Research article Special Issues

Existence of $ S $-asymptotically $ \omega $-periodic solutions for non-instantaneous impulsive semilinear differential equations and inclusions of fractional order $ 1 < \alpha < 2 $

  • Received: 11 August 2022 Revised: 11 September 2022 Accepted: 15 September 2022 Published: 27 September 2022
  • MSC : 26A33, 34A08, 34A60

  • It is known that there is no non-constant periodic solutions on a closed bounded interval for differential equations with fractional order. Therefore, many researchers investigate the existence of asymptotically periodic solution for differential equations with fractional order. In this paper, we demonstrate the existence and uniqueness of the $ S $-asymptotically $ \omega $-periodic mild solution to non-instantaneous impulsive semilinear differential equations of order $ 1 < \alpha < 2 $, and its linear part is an infinitesimal generator of a strongly continuous cosine family of bounded linear operators. In addition, we consider the case of differential inclusion. Examples are given to illustrate the applicability of our results.

    Citation: Zainab Alsheekhhussain, Ahmed Gamal Ibrahim, Rabie A. Ramadan. Existence of $ S $-asymptotically $ \omega $-periodic solutions for non-instantaneous impulsive semilinear differential equations and inclusions of fractional order $ 1 < \alpha < 2 $[J]. AIMS Mathematics, 2023, 8(1): 76-101. doi: 10.3934/math.2023004

    Related Papers:

  • It is known that there is no non-constant periodic solutions on a closed bounded interval for differential equations with fractional order. Therefore, many researchers investigate the existence of asymptotically periodic solution for differential equations with fractional order. In this paper, we demonstrate the existence and uniqueness of the $ S $-asymptotically $ \omega $-periodic mild solution to non-instantaneous impulsive semilinear differential equations of order $ 1 < \alpha < 2 $, and its linear part is an infinitesimal generator of a strongly continuous cosine family of bounded linear operators. In addition, we consider the case of differential inclusion. Examples are given to illustrate the applicability of our results.



