathematics, School of Physical Sciences, Federal University of Technology
Owerri, PM.B. 1526 Owerri, Imo State, Nigeria

Department of Mathematics, University of Uyo, Uyo, Nigeria

Department of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal,
Durban, South Africa

Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh
11586, Saudi Arabia

Department of Medical Research, China Medical University, Taichung 40402, Taiwan

Department of Mathematical Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box
84428, Riyadh 11671, Saudi Arabia

Correspondence: Email: tabdeljawad @psu.edu.sa.

The purpose of this article is to study the convergence, stability and data dependence

results of an iterative method for contractive-like mappings. The concept of stability considered in
this study is known as w?-stability, which is larger than the simple notion of stability considered by
several prominent authors. Some illustrative examples on w?-stability of the iterative method have
been presented for different choices of parameters and initial guesses. As an application of our results,
we establish the existence, uniqueness and approximation results for solutions of a nonlinear Volterra
integral equation with delay. Finally, we provide an illustrative example to support the application of
our results. The novel results of this article extend and generalize several well known results in existing
literature.

Keywords: Banach space; data dependence; w2—stability; contractive-like mapping; nonlinear
Volterra integral equation; fixed point
Mathematics Subject Classification: 34B10, 34B15, 26A33



http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023005

103

1. Introduction

Let 4 be a Banach space and .7 a nonempty closed convex subset of . Let .% : &/ — </ be a
mapping. A member m* € <7 is called a fixed points of .Z if #m* = m*. We denote the set of all fixed
point of .# by F(%).

In [6], Berinde introduced a new class of mappings statisfying

IFm— Z4qll < yllm - qll + Lllm — Fml|, (1.1)

forallm,qg e o7,y € (0,1)and L > 0.

The author established that the class of mappings satisfying (1.1) is larger than the class of mappings
introduced and studied by Zamfirescu in [41].

In [15], Imoru and Olantiwo gave a definition of a mapping considered to be generalization of the
classes of mappings considered by Berinde [6], Osilike et al. [33] and some other existing contraction-
type mappings as follows:

Definition 1.1. [I15] A mapping ¥ : o — < is called contractive-like if there exists a constant
v € [0, 1) and a strictly increasing continuous function i : [0, c0) — [0, co) with ¥(0) = O such that

I#m = Fqll < yllm = qll + y(|lm — Fml), (1.2)
forallm,q € o .

Remark 1.1. If y(m) = Lm, then (1.2) reduces to (1.1).

Problems in so many fields of mathematics and other subjects in sciences can be transformed into an
equation for a suitable operator. Furthermore, the existence of a solution to this equation is tantamount
to the existence of a fixed point of the suitable operator. Basically, fixed point theory is a nice mixture
of functional analysis, topology and geometry. Translating the real-life or theoretical problem into
the fixed point problem is a good approach to find the corresponding solution. In general, fixed point
theory plays a vital role in almost all areas of applied sciences and engineering such as: economics,
game theory, theoretical computer science, biology, chemistry, physics and many more, see e.g. [8,19,
20,24-31].

Proving the existence of a fixed point is an important step in finding a solution of a given problem,
but it is also necessary to find the solution of a given problem when it exists. One valuable way of
finding the desired fixed point is to utilize iterative method. For this reason, so many iterative methods
for approximating the fixed points of different classes of operators have been introduced and studied
by so many authors for the past two decades. Some widely used iterative methods in the literature are:
Mann [21], Ishikawa [16], Noor [23], S [2], Abbas and Nazir [1], Tharkur [36] and many more.

Throughout this paper, the set of all natural numbers is denoted by N and the set of real numbers is
donted by R. For the sequences {#,}, {w,} and {0,} in [0,1], the following iterative methods are known
as Noor, S and M, respectively:

my € o,

Pn = (1 _Qn)mn + Qnymm

qn = (- ﬂn)mn + ﬂnigzpn,
M1 = (1 —@,)m, + wnyqn,

Vn e N, (1.3)
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m; € JZ{,
qn = (1 =9,)m, + 9, Fm,, Vn e N, (1.4)
My = (1 - wn)ymn + wng%n
my € Jy,
Pn = (1 - wn)mn + zD-ntg.’/nn,
Ay Vn e N. (1.5)
Ny = §Qn’

Very recently, Akutsah et al. [4] introduced the following three steps iterative method:

mp € d,
=(1- F
Zn - fgzP dm, + 3, F my, VneN, (1.6)

My = y((l - Wn)% + wnﬁQn),

where {},,} and {w,} are sequences in [0,1]. The authors analytically and numerically showed that the
iterative method (1.6) converges faster than those of Ullah and Arshad [39], Karakaya et al. [18] and
Thakur et al. [37], respectively for contractive-like mappings.

The preference of an iterative method over another is based on some crucial criteria such as fastness,
stability and dependence. Data dependency of fixed points iterative methods has become an area that
has attracted many researchers for several decades now. There exists several recent results on data
dependency of fixed point, see e.g. [3,5,10, 11, 14,22,25,32].

Due to the importance of data dependency in fixed point theory, Akutsah et al. [4] raised the
following question:

Open Question: Is it possible to obtain the data dependence result of the iterative method (1.6) for
contractive-like mappings?

On other hand, a fixed point iterative method is said to be numerically stable if small modifications
in the initial data involved in a computation process will produce a small impact on the computed
value of the fixed point. The concept of stability was first considered by Ostrowski [34] for Banach
contraction mappings. In 1988, Harder and Hicks [12, 13] illustrated the importance of studying the
stability of various iterative methods.

Definition 1.2. [12, 13] Let {t,} be any sequence in </. Then, an iterative method t,,, = f(Z,t,),
which converges to fixed point m*, is said to be ¥ -stable or stable with respect to %, if for €, =
ltur1 — F(F, ), Vn €N, we have

limeg,=0¢< lim¢, =m".

n—00 n—00

In the last few years, many authors have studied the stability of several iterative methods for
different classes of operators (see e.g. [11, 17,22, 25] and the references in them). Very recently,
Akutsah et al. [4] established the following convergence and stability results for contractive-like
mapping in Banach spaces.

Theorem 1.1. [4] Let o/ be a nonempty closed convex subset of a uniformly convex Banach space 2.
Let F be a mapping satisfying (1.2). Let {m,} be the iterative method defined in (1.6) with sequences

{3,}, {w,} € [0, 1] such that Y, w, = oo. Then, {m,} converges strongly to a unique fixed point of .%.
n=0
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Theorem 1.2. [4] Let of be a nonempty closed convex subset of a uniformly convex Banach space 2.
Let ¥ be a mapping satisfying (1.2). Let {m,} be the iterative method defined by (1.6) with sequences
{9,} and {w,} in [0,1] such that Y, @, = co. Then, {m,} is ¥ -stable.
n=0

In 2007, Berinde [8] showed throughout an example that taking an arbitrary sequence {#,} in
Definition 1.2 led to an inconsistency. For this reason, Berinde [8] redefined the Definition 1.2 and
gave a weaker, but more natural notion of stability known as weak stability. According the author, an
approximate sequence of {m,} instead of arbitrary sequence {#,} in Definition 1.2 should be taken.