    加载中


    [1] E. Hernandez, D. O'Regan, On a new class of abstract impulsive differential equation, Proc. Amer. Math. Soc., 141 (2013), 1641–1649. https://doi.org/10.1090/S0002-9939-2012-11613-2 doi: 10.1090/S0002-9939-2012-11613-2
    [2] A. G. Ibrahim, A. A. Elmandouh, Existence and stability of solutions of $\psi$-Hilfer fractional functional differential inclusions with non-instantaneous impulses, AIMS Math., 6 (2021), 10802–10832. https://doi.org/10.3934/math.2021628 doi: 10.3934/math.2021628
    [3] J. R. Wang, M. Li, D. O'Regan, M. Fečkan, Robustness for nonlinear evolution equation with non-instantaneous effects, B. Sci. Math., 159 (2020), 102827. https://doi.org/10.1016/j.bulsci.2019.102827 doi: 10.1016/j.bulsci.2019.102827
    [4] J. R. Wang, A. G. Ibrahim, D. O'Regan, Global attracting solutions to Hilfer fractional non-instantaneous impulsive semilinear differential inclusions of Sobolev type and with nonlocal conditions, Nonlinear Anal. Model., 24 (2019), 775–803. https://doi.org/10.15388/NA.2019.5.6 doi: 10.15388/NA.2019.5.6
    [5] J. R. Wang, A. G. Ibrahim, D. O'Regan, Hilfer type fractional differential switched inclusions with non-instantaneous impulsive and nonlocal conditions, Nonlinear Anal. Model., 23 (2018), 921–941. https://doi.org/10.15388/NA.2018.6.7 doi: 10.15388/NA.2018.6.7
    [6] J. R. Wang, A. G. Ibrahim, D. O'Regan, Y. Zhou, A general class of non-instantaneous impulsive semilinear differential inclusions in Banach spaces, Adv. Differ. Equ., 2017 (2017), 287. https://doi.org/10.1186/s13662-017-1342-8 doi: 10.1186/s13662-017-1342-8
    [7] J. R. Wang, A. G. Ibrahim, D. O'Regan, Noeemptness and compactness of the solution set for fractional differential inclusions with non-instantaneous impulses, Electron. J. Differ. Eq., 2019 (2019), 37.
    [8] M. S. Tavazoei, M. Haeri, A proof for non existence of periodic solutions in time invariant fractional order systems, Automatica, 45 (2009), 1886–1890. https://doi.org/10.1016/j.automatica.2009.04.001 doi: 10.1016/j.automatica.2009.04.001
    [9] I. Area, J. Losada, J. J. Nieto, On fractional derivatives and primitives of periodic of periodic functions, Abstr. Appl. Anal., 2014 (2014), 392598. https://doi.org/10.1155/2014/392598 doi: 10.1155/2014/392598
    [10] E. Kaslik, S. Sivasundaram, Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions, Nonlinear Anal. Real, 13 (2012), 1489–1497. https://doi.org/10.1016/j.nonrwa.2011.11.013 doi: 10.1016/j.nonrwa.2011.11.013
    [11] M. D. Ortigueira, J. D. Machado, J. J. Trujillo, Fractional derivatives and periodic functions, Int. J. Dynam. Control, 5 (2017), 72–78. https://doi.org/10.1007/s40435-015-0215-9 doi: 10.1007/s40435-015-0215-9
    [12] L. Ren, J. Wang, M. Fečkan, Asymptotically periodic behavior solutions for Caputo type fractional evolution equations, Fract. Calc. Appl. Anal., 21 (2019), 1294–1312. https://doi.org/10.1515/fca-2018-0068 doi: 10.1515/fca-2018-0068
    [13] S. Maghsoodi, A. Neamaty, Existence and uniqueness of asymptotically $w$-periodic solution for fractional semilinear problem, J. Appl. Comput. Math., 8 (2019), 1–5.
    [14] L. Ren, J. R. Wang, D. O'Regan, Asymptotically periodic behavior of solutions of fractional evolution equations of order $1<\alpha <2 $, Math. Slovaca, 69 (2019), 599–610. https://doi.org/10.1515/ms-2017-0250 doi: 10.1515/ms-2017-0250
    [15] J. Mu, Y. Zhou, L. Peng, Periodic solutions and $S$-asymptotically periodic solutions to fractional evolution equations, Discrete Dyn. Nat. Soc., 2017 (2017), 1364532. https://doi.org/10.1155/2017/1364532 doi: 10.1155/2017/1364532
    [16] J. Q. Zhao, Y. K. Chang, G. M. N. Guérékata, Asymptotic behavior of mild solutions to semilinear fractional differential equations, J. Optim. Theory Appl., 156 (2013), 106–114. https://doi.org/10.1007/s10957-012-0202-7 doi: 10.1007/s10957-012-0202-7
    [17] H. Wang, F. Li, $S$-asymptotically $T$-periodic solutions for delay fractional differential equations with almost sectorial operator, Adv. Differ. Equ., 2016 (2016), 315. https://doi.org/10.1186/s13662-016-1043-8 doi: 10.1186/s13662-016-1043-8
    [18] M. Muslim, A. Kumar, M. Fečkan, Existence, uniqueness and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses, J. King Saud Uni. Sci., 30 (2018), 204–213. https://doi.org/10.1016/j.jksus.2016.11.005 doi: 10.1016/j.jksus.2016.11.005