In 2012, Timi [38] introduced a wider concept of stability known as weak w?-stability by adopting
equivalent sequences instead of arbitrary sequences in Definition 1.2.

Definition 1.3. [38] Let {m,} be an iterative sequence given by m,., = f(%,m,). Assume that {m,}
converges to an m* € F(%). Set

€ = ||tn+1 - f(ﬁ, tn)”a VI’Z € N
If for any equivalent sequence {t,} C <7 of {m,},

lim €, = 0 implies lim t, = m",

n—oo n—oo
then the iterative sequence {m,)} is said to be weak w*-stable with respect to .F.

Motivated by the above results, we prove the strong convergence theorem of the iterative
method (1.6) for contractive-like mappings without the necessity of the assumption: ), @, = oo as
considered in [4]. Also, we demonstrate the numerical convergence of (1.6) using a nontrivial example
in higher dimensional space. Further, we prove analytically that the iterative method (1.6) is w?-stable
and the analytical proof is supported with some illustrative examples. Also, we give an affirmative
answer to the open question above which was raised in [4] by showing that the iterative method (1.6) is
data dependent for contractive-like mappings. Furthermore, by applying our main results, we establish
the existence, uniqueness and approximation results for the solutions of a nonlinear Volterra integral
equation with delay. We also provide an example which supports the application of our results.

This paper is organized as follows: In Section 2, we list some definitions and lemmmas which will
be used for further proof. In Section 3, we establish the convergence result of the iterative method (1.6)
for contractive-like mappings. A supporting example is also provided. In Section 4, we show that the
iterative algorithm (1.6) is weak w?-stable with respect to contractive-like mappings. The analytic
result is supported with a numerical example. In Section 5, we prove the data dependence result of the
iterative algorithm (1.6). In Section 6, we apply our main results to solve a nonlinear Volterra integral
equation with delay and Section 7 gives the conclusion of our artilce.

2. Preliminaries

In this section, we give some definitions and lemmas that will be useful in proving our main results.

Definition 2.1. [8] Let {m,} and {t,} be sequences in </. We say that {t,} is an approximate sequence
of {m,}, if for any r € N, there exists &(r) such that

lm, — t,|| < &(r), Yn>r.
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Definition 2.2. [7] Let F, % : o/ — <f be two operators. We say that % is an approximate operator
for F if for some € > 0, we have

| Fm—Fml|l<e Yme . (2.1)
Definition 2.3. [9] Let {m,} and {t,} be sequences in </. We say that these sequences are equivalent if
lim [lm, —1,]| = 0.
Lemma 2.1. [40] Let {6,} and {1,,} be nonnegative real sequences satisfying the following inequalities:
Opr1 < (1 —0)0, + Ay,

where o, € (0,1) foralln € N, § o, = 00 and lim 2= = 0, then lim 6, = 0.

n
n=0 n—oo n—oo

Lemma 2.2. [35] Let {6,,} be a nonnegative real sequence such that for all n > ny € N, the following
condition holds:

6)n+1 < (1 - O-n)gn + O-n/lna

where o, € (0,1) foralln € N, § o, =0 and A, > 0 foralln € N, then
n=0

0 < limsupé6, < limsup4,.

n—oo n—

3. Convergence result

In this section, we will prove a strong convergence result of the iterative method (1.6) for
contractive-like mapping by weakening some conditions imposed on the control parameters by
Akutsah et al. [4]. We also provide an example in three dimensional space to compare the convergence
of various iterative methods.

Theorem 3.1. Let .% be a mapping satisfying (1.2) defined on a nonempty closed convex subset </
of a Banach space B with F(F) # 0. Let {m,} be the iterative sequence defined by (1.6), then {m,}
converges strongly to the unique fixed point of 7.

Proof. From (1.6), for any m* € F(.%), we have

lpn —m'll < (1 =I)llmy —m*|| + Gl Fm,, — m’||
= (L =9llm, —m'|| + Fll.Fm" — Fm,|
< (L =F)lmy —m*|| + ySllm, — m*|| + Fp(llm” — Fm"|])

(I = A =»d)lm, —m"|. (3.1
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lgn = m*ll = .7 pp — m*| < Yllpn — m’|| < y(1 = (1 = y)&)llm, — m"||. (3.2)
M1 —m'll = IIF (1 - @,)q, + @uF qn) — m"||
< A - @)gn + @ F g, —m|
< YA =@lgn — m*ll + @||.F g, — m*])
< Y1 =@)lgn — m*l| + @uyllg, — m*))
= y(I =1 =y@)lg, —m’ll
< Y- -y -1 =y)d)lm, —m. (3.3)

Since {¥,}, {w,} € [0, 1] and y € [0, 1), then it follows that (1 — (1 —y)%,) < l and (1 — (1 —y)w,) < 1.
Hence, (3.3) yields

2
sy —m'll < Y7 llmy, — m||

< yPllmy —ml. (3.4)

Taking limit on both sides of the above inequality (3.4), we get lim ||m, — m*|| = 0. Indeed, y € [0, 1)

and so lim y*" = 0. i

n—oo

Remark 3.1. Clearly, the condition ), @w, = oo on the sequence {w,} € (0,1) in Theorem 1.1 is
n=0
superfluous.
Now we give the following example to validate the analytical proof in Theorem 6.1 and also carry
out a numerical experiment to test the efficiency of the iterative method (1.6).

Example 3.1. Let .7 = [0, 8] x [0, 8] x [0, 8] be the subset of a Banach space % = R? with the texicap
norm. Let .% : o/ — </ be defined by

tg$(n/ll’n/127 m3) = { (%’ %’ %)’ lf (ml’mz’ m3) € [0’ 4) X [0’ 4) X [07 4)’

(2w, 22,m) i (my,my,ms) € [4,8] X [4,8] X [4,8].

Clearly, the only fixed point of .% is (0, 0, 0). We will now show that .% is a contraction-like mapping.
To see this, we define a function ¢ : R* — R* by ¢(m) = {5. Clearly, ¢ is a strictly increasing and
continuous function satisfying (0) = 0. We show that

IFm— Zqll = yllm = qll + ¥(lm — Fml), (3.5

for all p,g € o/ and vy € [0,1). It will be useful to note the following. If m = (my,my,m;) €
[0,4) x [0,4) x [0,4), then

nmp mp nsj
= ol = s, ) - (5,2, 2| =

6m1 6m2 61’]’l3
77777
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and
6m,; 6m, 6m
W(llm— Fml) = (H( = 3))
_ my m3 ms
B H 14 14’ 14 ‘ vk (3-6)
Similarly, if m = (m;, m,, m3) € [4, 8] X [4, 8] X [4, 8], we have
g (o my %) | 13my 13my 13ms
||m L%,n/l”_ H(mlam27m3) (14’ 14, 14 - H( 14 D) 14 D) 14
and
13 13 13
w(lim - Fmll) = L
14
_ 131’)’11 13m2 13mg
B 168 ° " 168
13m, 13m2 ‘13m3
7
' 168 ‘ 168 168 3.7

Next, we consider the following cases:
Case I: If m = (m,my,m3),q = (q1,92,q3) € [0,4) X [0,4) X [0, 4), then using (3.6), we have

m1m2m3 91 92 43
e - ) (459
177m = F 4l 777 777

1
= |m] Qi+ = |m2—q2|+?|m3—q3|

7
1
= §||(m1, ma, m3) = (q1, g2, ¢3)|
1 my my ms
< - 1™
< glm=al+ {7+ 7]t e
1
= 7||m—q||+w(||m—ﬁm||).

Case II: If m = (my,my, m3),q = (q1, 92, q3) € [4,8] X [4, 8] X [4, 8], then using (3.7), we get

1 1
= ﬁlml—Q1|+ﬁlm2—Q2|+ﬁ|m3—fJ3|

| Fm— Z 4]

14714 14

14714’ 14

'(Wll my m3)_(q1 q> 613)

1
= ﬁ”(ml,mz,ma) —(q1,92,q3)|l
1 '13”’11 13m2

< _ _
< glm=dl+ 7651 * | Tes

' 131’1’13
168

1
= ;IIm — gl + ¢(|lm — Fml)).
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Case III: If m = (m;,my, m3) € [0,4) X [0,4) X [0,4) and g = (q1, 92, q3) € [4,8] X [4, 8] X

using (3.6), we have

.7 m — F4qll

CaseIV: It m =
using (3.6), we get

| Fm— Z 4]

So, (3.5) is fulfilled with y =

(my,mp, m3) € [4,8] X [4,8] x[4,8] and g =

1
7 lim = gll + g(flm —

[4, 8], then

(ﬂl_@)(ﬂz_@)(ﬂi_@)
7 14)\7 14)°\7 14

(@+@_2H@+@_2Hﬁ+@_ﬂ)
1414 14)\14 714 14)°\14 7147 14
moom 9 My G| |Ms " 43
14 14 14 14 14| |14 714 14
m ‘___ @_2 %_ﬂ‘
14 14] " |14 14
ﬁ(lml qil + lma — qo| + Im3 — q3)) + y(llm — Fml))

1
§||(m1,m2,m3) —(q1, 92, )|l + Y(llm — F ml|)

(Qh q2, Q3) € [Oa 4) X [09 4) X [0’ 4)7 then

(ml my m3) (I’I’ll my m3)
147 14° 14 77777

(7955 (5 %)
14 7))V 7)) 7

(o) (e g2 (m_ )
7 14 7/)°\7 14 7/)°\7 14 7

@_@_@|+‘m2_’2_@ s M3 43

7 14 7 7 14 7

m ‘___ @_% ms 43
14 7 7 7
7 (Imy — 1l + Imy — qa| + Ims — g3]) + Y(llm — Fml|)

1

?ll(ml,mz,m3) —(q1, 2 @)l + Y(llm — Fml|)

1
7 llm = gl + y(llm - F ml)).

1 . . . .
7. Thus, .7 is a contractive-like mapping.

It is worthy mentioning that the above example is more interesting and not as simple as that of

Akutsah et al. [4].

Using MATLAB R2015a, we obtain the following Tables 1-3 and Figures 1-3. Clearly, for control
= 0.8 and starting value my = (2,2.5,3.5), the iterative method (1.6)
converges faster than a number of iterative methods. We also notice that M, Thakur and Karakaya
iterative methods converge almost at the same rate.

sequences @, = ¥,
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Table 1. Convergence behavior of various iterative methods.

Step

Noor

Akutsah

= R e Y R S

(2.000000, 2.500000, 3.500000)
(0.453924, 0.567405, 0.794367)
(0.103024, 0.128779, 0.180291)
(0.023382, 0.029228, 0.040919)
(0.005307, 0.006634, 0.009287)
(0.001204, 0.001506, 0.002108)
(0.000273, 0.000342, 0.000478)
(0.000062, 0.000078, 0.000109)
(0.000014, 0.000018, 0.000025)
(0.000003, 0.000004, 0.000006)
(0.000001, 0.000001, 0.000001)
(0.000000, 0.000000, 0.000000)

(2.000000, 2.500000, 3.500000)
(0.004032, 0.005040, 0.007055)
(0.000008, 0.000010, 0.000014)
(0.000000, 0.000000, 0.000000)
(0.000000, 0.000000, 0.000000)
(0.000000, 0.000000, 0.000000)
(0.000000, 0.000000, 0.000000)
(0.000000, 0.000000, 0.000000)
(0.000000, 0.000000, 0.000000)
(0.000000, 0.000000, 0.000000)
(0.000000, 0.000000, 0.000000)
(0.000000, 0.000000, 0.000000)

Table 2. Convergence behavior of various iterative methods.

Step

S

Akutsah

~N N B W N

(2.000000, 2.500000, 3.500000)
(0.128980, 0.161224, 0.225714)
(0.008318, 0.010397, 0.014556)
(0.000536, 0.000671, 0.000939)
(0.000035, 0.000043, 0.000061)
(0.000002, 0.000003, 0.000004)
(0.000000, 0.000000, 0.000000)

(2.000000, 2.500000, 3.500000)
(0.004032, 0.005040, 0.007055)
(0.000008, 0.000010, 0.000014)
(0.000000, 0.000000, 0.000000)
(0.000000, 0.000000, 0.000000)
(0.000000, 0.000000, 0.000000)
(0.000000, 0.000000, 0.000000)

Table 3. Convergence behavior of various iterative methods.

Step

Noor

M

(9, I SN VS I \S ]

(2.000000, 2.500000, 3.500000)
(0.012828, 0.016035, 0.022449)
(0.000082, 0.000103, 0.000144)
(0.000001, 0.000001, 0.000001)
(0.000000, 0.000000, 0.000000)

(2.000000, 2.500000, 3.500000)
(0.004032, 0.005040, 0.007055)
(0.000008, 0.000010, 0.000014)
(0.000000, 0.000000, 0.000000)
(0.000000, 0.000000, 0.000000)

AIMS Mathematics
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Figure 1. Graph corresponding to Table 1.
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4. Stability result
In this section, we prove a stability result and provide some numerical examples to support our
analytical proof.

Theorem 4.1. Let .7 be a mapping satisfying (1.2) defined on a nonempty closed convex subset </ of
a Banach space % with F(F) # 0. Let {m,} be the iterative sequence defined by (1.6), then {m,} is
weak w*-stable with respect to .F.

Proof. Let {t,} € o be an equivalent sequence of {m,}. Define a sequence {¢,} in R* by

€ = ||tn+1 - <g\((l - ZD'n)rn + wnﬁrn)”a
r, = Fd,, V¥n e N, 4.1)
d, = -9, +9,7t,

where {,,} and {w,} are sequences in [0,1]. Let lim ¢, = 0, then from (1.2), (1.6) and (4.1), we have

IA

w1 — M|l + (lm200 — m7|

ltne1 = F((1 = @), + @, F 1)l

+HIF (1 = @)1y + @, F 1) = M|l + 1101 — m||

& + 17 ((1 = @,)qn + @, F qn) = F((1 = @)1, + @, F )|l + My — m’|

||tn+1 - m*”

IA

< &+ Y @), + @0 F g — (1 — @)1, — @ F 13|
+Y(l(1 = @)gn + @0 F g — F (1 = @) qn + @ T go)l) + 110 — m7|
< & +y(1 =@, — rall + Y@l F g0 — F il
+(l(1 = @) gn + @0 F g — F (1 = @) Gn + @ T @) + 1M1 — m7|
< &+ v =@)lgn — rall + YV’ @ullgn — rall + y@6(llgn — - qall)
+Y(I(1 = @)gn + @0 F g — F (1 = @) qn + @ T go)l) + 110 — m7|
= & +y(1 =1 =y@)lg, — rall + yo@00(llg. — F qalD)
+Y(l(1 = @) gn + @0 F qn — F (1 = @) Gn + T T go)l) + 100 = m|. (4.2)
gn = rall = .7 pn = Fdull < VP — dull + Yllpn — F palD). (4.3)
lpn = dill = (1 =F)m, + 3, Fm, — (1 =)t — 3, F 4|

< (1 - ﬁn)”mn - tn” + ﬂnllymn - ﬁtn”
< (1 - 0n)||mn - tn” + yﬁnllmn - tn” + ﬂn(”mn - ﬁmn”)
= (1= =yd)lm, — |l + D (|lm, — Fmy|)). 4.4)
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Using (4.2)—(4.4), we have

Itar —m'l < &+ (1= =p@)1 =1 = y)d)lm, —
+y(1 = (1 = y)@,)0y(lm, — F my|)
+(1 = (A =@ Wlp, — F pall) + youbllg, — F qull)
(1 = @)gy + @uF qn — F (1 = TGy + T T @)l

ey —m7|.

(4.5)

Since {t,} € </ and its equivalence to {m,} yields lim ||m, — t,|| = 0. We have shown in Theorem 3.1

that ||m,, — m*|| = 0, consequently lim ||m,.; — m*|| = 0. This implies that
n—oo

lm, = Fmyll < lmy, —m|| + | Fm" = Fm,|

< (I +ylm, —m*|| > 0, as n — oo.
Following similar argument as above, we have that
lim [, = Zm, | = Tim l|p, = Fp,ll = lim llg, = F gl = 0.

Since lim ||m,, — % m,|| = ¢(lim ||m, — Fm,||) = 0. It follows that

Tim flmy, — 7 m,| ylim [im, — Fmy|l) = lim [Ip, — F p,|

y(lim Tim [|p, — F pall) = lim [1g, — F gl
w(lim llg, = Z,l) = 0.

Also,
||(1 - wn)qn + wnfg.(In - y((l - ZD-n)qn + wcycbl)”

< N = @)gn + @ F qu — F || + || Fm" — F (1 — @) + T F gl
< (A =a)llgn — m' |l + y@ullg, — m*|| + wb(llgn — F qalD)
+yllm* = ((1 = @) qn + @ F o)l
< (A =a@)lgn —m' |l + y@ullg, — m*|l + @b(llgn — F qall)
+yllm” = ((1 = @,)g, + @ F q,)ll
< (A =allgn — m' | + y@ullg, — m*|l + w(llgn — F qall)

+7(1 - wn)”Qn - m*” + yzwn”CIn - m*” + 'ywnl//(”CIn - tg.qn”)
= (1+yd -0 -y@)lg, —m’l
+@,(1 + YW(llg, — F qull) = 0, as n — oo.

Therefore, from (4.8), we have
lim Y1 = @,)gn + @0 T qn = F (1 = Tp)gn + @ F Gu)ll) = 0.
Thus, taking the limit on both sides of (4.5), we get
Tim iz, —m"|| = 0.

Hence, {m,} is weak w?-stable with respect to .%.

(4.6)

4.7)

(4.8)

4.9)

(4.10)

O
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Now, we furnish the following examples in support of the above claim.
Example 4.1. Let 4 = R with the usual norm and &/ = [0, 1] be a subset of #4. Define a mapping
F 4 — o by

1
gzmzisinm. 4.11)

Clearly, zero is the fixed point of .%#. Now we show that .# is a weak contractive-like mapping
satisfying (1.2). For this, lety = % and given as increasing function ¢ : [0, c0) — [0, o) with (0) = 0,
then we obtain

|Fm—Fql—ylm—q|l—y(m—-Fm)

1.
— —sin
m = > sinm

1 1
= 5|sinm—sinq|— Elm—ql —W(

1 1
—w—m—?m—w—w'

IA

2 2

2m —sinm
- ('T') =0

2m — sinm‘)

The iterative method (1.6) corresponding to the operator .% in (4.11) is defined as follows:

mle,ng,

pn = (1 = 9)m, + 9,3 sin(m,),

Vn €N, (4.12)

1 1
3 sin((1 — @,)g, + @, sin(gy)),

where {,} and {w,} are sequences in [0,1].

Let 9, = @w, = ﬁ Using MATLAB R2015a, the following Table 4 and Figure 4 are obtained.
They show that the iterative method {m,} in (4.12) converges to m* = 0 for different choices of starting
point m; € [0, 1].

Table 4. Convergence behavior of iterative method (1.6) for different choices of starting
value m; in [0, 1].

Step/IV 0.2 0.4 0.6 0.8
1 0.2000000000 0.4000000000 0.6000000000 0.8000000000
2 0.0344808485 0.0675512472 0.0979783982 0.1248374991
3 0.0059850135 0.0117182915 0.0169816155 0.0216142376
4 0.0010390583 0.0020343767 0.0029480484 0.0037521651
5 0.0001803920 0.0003531901 0.0005118132 0.0006514160
6 0.0000313181 0.0000613177 0.0000888565 0.0001130930
7 0.0000054372 0.0000106454 0.0000154265 0.0000196342
8 0.0000009440 0.0000018482 0.0000026782 0.0000034087
9 0.0000001639 0.0000003209 0.0000004650 0.0000005918
10 0.0000000285 0.0000000557 0.0000000807 0.0000001027
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02
0.7 04|77

—4—06
0.6 08|

Iteration values

I I I I I I
1 2 3 4 5 6 7 8 9 10
Number of iteration

Figure 4. Graph corresponding to Table 4.

From the above table and graph, it is evident that lim m, = 0 = m* € F(:#). On the other hand, we

n—oo

obtain lim ||m,|| = || lim m,|| = 0. If we take the sequence {t,} as t,, = nﬁ for all n € N, then we have
n—00 n—oo z
0 < lim ||m, — t,|| £ lim ||m,,|| + lim ||z,|| = O,
n—oo n—oo n—oo

which yields lim ||m, — t,|| = 0. This implies that the sequences {m,} and {z,} are equivalent.

Now, we show that (1.6) is weak w?-stable with respect to .%.

z‘n+l - f(,?, tn)

L ( o { 2 sin (222 (25) + 734 sin (7)) )))}]‘_

€n

n+4 11 .3 1 o; n+l 1 11 o3 1
n+2 2 Sin (2 Sin <(n+2) (n+3) + n+2 2 Sin (n+3

Clearly, lim €, = 0. Therefore, the iterative method {m, } is weak w?-stable with respect to .%.

n—oo

Example 4.2. Let # = R with the usual norm and &/ = [0, 1] be a subset of . Define a mapping
F .o — o by

Fm = % (4.13)

Apparently, zero is the fixed point of .# and .7 satisfies (1.2) with y = 1.
Now, we show that the iterative sequence {m,}*" in (1.6) converges to p = 0 € F(%) for different

choices of real sequences in {w@,},{9,} in [0,1]. Let {mfﬁ}00 ,{mf)}00 ,{mff)}m be the iterative
n=0 n=0 n=0

method (1.6) with control parameters (w,, =9, = n]r—l),(wn =9, = 2an) and (wn =L, = z”nﬂl) for
all n € N, respectively.
For arbitrary x; € [0, 1], it follows that
4
o - (1=
Pn ( 5(n+1))m”’

1 4
M — 1=
n 5 ( 501+ 1))’"”’
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@

mn+1
Also,
Y
q,’
@
mn+l
Finally,
P (1
1
e _ 1
T
- L

n+1

5

2
From (4.14)—(4.16), set

oD

(l)

Then clearly, o, €

16
25(n +1)?

16
5+ 1)?

8
S(n + 1)

o
o

53(n A (4.14)

.

.
L 16
252n+112)"™

16

T 54 Q2n + 1)2

4

C5Qn+ 1)
4

C5Qn+ 1)
8

C5Qn+ 1)

8

T Son+ D

(4.15)

)

52n + 1))
4n+1)
52n+ 1)

4

5(n + 2)

1- )mn,

A+ 1)

TS5+ )
An+ 1)

HE )

o
-

B 16(n+1)
54m+2)2n+1)

16(n + 1)
25(n+2)2n + 1))'""
16(n + 1)
5 m+2)2n+ 1)

1-

(5

|

(4.16)

o

53(n +2)

16

C 54+ 1)2
16

 54Q2n + 1)2
, 4t D)

532n + 1)

8
+
$¥3m+1)
8

24
52
24
— +
527 55Qn+ 1)
2% 4

27 B +2)

|

(0,1) for each i € {1,2,3} and za@ = oo for each i € {1,2,3}. Thus, by

n

Lemma 2.1, we have that lim m{’ = p = 0 € F(.%) for each i € {1, 2, 3}.

n—oo

On the other hand, we have lim ||m(’)|| =

{t}  tobet, =

lim m(”” = 0 for each i € {1,2,3}. Taking the sequence

n—oo

n—oo

— forall n € N, then we get

0 < lim [|m® —5,[| < lim [}m®[| + lim [lz,]l = 0, for each i € {1,2,3},

n—oo
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(o)

which shows that lim ||m(i) — t,,|| = 0 for each i € {1, 2, 3}, in other words, each of {mfl’)} ;i €l(1,2,3)

n—oo n=

and {z,} 7, = {ﬁ} , are equivalent sequences.
= e

1 @ (3) : ; ; ; M= @\

Lete,’, € and €, be the corresponding sequences to the iterative algorithms {m,, o UM ] o

n=| n=

and {m,(f)}:ozo , respectively. Then we have

1 1 8 16

1 | _
En - n+5 52(n+4) + 53(n+1)(n+4) 54(n+1)2(l1+4)| ’
@ - |L__1 4 8 _ 16 |
€ —  |n+5 52(n+4) 532n+1)(n+4) 54@2n+1)2(n+4) | °
G — [L__1 . 4 an+) 16(n+1)
€ - 5 52(n+4) 53(n+2)(n+4) 53Q2n+1)(n+4) 54(n+2)2n+1D)(n+4) |

Obviously, lim e,(,i) = (0 for each i € {1, 2, 3}. Hence, all the iterative sequences {m,(f)}:;o, ief{l,2,3}are

n—oo

w?-stable with respect to ..
5. Data dependence result

In this section, the data dependence result of (1.6) for contractive-like mapping is obtained, hence,
giving an affirmative answer to the above open question raised by Akutsah et al. [4].

Theorem 5.1. Let % be an approximate operator of a mapping F satisfying (1.2). Let {m,} be an
iterative method generated by (1.6) for ¥ and define an iterative method as follows:

m; € %,
5 (] — ~ &
é’" - f@iﬁ Gt + G P it Vn €N, 5.1)

Myy1 = ,;O—Z((l - 7D'n)Qn + wann),
where {9,} and {@,} are sequences in [0, 1] satisfying the following conditions:
(i) % <w, YneN,
(ii) Y, w, = .
n=0

If Fm* = m* and Fm* = m* such that lim i, = m*, we have

n—oo

.~ Te
llm™ —m*|| < = (5.2)

where € > 0 is a fixed number.

Proof. Using (1.2), (1.6) and (5.1), we obtain

”pn - ﬁn” < (1 - ﬂn)Hmn - ﬁln” + ﬁn”ymn - =g;ﬁ/ln”
< (1 - ﬁn)Hmn - mn|| + ﬂn{Hymn - ﬁﬁ’ln” + ”ﬁ’hn - <g:ﬁ/ln”}
< (1 =9)lm, — ml + Fulylim, — m,ll + @(llm, — Fm,|) + €}

[1 = (1 =Y)Fallim, — iyl + Spplim, — Fmyll) + 9. (5.3)
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|.Z pu = F pull = 1|.F po — F pu + F pr — F Pl

||Qn - Qn” = ﬁ
< WFpn— Fpull + 117 pp — F pall
< Ypu = Ball + ¢llpn — F pull) + €. (5.4)
Using (5.3) and (5.4),
lgn = Gull = y(1 =1 =y)I)lm, — |l + ydb(llm, — Fm,))
+70n6 + lp(”pn - ypn”) + €. (55)

I.Z (1 = @) gn + TuF ) — F (1 = @) + ©uF G
IZ (1 = @)gn + 0T ) — F (1 = @) + @0 F G

HIF (1 = @,)Gn + @0 F §n) — F (1 = @) + @0 F o)l

V(1 = @NGn = Gull + Tl F ¢ — FGll)

+(I(1 = @G + TuT gy — F (1 = ©)q0 + 0T go)ll) + €

YA = @gn = Gall + @l F G = F Gl + . F G — F )

+(I(1 = @) G + TuF gy — F (1 = ©)qn + T gy)ll) + €

YA = @)lgn = Gall + Y@llgn = Gull + T (llgn — F qull) + @€)

+(I(1 = @G + T gy — F (1 = ©)q0 + 0T go)ll) + €

y(1 = (A =V@)Ngs = Gall + YT (lgn — F qall) + yw €

+(I(1 = @,)q, + @ F qu — F (1 = @,)q, + T, F @) + €. (5.6)

||mn+1 _ﬁ/ln+1|| y
F

IA

IA

IA

IA

IA

Putting (5.5) into (5.6), we obtain

V(1= (1 =p@,)(1 = (1 =y)8)lim, — |

+y*(1 = (1 = Y)@,)S(|lm, — Fmyl))

+7* 0,6 — V'@, e + Y'@0e + (1 — (L = Y@ Wllp, — F pall)

+ye — yw,€ + V'w,e + YT U (llg, — F ) + yw,e

+(l(1 = @,)g, + @ F qu — F (1 = @), + @ F q)l) + €

= Y (1= =yl -1 —y)I)lm, — i,

+y*(1 = (1 = Y@, (lm, — Fm,)

+y* e+ V'm, ety — 1) + (1 = (1 = )@ W(lp, — F pall)

+ye + Y'w,e + ywb(llg, — F q.l)

+(I(1 = @G + T gy — F (1 — ©)q0 + 0T gy)ll) + €. (5.7)

IA

||mn+1 - mn+l|l

Since @,, ¥, € [0, 1] and y € [0, 1), it follows that

(1-0-yw,) <1,

(1-0=-ym3,) <1,

v—1<0, (5.8)
v <l

Y@, yio, < 1.
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From (5.7) and (5.8), we have

M1 = gl < (1= (1 = y)y@)lim, — il + ¥(llm, — Fm,l) + ¥(|Ip. — F pal)
+lﬁ(||(1 - zD'11)(]11 + wnan - &O}\((l - wn)Qn + zD'ntg.qn)”)
+@ (g, — F qull) + @€ + 3e. (5.9

By our assumption (i), we have
l-w,<w,=21=1-w,+w, <w,+w, =2w,.
This yields

Iy = gl < (1 = (1 = y)@,)llm, =iyl + (1 =) X
zwnl//(”mn_ﬂmn”)+2wn¢(”pn_=?pn”)

(I-y).
+ Zutlgn—F gnlD+7€ . (5.10)

-y
2, (|(1-@1)gn+@nF Gu—F (1=@n)gn+@nF gn)ll)

+ =)

Set

S
|

”mn _ﬁln”’

(I -y)@, € (0,1,

2@ (llmn=F mal)+ 2@ (lpn=F pull)

N
Il

(=7
+wnt//(llqn—f gnlD+7€

(1-y)
2w, (|(1-@1)gn+@nF Gu—F (1 =) gn+@n-F gu)ll)
1=y

PN
3
Il

—+

From Theorem 3.1, we know that lim m,, = m" and since .¥m* = m"*, then from (4.7), (4.9) and

n—oo

Lemma 2.2, we obtain

0 < lim sup ||m,, — m,|| < lim sup a )’
n—oo n—oo _7

(5.11)

Since by Theorem 3.1, we have that lim m, = m* and using the hypothesis lim /%, = m*, it follows
from (5.11) that

Te

lim — || < :
1=y

6. Application

In this section, we discuss an application to nonlinear Volterra integral equation with delay.
Consider the integral equation

m(t) = g(t) + ﬂf f(t, s,m(s),m(s —71))ds te€l =|a,b], (6.1)
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with initial function
m(t) = ¢(t), t€la—-r,al, (6.2)

where ¢ € Cla — 1,a],R),a,b € Rand 7 > 0.
Let C[a, b] denote the set all of continuous functions defined on [a, b] endowed with infinity norm
[ = plleo = ma)z ||m(¢) — p(2)||. It is well known that (C[a, b],R),|| - ||) is a Banach space.
a<t<

Theorem 6.1. Let % be a nonempty closed convex subset of a Banach space .# = (C([a, b],R), ||||c).
Let {m,} be the iterative method (1.6) with w,, 9, € [0, 1]. Let ¥ : & — & be the operator defined by

Fm(t) = g(t) + /lf f(t, s,m(s),m(s —7))ds tel=1[a,b], 1>0.

Fm(t) = ¢(t), t€la—Tal.
Suppose the following assumptions hold:
(a) g : I = Ris continuous,
(b) f:1xIXRXR — Ris continuous in the sense that there exists a constant Ly > 0 such that
Lf(2, s, ur,up) — f(2,8,vi,v2)l < Le(lug — vil + |ug — va),

forallt,s eI, u,v;eR (i=1,2),

(d) 2ALs(b —a) < 1.
Then, the problem (6.1) with (6.2) has a unique solution, say m* € Cla, b]. Moreover, if ¥ is a mapping
satisfying (1.2). Then, {m,} converges strongly to m".

Proof. Now, using the contraction principle, we show that .% has a fixed point. Note that
.Fm(t) — Fp®)] =0, m,peC(la-TalR), t€la-T1Dl

Next, for any 7 € I, we have

|Fm(1) — F p(0)| lg(®) + /lf f@, s,m(s),m(s — 1))ds — g(r) - ﬂf f(t, s, p(s), p(s — 1))ds|

t

< 4 f Ly {lm(s) = p(s)| + Im(s = 7) = p(s = D} ds
t

< /lf Lf{ max, Im(s) — p(s)| + max, |m(s — 1) — p(s — T)|} ds
t

= ﬂf Ly {llm = plles + lIm — plleo} ds

< 24Lg(b = a)llm = plle,

therefore,
| Fm — F plle < 2ALs(b — a)llm — plle-

From condition (d), the operator .% is a contraction and using the contraction principle we deduce that
the operator .% has a unique fixed point, F(.%) = {m*}, i.e. the problem (6.1) with (6.2) has a unique
solution m* € Cla, b].
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Next, we show that {m,} converges strongly to m*. For m, p € <7, we have

| Fm() - Fp@ < |Fm@) - m@®)|+Im@) - F p@)

= | Fm@) - m@)| + |g@) + /lf f(t, s,m(s),m(s —1))ds

—8(1) - ﬁf f(, s, p(s), p(s — 1))ds|

!
< | Fmt) - m()] + /lf Ly {lm(s) — p(s)| + |m(s —7) — p(s — D)} ds
< max |-Fm(t) — m(t)|
a—T1<t<
!
+/1f Lf{ maxb Im(s) — p(s)| + maxb |m(a(s)) — p(a(s))l} ds
< max, |-Z m(t) — m(t)|
a—T<t<
!
+2 f Lf{ max_|m(d;) = p(d)] + max_jm(r) - p(r1)|}ds
a a—1<d1 < a—T<r <
!
= 1 Fm—mll + A f Lyl = plle + llm — pllo) ds
< |l Fm—mllw +24Ls(b — a)lim — pllw, (6.3)
therefore,
|.#m — Fplle < | Fm—mlle +2ALs(b — a)llm — plle. (6.4)

From (6.4), it is clear that .# is a mapping satisfying (1.1). Sety = 24L/(b—a), and by assumption (d),
we have y < 1. Thus, the operator .% is a contractive-like mapping satisfying (1.2) on % with L = 1
since for ¥(m) = Lm, (1.2) reduces to (1.1). Taking o = # and & = .#, then all the assumptions
of Theorem 3.1 are satisfied. Therefore, the sequence {m,} defined by the iterative algorithm (1.6)
converges strongly to the unique solution of the problem (6.1) with (6.2). O

7. Conclusions

In this study, we have proved the strong convergence results of the iterative scheme (1.6) for fixed
points of contractive-like mapping under mild conditions. We have presented some interesting and
nontrivial examples in three dimensional space to compare the efficiency of the iterative method (1.6)
with some existing iterative methods. Also, we have shown analytically and numerically that the
iterative method (1.6) is w?-stable for different choices of parameters and initial guesses. Again, our
data dependence result gives an affirmative answer to the open question raised by Akutsah et al [4]. As
an application of our results, we have established the existence, uniqueness and approximation results
for the solutions of a nonlinear Volterra integral equation with delay (6.1) with (6.2).

Acknowledgements

The work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting
Project (No. PNURSP2022R14). The authors A. Khan and T. Abdeljawad would like to thank Prince
Sultan University for paying the APC and for the support through the TAS research lab.

AIMS Mathematics Volume 8, Issue 1, 102—-124.



122

Contflict of interest

The authors declare no conflicts of interest.

References

1. M. Abbas, T. Nazir, A new faster iteration process applied to constrained minimization and
feasibility problems, Mat. Vesnik, 66 (2014), 223-234.

2. R. P. Agarwal, D. O’Regan, D. R. Sahu, Iterative construction of fixed points of nearly
asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61-79.

3. F Ali, J. Ali, Convergence, stability, and data dependence of a new iterative algorithm with an
application, Comput. Appl. Math., 39 (2020), 1-15. https://doi.org/10.1007/s40314-020-01316-2

4. F. Akutsah, O. K. Narain, K. Afassinou, A. A. Mebawondu, An iterative scheme for fixed point
problems, Adv. Math. Sci. J., 10 (2021), 2295-2316. https://doi.org/10.37418/ams;j.10.5.2

5. Y. Atalan, V. Karakaya, Iterative solution of functional Volterra-Fredholm integral equation with
deviating argument, J. Nonlinear Convex Anal., 18 (2017), 675-684.

6. V. Berinde, On the approximation of fixed points of weak contractive mapping, Carpath. J. Math.,
19 (2003), 7-22. Available from: https://www.jstor.org/stable/43996763.

7. V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi-contractive
operators, Fixed Point Theory Appl., 2004 (2004), 97-105.

8. V. Berinde, Iterative approximation of fixed points, Berlin, Heidelberg: Springer, 2007.
https://doi.org/10.1007/978-3-540-72234-2

9. T. Cardinali, P. Rubbioni, A generalization of the Caristi fixed point theorem in metric spaces,
Fixed Point Theory, 11 (2010), 3—10.

10. F. O. Celiker, Convergence analysis for a modified SP iterative method, Sci. World J., 2014 (2014),
1-5. https://doi.org/10.1155/2014/840504

11. F. Giirsoy, V. Karakaya, A Picard-S hybrid type iteration method for solving a differential equation
with retarded argument, 2014.

12. A. M. Harder, T. L. Hicks, A stable iteration procedure for nonexpansive mappings, Math. Japon,
33 (1988), 687-692.

13. A. M. Harder, T. L. Hicks, Stability results for fixed point iteration procedures, Math. Japon, 33
(1988), 693-706.

14. A. Hudson, O. Joshua, A. Adefemi, On modified Picard-S-AK hybrid iterative algorithm for
approximating fixed point of Banach contraction map, MathLAB J., 4 (2019), 111-125.

15. C. O. Imoru, M. O. Olantiwo, On the stability of Picard and Mann iteration processes, Carpath. J.
Math., 19 (2003), 155-160.

16. S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147-150.
https://doi.org/10.1090/S0002-9939-1974-0336469-5

AIMS Mathematics Volume 8, Issue 1, 102—-124.


http://dx.doi.org/https://doi.org/10.1007/s40314-020-01316-2
http://dx.doi.org/https://doi.org/10.37418/amsj.10.5.2
https://www.jstor.org/stable/43996763
http://dx.doi.org/https://doi.org/10.1007/978-3-540-72234-2
http://dx.doi.org/https://doi.org/10.1155/2014/840504
http://dx.doi.org/https://doi.org/10.1090/S0002-9939-1974-0336469-5

123

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

. H. Igbal, M. Abbas, S. M. Husnine, Existence and approximation of fixed points of multivalued
generalized a-nonexpansive mappings in Banach spaces, Numer. Algorithms, 85 (2020), 1029—
1049. https://doi.org/10.1007/s11075-019-00854-z

V. Karakaya, Y. Atalan, K. Dogan, N. E. H. Bouzara, Some fixed point results for a new
three steps iteration process in Banach spaces, Fixed Point Theory, 18 (2017), 625-640.
https://doi.org/10.24193/FPT-RO.2017.2.50

E. Karapmar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on
fractional and ordinary differential equations, Adv. Differ. Equ., 2019 (2019), 1-25.
https://doi.org/10.1186/s13662-019-2354-3

S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl., 2013 (2013), 1-10.
https://doi.org/10.1186/1687-1812-2013-69

W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.
https://doi.org/10.1090/S0002-9939-1953-0054846-3

A. A. Mebawondu, O. T. Mewomo, Fixed point results for a new three steps iteration process, Ann.
Univ. Craiova Math. Comput. Sci. Ser., 46 (2019), 298-319.

M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl.,
251 (2000), 217-229. https://doi.org/10.1006/jmaa.2000.7042

A. E. Ofem, U. E. Udofia, Iterative solutions for common fixed points of nonexpansive
mappings and strongly pseudocontractive mappings with applications, Canad. J. Appl. Math., 3
(2021), 18-36.

A. E. Ofem, D. I. Igbokwe, An efficient iterative method and its applications to a nonlinear integral
equation and a delay differential equation in Banach spaces, Turkish J. Ineq., 4 (2020), 79-107.

A. E. Ofem, D. I. Igbokwe, A new faster four step iterative algorithm for Suzuki
generalized nonexpansive mappings with an application, Adv. Theory Nonlinear Anal. Appl., 5
(2021), 482-506.

A. E. Ofem, H. Isik, F. Ali, J. Ahmad, A new iterative approximation scheme for Reich-
Suzuki-type nonexpansive operators with an application, J. Inequal. Appl., 2022 (2022), 1-26.
https://doi.org/101186/s13660-022-02762-8

A. E. Ofem, U. E. Udofia, D. I. Igbokwe, A robust iterative approach for solving
nonlinear Volterra delay integro-differential equations, Ural Math. J., 7 (2021), 59-85.
https://doi.org/10.15826/umj.2021.2.005

G. A. Okeke, M. Abbas, A solution of delay differential equations via Picard-Krasnoselskii hybrid
iterative process, Arab. J. Math., 6 (2017), 21-29. https://doi.org/10.1007/s40065-017-0162-8

G. A. Okeke, Convergence analysis of the Picard-Ishikawa hybrid iterative process with
applications, Afr. Mat., 30 (2019), 817-835. https://doi.org/10.1007/s13370-019-00686-z

G. A. Okeke, M. Abbas, M. de la Sen, Approximation of the fixed point of multivalued quasi-
nonexpansive mappings via a faster iterative process with applications, Discrete Dyn. Nat. Soc.,
2020 (2020), 1-11. https://doi.org/10.1155/2020/8634050

AIMS Mathematics Volume 8, Issue 1, 102—-124.


http://dx.doi.org/https://doi.org/10.1007/s11075-019-00854-z
http://dx.doi.org/https://doi.org/10.24193/FPT-RO.2017.2.50
http://dx.doi.org/https://doi.org/10.1186/s13662-019-2354-3
http://dx.doi.org/https://doi.org/10.1186/1687-1812-2013-69
http://dx.doi.org/https://doi.org/10.1090/S0002-9939-1953-0054846-3
http://dx.doi.org/https://doi.org/10.1006/jmaa.2000.7042
http://dx.doi.org/https://doi.org/101186/s13660-022-02762-8
http://dx.doi.org/https://doi.org/10.15826/umj.2021.2.005
http://dx.doi.org/https://doi.org/10.1007/s40065-017-0162-8
http://dx.doi.org/https://doi.org/10.1007/s13370-019-00686-z
http://dx.doi.org/https://doi.org/10.1155/2020/8634050

124

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

G. A. Okeke, A. E. Ofem, A novel iterative scheme for solving delay differential equations and
nonlinear integral equations in Banach spaces, Math. Methods Appl. Sci., 45 (2022), 5111-5134.
https://doi.org/10.1002/mma.8095

M. O. Osilike, A. Udomene, Short proofs of stability results for fixed point iteration procedures for
a class of contractive-type mappings, Indian J. Pure Appl. Math., 30 (1999), 1229-1234.

A. M. Ostrowski, The round-off stability of iterations, Z. Angew. Math. Mech., 47 (1967), 77-81.
https://doi.org/10.1002/zamm.19670470202

S. M. Soltuz, T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive like
operators, Fixed Point Theory Appl., 2008 (2008), 1-7. https://doi.org/10.1155/2008/242916

B. S. Thakur, D. Thakur, M. Postolache, A new iteration scheme for approximating fixed points of
nonexpansive mappings, Filomat, 30 (2016), 2711-2720. https://doi.org/10.2298/FIL1610711T

B. S. Thakur, D. Thakur, M. Postolache, A new iterative scheme for numerical reckoning fixed
points of Suzuki’s generalized nonexpansive mappings, Appl. Math. Comput., 275 (2016), 147—
155. https://doi.org/10.1016/j.amc.2015.11.065

I. Timis, On the weak stability of Picard iteration for some contractive type mappings and
coincidence theorems, Int. J. Comput. Appl., 37 (2012), 9-13. https://doi.org/10.5120/4595-6549
K. Ullah, M. Arshad, Numerical reckoning fixed points for Suzuki’s generalized
nonexpansive mappings via new iteration process, Filomat, 32 (2018), 187-196.
https://doi.org/10.2298/FIL1801187U

X. L. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proc. Amer. Math.
Soc., 113 (1991), 727-731. https://doi.org/10.1090/S0002-9939-1991-1086345-8

T. Zamfirescu, Fixed point theorems in metric spaces, Arch. Math., 23 (1972), 292-298.
https://doi.org/10.1007/BF01304884

©2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the

% AIMS PI'GSS terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 1, 102-124.


http://dx.doi.org/https://doi.org/10.1002/mma.8095
http://dx.doi.org/https://doi.org/10.1002/zamm.19670470202
http://dx.doi.org/https://doi.org/10.1155/2008/242916
http://dx.doi.org/https://doi.org/10.2298/FIL1610711T
http://dx.doi.org/https://doi.org/10.1016/j.amc.2015.11.065
http://dx.doi.org/https://doi.org/10.5120/4595-6549
http://dx.doi.org/https://doi.org/10.2298/FIL1801187U
http://dx.doi.org/https://doi.org/10.1090/S0002-9939-1991-1086345-8
http://dx.doi.org/https://doi.org/10.1007/BF01304884
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Convergence result
	Stability result 
	Data dependence result
	Application
	Conclusions