    [19] Z. Alsheekhhussain, J. Wang, A. G. Ibrahim, Asymptotically periodic behavior of solutions to fractional non-instantaneous impulsive semilinear differential inclusions with sectorial operators, Adv. Differ. Equ., 2021 (2021), 330. https://doi.org/10.1186/s13662-021-03475-w doi: 10.1186/s13662-021-03475-w
    [20] F. Li, J. Liang, H. Wang, $S$-Asymptotically $\omega$-periodic solution for fractional differential equations of order $q\in(0, 1)$ with finite delay, Adv. Differ. Equ., 2017 (2017), 83. https://doi.org/10.1186/s13662-017-1137-y doi: 10.1186/s13662-017-1137-y
    [21] A. M. Abou-El-Elai, A. L. Sadek, A. M. Mahmoud, E. Farghalyi, Asymptotic stability of solutions for a certain non-autonomous second-order stochastic delay differential equation, Turk. J. Math., 41 (2017), 576–584. https://doi.org/10.3906/mat-1508-62 doi: 10.3906/mat-1508-62
    [22] T. Zhang, L. Xiong, Periodic motion for impulsive fractional functional equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 106072. https://doi.org/10.1016/j.aml.2019.106072 doi: 10.1016/j.aml.2019.106072
    [23] J. Andra, Coexistence of periodic solutions with various periods of impulsive differential equations and inclusions on tori via Poincare operators, Topol. Appl., 255 (2019), 128–140. https://doi.org/10.1016/j.topol.2019.01.008 doi: 10.1016/j.topol.2019.01.008
    [24] M. Fecčkan, R. J. Wang, Periodic impulsive fractional differential equations, Adv. Nonlinear Anal., 8 (2019), 482–496. https://doi.org/10.1515/anona-2017-0015 doi: 10.1515/anona-2017-0015
    [25] H. R. Henrique, Periodic solutions of abstract neutral functional differential equations with infinite delay, Acta Math. Hung., 121 (2008), 203–227. https://doi.org/10.1007/s10474-008-7009-x doi: 10.1007/s10474-008-7009-x
    [26] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [27] T. Zhang, Y. Li, $S$-Asymptotically periodic fractional functional differential equations with off-diagonal matrix Mittag-Leffller functional kernels, Math. Comput. Simul., 193 (2022), 313–347. https://doi.org/10.1016/j.matcom.2021.10.006 doi: 10.1016/j.matcom.2021.10.006
    [28] T. Zhang, Y. Li, Exponential Euler scheme of multi-delay Caput-Fabrizio fractional-order differential quations, Appl. Math. Lett., 124 (2022), 107709. https://doi.org/10.1016/j.aml.2021.107709 doi: 10.1016/j.aml.2021.107709
    [29] T. Zhang, J. Zhou, Y. Liao, Exponentially stable periodic oscillation and Mittag-Leffler stabilization for fractional-order impulsive control neutral networks with piecewise Caputo derivatives, IEEE T. Cybernetics, 52 (2022), 9670–9683. https://doi.org/10.1109/TCYB.2021.3054946 doi: 10.1109/TCYB.2021.3054946
    [30] C. C. Travis, G. F. Webb, Cosine families abstract nonlinear second order differential equations, Acta Math. Acad. Sci. H., 32 (1978), 75–96. https://doi.org/10.1007/BF01902205 doi: 10.1007/BF01902205
    [31] J. W. He, Y. Liang, B. Ahmed, Y. Zhou, Nonlocal fractional evolution inclusions of order $\alpha \in (1, 2)$, Mathematics, (2019) 2019, 7. https://doi.org/10.3390/math7020209 doi: 10.3390/math7020209
    [32] T. Ke, N. Lu, V. Obukhovskii, Decay solutions for a class of reactional differential varational inequalities, Fract. Calc. Appl. Anal., 18 (2015), 531–553. https://doi.org/10.1515/fca-2015-0033 doi: 10.1515/fca-2015-0033
    [33] J. R. Wang, Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions, Nonlinear Anal. Real, 12 (2011), 3642–3653. https://doi.org/10.1016/j.nonrwa.2011.06.021 doi: 10.1016/j.nonrwa.2011.06.021
    [34] H. Covitz, S. B. Nadler, Multivalued contraction mapping in generalized metric space, Israel J. Math., 8 (1970), 5–11. https://doi.org/10.1007/BF02771543 doi: 10.1007/BF02771543
    [35] C. Castaing, M. Valadier, Convex analysis and measurable multifunctions, Springer-Verlag, 1977.
    [36] F. Hiai, H. Umegaki, Integrals conditional expectation and martingales of multivalued functions, J. Multivariate Anal., 7 (1977), 149–182. https://doi.org/10.1016/0047-259X(77)90037-9 doi: 10.1016/0047-259X(77)90037-9
    [37] M. Kamenskii, V. Obukhowskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces, New York: Walter de Gruyter, 2001. https://doi.org/10.1515/9783110870893
    [38] G. Arthi, Ju H. Park, H. Y. Jung, Exponential stability for second-order neutral stochastic differential equations with impulses, Int. J, Control, 88 (2015), 1300–1309. https://doi.org/10.1080/00207179.2015.1006683 doi: 10.1080/00207179.2015.1006683
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1098) PDF downloads(173) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog