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Abstract: It is known that there is no non-constant periodic solutions on a closed bounded interval
for differential equations with fractional order. Therefore, many researchers investigate the existence
of asymptotically periodic solution for differential equations with fractional order. In this paper, we
demonstrate the existence and uniqueness of the S -asymptotically ω-periodic mild solution to non-
instantaneous impulsive semilinear differential equations of order 1 < α < 2, and its linear part is an
infinitesimal generator of a strongly continuous cosine family of bounded linear operators. In addition,
we consider the case of differential inclusion. Examples are given to illustrate the applicability of our
results.
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1. Introduction

It is known that the action of instantaneous impulses seems not describe some certain dynamics
of evolution processes in Pharmacotherapy. For example, in the case of a decompensation, (high or
low levels of glucose) one can prescribe some intravenous drugs (insulin). The introduction of the
drugs in the bloodstream and the consequent absorption for the body are gradual and continuous
processes. Thus, we do not expect to use the instantaneous impulses to describe such a process. In
fact, the above situation is fallen in a new case of impulsive action, which starts at any arbitrary fixed
point and stays active on a finite time interval. To this end, Hernándaz and O’Regan [1] introduced
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the non-instantaneous impulsive differential equations. For recent contributions on non-instantaneous
impulsive differential equations and inclusions, we refer the reader to [2–7].

There are some papers where the nonexistence of non-constant periodic solutions on closed
bounded interval for differential equations with fractional order are considered such as [8–12]. Many
authors investigated the existence of S -asymptotically ω-periodic solutions for many types of
differential equations of fractional order. For example, Maghsoodi et al. [13] considered an evolution
equation of order α ∈ (0, 1) generated by an evolution system U(θ, s). Ren et al. [12] studied
semilinear differential equation of order α ∈ (0, 1) and generated by exponentially stable
C0-semigroup. Ren et al. [14] considered semilinear differential equations of order
α ∈ (1, 2) generated by a sectorial operator. Mu et al. [15] investigated an evolution equation with the
Weyl-Liouville fractional derivative of order α ∈ (0, 1) and generated by C0-semigroup. Zhao at
al. [16] demonstrated the existence of an asymptotically almost automorphic mild solution to a
semilinear fractional differential equation, and Wang et al. [17] studied delay fractional differential
equations with an almost sectorial operator of order α ∈ (0, 1). Moreover, Muslim et al. [18]
investigated the existence, uniqueness and stability of solutions to second order nonlinear differential
equations with non- instantaneous impulses. Very recently, Alsheekhhussain et al. [19] proved the
existence of S -asymptotically w-periodic solutions for non-instantaneous impulsive differential
equations and inclusions generated by sectorial operators. For more information regarding this
subject, we refer the reader to [20–25].

It is worth noting that the problems considered in all the cited works above, except [19], do not
contain impulseses effects and the right-hand side is a single-valued function. Moreover, to the best of
the authors’ knowledge, the literature concerning S -asymptotically w-periodic solutions for
differential inclusions subject to non-instantaneous impulses and generated by an infinitesimal
generator of a cosine family {C(θ) : θ ≥ 0} is very new, and this fact is the main aim in the present
paper.

When the considered problem contains non-instantaneous impulses, there are two approaches in
the literature to prove the existence of the solution. The first one is by keeping the lower limit of the
fractional derivative at zero. The second one is by switching it at the impulsive points, which will be
considered in the present paper.

Let α ∈ (1, 2), E be a Banach space, N be the set of natural numbers, m ∈ N, ω > 0, J = [0,∞),

0 = s0 < θ1 < s1 < · · · < θm < sm = ω < θm+1 = ω + θ1 < sm+1 = s1 + ω < ...,

with limi→∞ θi = ∞, sm+i = si +ω; i ∈ {0}∪N, θm+i = θi +ω; i ∈ N, and A is the infinitesimal generator of
cosine family {C(θ) : θ ≥ 0}. Moreover, let Π : J×E → E, gi : [θi, si]×E −→ E ; i ∈ N, x0 ∈ D(A) (the
domain of A ), and x1 ∈ E a fixed point.

Motivated by the above cited works, we demonstrate the existence and uniqueness of an
S -asymptotically ω-periodic solution to the following non-instantaneous impulsive semilinear
differential equation:

cDα
0,θx(θ) = Ax(θ) + Π(θ, x(θ)), a.e. θ ∈ (si, θi+1], i ∈ N ∪ {0},

x(θ) = gi(θ, x(θ−i )), θ ∈ (θi si], i ∈ N,
x(0) = x0, x́(0) = x1,

(1.1)

where, cDα
0,θx(θ) is the Caputo derivative of the function x at the point θ with lower limit at 0 [26].
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After that, we prove the existence of S -asymptotically ω-periodic solutions for the following non-
instantaneous impulsive semilinear differential inclusion:

cDα
0,θx(θ) ∈ Ax(θ) + F(θ, x(θ)), a.e. θ ∈ (si, θi+1], i ∈ N ∪ {0},

x(θ) = gi(θ, x(θ−i )), θ ∈ (θi si], i ∈ N,
x(0) = x0, x́(0) = x1,

(1.2)

where F : J × E → 2E − {φ} is a multi-valued function.
Unlike the differential equations of integer order, the existence of non-constant periodic solutions

for fractional differential equations is not guaranteed. For this reason, the concept of an
asymptotically periodic solution is introduced for fractional differential equations. Many researchers
uses this approach to investigate the existence of the solution for fractional differential equations.
However, up to now, there are no work studying the problem mentioned above. In this paper, we
construct sufficient conditions that assure the existence of asymptotically periodic mild solutions for
Problems (1.1) and (1.2). Moreover, our results generalize the obtained ones in [12], and our method
can be used to study the existence of asymptotically periodic mild solutions for the problems
considered in [13, 15–17, 20–25], when these problems contain impulseses effects and the right hand
side is a multi-valued function.

Since a multivalued function is a function values are sets, so, our technique to find an asymptotically
periodic solution for Problem (2) can be used to extend many recent publications on the same subject
in which the right hand side is a single-function see, for example, [27–29].

In Section 3, we prove the existence and uniqueness of S -asymptotically ω-periodic solution for
Problem (1.1). Section 4 is devoted to prove the existence of S -asymptotically ω-periodic solutions to
Problem (1.2). Finally, examples are given to show that the obtained results are applicable.

2. Preliminaries and notations

Let J0 = [0, θ1], Ji = (θi, θi+1], and i ∈ N. Because Problem (1.1) contains non-instantaneous
impulses effect, we consider the two Banach spaces:

PC(J, E) := {x : J → E, x|Ji ∈ C(Ji, E), x(θ+
i ) and x(θ−i ) exist, i ∈ N },

and
PCb(J, E) := {x ∈ PC(J, E) : x is bounded, x|Ji ∈ C(Ji, E)},

where
||x||PC(J,E) := max

θ∈J
||x(θ)||E,

||x||PCb(J,E)) := max
θ∈J
||x(θ)||E,

and x(θ+
i ) and x(θ−i ) are the right and left limits of x at θi.

Definition 2.1. Letω be a positive real number. A function x ∈ PCb(J, E) is said to be S -asymptotically
ω-periodic if it satisfies the relation:

lim
θ→∞
||x(θ + ω) − x(θ)|| = 0.
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Definition 2.2. [19] By S APωPCb(J, E), we mean the Banach space of all S -asymptoticallyω-periodic
functions x ∈ PCb(J, E), where the norm is given by

||x||PCb(J,E)) := max
θ∈J
||x(θ)||E.

Definition 2.3. [30] A family {C(θ) : θ ∈ R}, where C(θ) : D(C(θ)) = E → E is a bounded linear
operator, is called a strongly cosine family if:

(i) C(0) = I,
(ii) C(θ + τ) + C(τ − θ) = 2C(τ)C(θ) for all τ, θ ∈ R,
(iii) the map θ 7−→ C(θ)x is continuous for each x ∈ E.
If {C(θ) : θ ∈ R} is a strongly cosine family, then the strongly continuous sine family associated

with it is defined by:

S (θ)x =

∫ θ

0
C(s)xds; θ ∈ R, x ∈ E.

Definition 2.4. The infinitesimal generator of a cosine family {C(θ) : θ ∈ R} is an operator A :
D(A) 7−→ E defined by

Ax =
d2

dθ2 C(θ)x|θ=0,

where D(A) = {x ∈ E : C(t)x is twice continuously differentiable of t}.

Lemma 2.1. ( [30], Propositions 2.2 and 2.3]) Let {C(t) : t ∈ R} be a strongly cosine family in E with
infinitesimal generator A and

Z = {z ∈ E : C(θ)x is once continuously differentiable of θ }.

Then, the following statements hold:
1- D(A) is dense in E, and A is a closed operator.
2- If z ∈ E, then S (θ)z ∈ Z.
3- If z ∈ Z, then
(i) S (θ)z ∈ D(A) and d2

dθ2 S (θ)z = AS (θ)z,
(ii) S (θ)z ∈ D(A) and d

dθC(θ)z = AS (θ)z.
4- If z ∈ D(A), then
(i) C(θ)z ∈ D(A) and d2

dθ2 C(θ)z = AC(θ)x = C(θ)Az;
(ii) S (θ)z ∈ D(A) and AS (θ)z = S (θ)Az.

Definition 2.5. ( [31]) By a mild solution for Problem (1.1), we mean a function x ∈ PC(J, E) such
that

x(θ) =



Cq(θ)x0 + Kq(θ)x1

+
∫ θ

0
(θ − τ)q−1Pq(θ − τ)Π(τ, x(τ))dτ, θ ∈ [0, θ1],

gi(θ, x(θ−i )), θ ∈ (θi, si], i ∈ N,
Cq(θ − si)gi(si, x(θ−i )) + Kq(θ − si)g′i(si, x(θ−i ))
−
∫ si

0
(si − τ)q−1Pq(si − τ)Π(τ, x(τ))dτ

+
∫ θ

0
(θ − τ)q−1Pq(θ − τ)Π(τ, x(τ))dτ, θ ∈ [si, θi+1], i ∈ N,

(2.1)
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where q = α
2 , and, for ϑ ≥ 0,

Cq(ϑ) =

∫ ∞

0
ξq(θ)C(ϑqθ)dθ,Kq(ϑ) =

∫ ϑ

0
Cq(τ)dτ,

Pq(ϑ) = q
∫ ∞

0
θξq(θ)S (ϑqθ)dθ,

ξq(θ) =
1
q
θ−1− 1

q wq(θ−
1
q ), θ ∈ (0,∞),

and

wq(θ) =
1
π

∞∑
n=1

(−1)n−1θ−qn−1 Γ(nq + 1)
n!

sin(nπq), θ ∈ (0,∞).

Remark 2.1. The solution function given by (2.1) satisfies the following properties:

1- x(0) = Cq(0)x0 = x0.
2 x́(0) = x1.
3- x is continuous on Ji; i ∈ {0} ∪ N.
We will need the following lemma which gives some properties for the operators Cq(θ),Kq(θ) and

Pq(θ).

Lemma 2.2. ( [31], Lemma 8). Assume that

(HA) A : D(A) → E is the infinitesimal generator of strongly continuous cosine family of linear
operators {C(θ) : θ ≥ 0} which is uniformly bounded by M > 0. Then,

(i) For any fixed θ ≥ 0,Cq(θ), Kq(θ) and Pq(θ) are linear bounded operators.
(ii) For γ ∈ [0, 1],

∫ ∞
0
θγξα(θ)dθ =

Γ(1+γ)
Γ(1+αγ) .

(iii) If ||Cq(θ)|| ≤ M, θ ≥ 0, then for any x ∈ E, ||Cq(θ)x|| ≤ M||x||, ||Kq(θ)x|| ≤ θM||x|| and
||Pq(θ)x|| ≤ M

Γ(2q) ||x||θ
q.

(iv) {Cq(θ), θ ≥ 0}, {Kq(θ), θ ≥ 0} and {θq−1Pq(θ), θ ≥ 0} are strongly continuous.

3. Existence and uniqueness of an S -asymptotically ω-periodic mild solution for Problem (1.1).

We make the following assumptions:
(HA)∗A : D(A) → E satisfies (HA), and the family {C(θ) : θ ≥ 0} is exponentially stable. That is,

there exist positive numbers a, M such that ||C(θ)|| ≤ e−aθM, θ ≥ 0.
(HΠ) Π : J × E → E is a strongly measurable function, and there are h1, h2 ∈ C(J,R+) such that

h1is bounded,

||Π(θ, x) − Π(θ, y)||E ≤ h1(θ)||x − y||E,∀θ ∈ J, x, y ∈ E, (3.1)

and
||Π(θ + ω, x) − Π(θ, x)||E ≤ h2(θ)(||x||E + 1),∀θ ∈ J, x ∈ E. (3.2)

(Hg) For any i ∈ N, gi : [θi, si]× E −→ E (i ∈ N) such that, for any x ∈ E, the function θ 7→ gi(θ, x)
is differentiable at si , and that:
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(i)
lim
θ→∞
i→∞

||gi+m(θ + ω, z) − gi(θ, z)||E = 0,∀z ∈ E, (3.3)

and

lim
i→∞
||g′i+m(si + ω, z) − g′i(si, z)||E = 0,∀z ∈ E. (3.4)

(ii) There are N > 0 such that

||gi(θ, z1) − gi(θ, z2)||E ≤ N||z1 − z2||E,∀θ ∈ [θi, si], ∀z1, z2 ∈ E. (3.5)

(iii) There is N > 0 such that

||g′i(si, z1) − g′i(si, z2)||E ≤ N||z1 − z2||E,∀ z1, z2 ∈ E. (3.6)

(iv) There is κ1 > 0 such that

sup
i∈N

sup
θ∈J
||gi(θ, z)||E ≤ κ1(||z||E + 1),∀z ∈ E. (3.7)

(v) There is κ2 > 0 with
sup
i∈N
||g′i(si, z)||E ≤ κ2(||z||E + 1),∀z ∈ E. (3.8)

The following lemma provides additional properties for the operators Cq(θ) and Pq(θ) when {C(θ) :
θ ≥ 0} is exponentially stable.

Lemma 3.1. ( [32], Proposition 2.1). If (HA)∗ is verified, then there is L > 0 such that

||Cq(θ)|| ≤
L

(1 + θ)q , ||Pq(θ)|| ≤
L

(1 + θ)2q ,∀θ ∈ J. (3.9)

Lemma 3.2. ( [33], Lemma 2.11]) Let γ ∈ [0, 1], 0 < a < b. Then, |bγ − aγ| ≤ (b − a)γ.

Remark 3.1. In what follows, we mean by || || the norm in the Banach space E.

Theorem 3.1. Under conditions (HA)∗, (HΠ), (Hgi) and (H), Problem (1.1) has a unique
S -asymptotically ω-periodic mild solution provided that the following assumptions are verified:

ς = sup
θ∈J

∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q h1(τ)dτ < ∞, (3.10)

MN + MωN + 2Lς < 1, (3.11)

ξ = sup
τ∈[0,ω]

||Π(τ, 0)||E < ∞, (3.12)

and

lim
θ→∞

∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q h2(τ)dτ = 0, (3.13)

where h1 and h2 are specified in (HΠ).
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Proof. First, we clarify that if x ∈ S APωPCb(J, E), then the function Φ(x) defined by

Φ(x)(θ) =



Cq(θ)x0 + Kq(θ)x1

+
∫ θ

0
(θ − τ)q−1Pq(θ − τ)Π(τ, x(τ))dτ, θ ∈ [0, θ1],

gi(θ, x(θ−i )), θ ∈ (θi, si], i ∈ N,
Cq(θ − si)gi(si, x(θ−i )) + Kq(θ − si)g′i(si, x(θ−i ))
−
∫ si

0
(si − τ)q−1Pq(si − τ)Π(τ, x(τ))dτ

+
∫ θ

0
(θ − τ)q−1Pq(θ − τ)Π(τ, x(τ))dτ, θ ∈ [si, θi+1], i ∈ N,

(3.14)

belongs to S APωPCb(J, E). The proof will be given in the following steps.
Step 1. we will show that limθ→∞ ||Φ(x)(θ + ω) − Φ(x)(θ)|| = 0.

Let ε > 0. Because x ∈ S APωPC(J, E), limθ→∞ ||x(θ + ω) − x(θ)||E = 0, and hence there is θε > θ1

such that
sup
θ>θε

||x(θ + ω) − x(θ)||E <
ε

Lς
. (3.15)

Let θ > θε . If θ ∈ (θi, si], i ∈ N, then θ + ω ∈ (θi + ω, si + ω] = (θi+m, si+m]. So, relations (3.3), (3.5)
and (3.14) imply that

lim
θ→∞
||Φ(x)(θ + ω) − Φ(x)(θ)||E

= lim
θ→∞
||gi+m(θ + ω, x(θ−i+m)) − gi(θ, x(θ−i ))||

≤ lim
θ→∞
i→∞

||gi+m(θ + ω, x(θ−i + ω)) − gi+m(θ, x(θ−i + ω))||

+ lim
θ→∞
i→∞

||gi+m(θ, x(θ−i + ω)) − gi(θ, x(θ−i ))||

≤ N lim
θi→∞
||x(θ−i + ω) − x(θ−i )||E = 0. (3.16)

Let θ ∈ [si, θi+1], i ∈ N. Then, θ + ω ∈ [si + ω, θi+1 + ω] = [si+m, θi+m+1]. By arguing as in (3.16), one
obtains

lim
θ→∞

||Cq(θ + ω − (si + ω))gi+m(si + ω, x(θ−i+ω)) −Cq(θ − si)gi(si, x(θ−i ))||

= M lim
θ→∞
||gi+m(si + ω, x(θ−i + ω)) − gi(si, x(θ−i ))|| = 0. (3.17)

Similarly, by (3.4) and (3.6), we get

lim
θ→∞
||Kq(θ + ω − (si + ω))g′i+m(si + ω, x(θ−i+ω)) − Kq(θ − si)g′i(si, x(θ−i ))||

= lim
θ→∞
||Kq(θ − si)|| ||ǵi+m(si + ω, x(θ−i + ω)) − g′i(si, x(θ−i ))||

≤ lim
θ→∞

M (θ − si)||ǵi+m(si + ω, x(θ−i + ω)) − g′i(si, x(θ−i ))||

≤ M (θi+1 − si)[lim
θ→∞
i→∞

||ǵi+m(si, x(θ−i + ω)) − ǵ(si, x(θ−i ))||

+N lim
θ→∞
||x(θ−i + ω) − x(θ−i )|| = 0. (3.18)

Next, notice that ∫ θ+ω

0
(θ + ω − τ)q−1Pq(θ + ω − τ)Π(τ, x(τ))dτ
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=

∫ θ

−ω

(θ − τ)q−1Pq(θ − τ)Π(τ + ω, x(τ + ω))dτ.

Then,

||

∫ θ+ω

0
(θ + ω − τ)q−1Pq(θ + ω − τ)Π(τ, x(τ))dτ

−

∫ θ

0
(θ − τ)q−1Pq(θ − τ)Π(τ, x(τ))dτ||

= ||

∫ θ

−ω

(θ − τ)q−1Pq(θ − τ)Π(τ + ω, x(τ + ω))dτ

−

∫ θ

0
(θ − τ)q−1Pq(θ − τ)Π(τ, x(τ))dτ||

≤ ||

∫ 0

−ω

(θ − τ)q−1Pq(θ − τ)Π(τ + ω, x(τ + ω))dτ||

+||

∫ θ

0
(θ − τ)q−1Pq(θ − τ)(Π(τ + ω, x(τ + ω))

−Π(τ, x(τ + ω)))dτ||

+||

∫ θ

0
(θ − τ)q−1Pq(θ − τ)(Π(τ, x(τ + ω))

−Π(τ, x(τ)))dτ||.
= Q1 + Q2 + Q3. (3.19)

Note that, from Lemma 3.1, (θ+ω)q − θq ≤ ωq. Hence, by taking into account τ ∈ [−ω, 0] =⇒ τ+ω ∈

[0, ω], it yields from (3.9)

Q1 = ||

∫ 0

−ω

(θ − τ)q−1Pq(θ − τ)Π(τ + ω, x(τ + ω))dτ||

≤ L sup
s∈[0,ω],||v||≤||x||S APωPC(J,E)

||Π(s, v)||
∫ 0

−ω

(θ − τ)q−1

(1 + θ − τ)2q dτ

≤
Lκ.

(1 + θ)2q

∫ 0

−ω

(θ − τ)q−1dτ =
Lσx,

q(1 + θ)2q ((θ + ω)q − θq)

≤
Lκ.ωq

q(1 + θ)2q , (3.20)

where, κ = sups∈[0,ω],||v||≤||x||S APωPCb(J,E)
||Π(s, v)||.

Next, by (3.1), (3.2), (3.9), (3.10) and (3.15), we get

Q2 = ||

∫ θ

0
(θ − τ)q−1Pq(θ − τ)(Π(τ + ω, x(τ + ω))

−Π(τ, x(τ + ω)))dτ||

≤ L
∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q (1 + ||x(τ + ω))||h2(τ)dτ
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≤ L(1 + ||x||S APωPCb(J,E))
∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q h2(τ)dτ, (3.21)

and

Q3 =

∫ θ

0
(θ − τ)q−1||Pq(θ − τ)|| ||Π(τ, x(τ + ω)) − Π(τ, x(τ))||dτ

≤ L
∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q ||x(τ + ω)) − x(τ)||h1(τ)dτ

≤ L
∫ θε

0

(θ − τ)q−1

(1 + θ − τ)2q ||x(τ + ω)) − x(τ)||h1(τ)dτ

+L
∫ θ

θε

(θ − τ)q−1

(1 + θ − τ)2q ||x(τ + ω)) − x(τ)||h1(τ)dτ

< c1c2L
∫ θε

0

(θ − τ)q−1

(1 + θ − τ)2q dτ + ε

< c1c2L
∫ θε

0
(θ − τ)−q−1dτ + ε

< c1c2L
θ−q − (θ − θε)−q

q
+ ε, (3.22)

where c1 = supτ∈[0,θε ] ||x(τ + ω)) − x(τ)|| and c2 = supτ∈[0,θε ] h1(τ). Combining (3.19–3.22), one obtains,

lim
θ→∞
||

∫ θ+ω

0
(θ + ω − τ)q−1Pq(θ + ω − τ)Π(τ, x(τ))dτ

−

∫ θ

0
(θ − τ)q−1Pq(θ − τ)Π(τ, x(τ))dτ||

< lim
θ→∞

Lκ.ωq

q(1 + θ)2q + L(1 + ||x||) lim
θ→∞

∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q h2(τ)dτ

+c1c2L lim
θ→∞

(θ − τ)−q − θ−q

q
+ ε. (3.23)

Similarly,

||

∫ si+ω

0
(si + ω − τ)q−1Pq(si + ω − τ)Π(τ, x(τ))dτ

−

∫ si

0
(si − τ)q−1Pq(si − τ)Π(τ, x(τ))dτ||

<
Lκ.ωq

q(1 + si)2q + L(1 + ||x||)
∫ si

0

(si − τ)q−1

(1 + si − τ)2q h2(τ)dτ

+c1c2L
θ−q − (θ − θε)−q

q
+ ε. (3.24)

Note that si → ∞ when θ → ∞. Therefore, using (3.16)–(3.18), (3.13) and (3.24), we derive
limθ→∞ ||Φ(x)(θ + ω) − Φ(x)(θ)|| = 0.
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Step 2. We show that, for any x ∈ S APωPCb(J, E), Φ(x) is bounded.
Let θ ∈ J.
(i) Let θ ∈ [0, θ1]. Then, applying Lemma (1.2) (iii), (3.9) and (3.14), one gets

||Φ(x)(θ)|| ≤ M||x0|| + Mω||x1||

+L
∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q ||Π(τ, x(τ))||dτ. (3.25)

On the hand, from (3.1), we get

||Π(τ, x(τ))|| ≤ ≤ ||Π(τ, 0|| + h1(τ)||x(τ)||
≤ ξ + h1(τ)||x||S APωPCb(J,E). (3.26)

By (3.25) and (3.26), we get

||Φ(x)(θ)|| ≤ M||x0|| + Mω||x1||

+Lξ
∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q dτ + ςL||x||S APωPCb(J,E)

≤ M||x0|| + Mω||x1||

+Lξ
∫ θ

0

δq−1

(1 + δ)2q dδ + ςL||x||S APωPCb(J,E)

≤ M||x0|| + Mω||x1||

+Lξ
∫ ∞

0

δq−1

(1 + δ)2q dδ + ςL||x||S APωPCb(J,E)

= M||x0|| + Mω||x1||

+LξB(q, q) + ςL||x||S APωPCb(J,E), (3.27)

where B is the beta function. Hence, y is bounded on [0, θ1].
(ii) If θ ∈ (θi, si], i ∈ N, then, by (3.7), it yields

||Φ(x)(θ)|| = ||gi(si, x(θ−i ))|| ≤ κ1(||x|| + 1),∀z ∈ E. (3.28)

(iii) If θ ∈ (si, θi+1], then it follows from (3.8) and Lemma (1.2) that

||Cq(θ − si)gi(si, x(θ−i )) + Kq(θ − si)g′i(si, x(θ−i ))||
≤ Mκ1(1 + ||x(θ−i )||) + M ωκ1(1 + ||x(θ−i )||). (3.29)

Moreover, as in (3.27),

||

∫ θ

0
(θ − τ)q−1Pq(θ − τ)Π(τ, x(τ))dτ||

≤ L
∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q Π(τ, x(τ))dτ||

≤ LξB(q, q) + ςL||x||S APωPCb(J,E). (3.30)
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Similarly, we can derive ∫ si

0
(si − τ)q−1Pq(si − τ)Π(τ, x(τ))dτ

≤ LξB(q, q) + ςL||x||S APωPCb(J,E). (3.31)

As a result of (3.27)–(3.31), we conclude that y is bounded on J.
Now, Φ(x) is continuous on Ji i ∈ {0} ∪ N, and, hence, from Steps 1 and 2, we confirm that Φ(x) ∈

S APωPCb(J, E). Thus, Φ is a function from S APωPCb(J, E) to itself.
Step 3. We show in this step that Φ is a contraction mapping from S APωPCb(J, E) to S APωPCb(J, E).

To show this, let x, y ∈ S APωPCb(J, E).We have three cases.
Case 1. θ ∈ [0, θ1]

Using (3.14), it yields

||Φ(x)(θ) − Φ(y)(θ)||

≤ ||

∫ θ

0
(θ − τ)q−1Pq(θ − τ)Π(τ, x(τ))dτ

−

∫ θ

0
(θ − τ)q−1Pq(θ − τ)Π(τ, y(τ))dτ||. (3.32)

Using Lemma 1.2, (3.2), (3.4), (3.8) and (3.9), relation (3.32) becomes

||Φ(x)(θ) − Φ(y)(θ)||

≤ L||x − y||S APωPCb(J,E)

∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q h1(τ)dτ

≤ Lς||x − y||S APωPCb(J,E). (3.33)

Case 2. θ ∈ (θi, si], i ∈ N. Relations (3.5) and (3.14) lead to

||Φ(x)(θ) − Φ(y)(θ)||
= ||gi(θ, x(θ−i )) − gi(θ, y(θ−i ))||
≤ N||x(θ−i ) − y(θ−i )|| ≤ N||x − y||S APωPCb(J,E), (3.34)

where N = max1≤i≤m{Ni}.
Case 3. θ ∈ [si, θi+1], i ∈ N. It yields from (3.5), (3.6) and (3.14)

||Cq(θ − si)gi(si, x(θ−i )) −Cq(θ − si)gi(si, y(θ−i ))||
≤ MN||x − y||S APωPCb(J,E), (3.35)

and

||Kq(θ − si)g′i(si, x(θ−i )) − Kq(θ − si)g′i(si, y(θ−i ))||
≤ MωN||x(θ−i ) − y(θ−i )|| ≤ MωN||x − y||S APωPCb(J,E), (3.36)

where N = max1≤i≤m{Ni}.
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Moreover, similar to (3.33),

||

∫ θ

0
(θ − s)q−1Pq(θ − τ)Π(τ, x(τ))dτ

−

∫ θ

0
(θ − τ)q−1Pq(θ − τ)Π(τ, y(τ))dτ||

≤ Lς||x − y||S APωPCb(J,E), (3.37)

and

||

∫ si

0
(si − τ)q−1Pq(si − τ)Π(τ, x(τ))dτ|

−

∫ si

0
(si − τ)q−1Pq(si − τ)Π(τ, y(τ))dτ||

≤ Lς||x − y||S APωPCb(J,E). (3.38)

Due to (3.33)–(3.38), we conclude that

||Φ(x) − Φ(y)||
≤ ||x − y||S APωPCb(J,E)(MN + MωN + 2Lς). (3.39)

It yields from (3.11) and (3.39) that Φ is contraction. Applying the Banach fixed point theorem, we
have that Φ has a unique fixed-point which is an S -asymptoticallyω-periodic solution to Problem (1.1).

Remark 3.2. If h1is bounded on J, then relation (3.10) is verified. In fact, suppose that h1(τ) ≤ κ,∀τ ∈
J. We have

ς =

∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q h1(τ)dτ

≤ κ

∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q dτ

≤ κ

∫ θ

0

δq−1

(1 + δ)2q dδ.

≤ κ

∫ ∞

0

δq−1

(1 + δ)2q dδ

= κB(q, q) < ∞, (3.40)

where B is the beta function. Thus, (3.10) is verified.

Remark 3.3. If limθ→∞

∫ θ
0

h2(τ)dτ = 0, then relation (3.13) is verified. In fact, we have

lim
θ→∞

∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q h2(τ)dτ

≤ lim
θ→∞

∫ θ

0
h2(τ)dτ = 0. (3.41)
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Corollary 3.1. Suppose that conditions (HA) and (Hgi) ) are satisfied. If (HΠ) is verified with h1(τ) ≤
κ,∀τ ∈ J, and limθ→∞

∫ θ
0

h2(τ)dτ = 0 then, by (3.41) and Theorem (1.1), Problem (1.1) has a unique
S -asymptotically ω-periodic provided that

MN + MωN + 2LκB(q, q) < 1. (3.42)

Remark 3.4. If there is no impulses effect, then N = N = 0. Hence, relations (3.42) becomes

2LκB(q, q) < 1.

4. S -asymptotically ω-periodic mild solutions for Problem (1.2)

In this section, we demonstrate the existence of S -asymptotically ω-periodic mild solutions for 1.2.
We denote by Pck(E) the family of non-empty, convex and compact subsets of E.

Consider the following assumptions:
(HF) F : J × E → Pck(E) is a multi-valued function such that:
(i) For any z ∈ E, the multi-valued function θ → F(., z) is strongly measurable.
(ii) For any x ∈ PC(J, E), the set

S 1
F(..x(.)) := {ϕ : J → E, ϕ is locally integrable, and ϕ(τ) ∈ F(τ, x(τ)), a.e.θ ∈ J}

is not empty.
(iii) There is a measurable bounded, almost everywhere, function L1 : J → J such that

h(F(θ, z1), F(θ, z2)) ≤ L1(θ)||z1 − z2||,∀θ ∈ J, u, z2 ∈ E, (4.1)

where h is the Hausdorff distance.
(iv) There is L2 ∈ C(J,R+) such that

h(F(θ + ω, z), F(θ, z)) ≤ L2(θ)||1 + z||,∀θ ∈ J, z ∈ E. (4.2)

(v) The function
t 7−→ σ(τ) := ||F(τ, 0)| = sup

z∈F(τ,0)
||z|| (4.3)

is bounded almost everywhere on J.
We need the following Lemma, which is due to Covitz and Nadler [34].

Lemma 4.1. Let (X, d) be a metric space and G be a contraction multi-valued function from X to the
family of non-empty closed subsets of X. Then, G has a fixed point.

Theorem 4.1. Under conditions (HA)∗, (HF), (Hgi) and (H), Problem (1.2) has an S -asymptotically
ω-periodic mild solution provided that

lim
θ→∞

∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2qσ(τ)dτ = 0, (4.4)
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lim
θ→∞

∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q L1(τ)dτ = 0, (4.5)

lim
θ→∞

∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q L2(τ)dτ = 0, (4.6)

and
MN + MωN + 2Lω1B(q, q) < 1, (4.7)

where |L1(t)| ≤ λ1, a.e. t ∈ J.

Proof. Due to (HF)(ii), for any x ∈ S APωPCb(J, E), the set S 1
F(.,x(.)) is not empty. Therefore, for any

x ∈ S APωPCb(J, E), we can define a multi-valued function R(x) as follows: an element y ∈ R(x) if and
only if

y(θ) =



Cq(θ)x0 + Kq(θ)x1

+
∫ θ

0
(θ − τ)q−1Pq(θ − τ) f (τ)dτ, θ ∈ [0, θ1],

gi(θ, x(θ−i )), θ ∈ (θi, si], i ∈ N,
Cq(θ − si)gi(si, x(θ−i )) + Kq(θ − si)g′i(si, x(θ−i ))
−
∫ si

0
(si − τ)q−1Pq(si − τ) f (τ)dτ

+
∫ θ

0
(θ − τ)q−1Pq(θ − τ) f (τ)dτ, θ ∈ [si, θi+1], i ∈ N,

(4.8)

where f ∈ S 1
F(.,x(.)). Since the proof is similar to what was shown in Theorem 1.1, we will illustrate

only the differences.
Step 1. We show that if x ∈ S APωPCb(J, E) and y ∈ R(x), then limθ→∞ ||y(θ + ω) − y(θ)|| = 0.

Let ε > 0. Because x ∈ S APωPCb(J, E), then limθ→∞ ||x(θ + ω) − x(θ)|| = 0 and, hence, there is
θε > θ1 such that (3.15) is verified.

Let y ∈ R(x) and θ ∈ [si, θi+1]. According to (4.8), we have

||

∫ θ+ω

0
(θ + ω − τ)q−1Pq(θ + ω − τ) f (τ)dτ

−

∫ θ

0
(θ − τ)q−1Pq(θ − τ) f (τ)dτ||

= ||

∫ θ

−ω

(θ − τ)q−1Pq(θ − τ) f (τ + ω)dτ

−

∫ θ

0
(θ − τ)q−1Pq(θ − τ) f (τ)dτ||

≤ ||

∫ 0

−ω

(θ − τ)q−1Pq(θ − τ) f (τ + ω)dτ||

+||

∫ θ

0
(θ − τ)q−1Pq(θ − τ) f (τ + ω)dτ

−

∫ θ

0
(θ − τ)q−1Pq(θ − τ) f (τ)dτ||

= I1 + I2. (4.9)
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Let τ ∈ [−ω, 0] be fixed. Since F(τ + ω, 0) is compact, there is vτ+ω ∈ F(τ + ω, 0) such that

|| f (τ + ω) − vτ+ω|| = d( f (τ + ω), F(τ + ω, 0)
≤ h(F(τ + ω, x(τ + ω)), F(τ + ω, 0)). (4.10)

From (4.1), (4.3) and (4.10), we get

|| f (τ + ω)|| ≤ h(F(τ + ω, x(τ + ω)), F(τ + ω, 0)) + ||vτ+ω||

≤ L1(τ + ω)||x(τ + ω)|| + σ(τ + ω)
≤ ||x||L1(τ + ω) + σ(τ + ω),∀τ ∈ [−ω, 0]. (4.11)

Then, by (3.9) and (4.11), it follows that

lim
θ→∞

I1 = lim
θ→∞
||

∫ 0

−ω

(θ − τ)q−1Pq(θ − τ) f (τ + ω)dτ||

≤ lim
θ→∞

(ω1||x|| + ω2)L
∫ 0

−ω

(θ − τ)q−1

(1 + θ − τ)2q dτ

≤ (λ1||x|| + λ2)L lim
θ→∞

1
(1 + θ)2q

∫ 0

−ω

(θ − τ)q−1dτ

= (λ1||x|| + λ2)L lim
θ→∞

(θ + ω)q − θq

q(1 + θ)2q

≤ (λ1||x|| + λ2)L lim
θ→∞

ωq

q(1 + θ)2q = 0, (4.12)

where λ2 is a positive number such that σ(θ) ≤ λ2, a.e., θ ∈ J.
Next, let τ ∈ [0, θ] be fixed. From the fact that F(τ + ω, x(τ)) is compact, there are zτ+ω, zτ ∈

F(τ, x(τ+ω)) such that d( f (τ+ω), zτ+ω) = d( f (τ+ω), F(τ, x(τ+ω))) and d( f (τ), zτ) = d( f (τ), F(τ, x(τ+

ω))). Then, by (4.1) and (4.2), it yields

|| f (τ + ω) − f (τ)||
≤ || f (τ + ω) − zτ+ω|| + ||zτ+ω − zτ|| + ||zτ − f (τ)||
≤ d( f (τ + ω), F(τ + x(τ + ω))) + ||zτ+ω − zτ||

+d( f (τ, F(τ, x(τ + ω)))
≤ h(F((τ + ω), x(τ + ω)), F(τ + x(τ + ω)))

+2||F(τ, x(τ + ω))||
+h(F(τ, x(τ + ω))), F(τ, x(τ))

≤ L1(τ)||x((τ + ω) − x(τ)||
+2||F(τ, x(τ + ω))|| + L2(τ)||1 + x(τ)||

≤ 2||x||L1(τ) + 2||F(τ, x(τ + ω))|| + L2(τ)||1 + x(τ)||. (4.13)

Moreover, according to (4.1) and (4.3), we get

||F(τ, x(τ + ω))|| ≤ ||F(τ, 0)|| + L1(τ)||x(τ + ω)||

AIMS Mathematics Volume 8, Issue 1, 76–101.



91

= σ(τ) + L1(τ)||x||. (4.14)

Then, by (4.13) and (4.14), one obtains

I2 ≤ ||

∫ θ

0
(θ − τ)q−1||Pq(θ − τ)|| f (τ + ω) − f (τ)dτ||

≤ 4||x||L
∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q L1(τ)dτ

+2L
∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2qσ(τ)dτ

+L(1 + ||x||)
∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q L2(τ)dτ. (4.15)

Using (4.4)–(4.6) and (4.15), it yields

lim
θ→∞

I2 = lim
θ→∞
||

∫ θ+ω

0
(θ + θ − τ)q−1Pq(θ + ω − τ) f (τ + ω)dτ

−

∫ θ

0
(θ − τ)q−1Pq(θ − τ) f (τ)ds|| = 0. (4.16)

Note that τi → ∞ when θ → ∞. Hence, as above, we derive

lim
θ→∞
||

∫ si+ω

0
(si + ω − τ)q−1Pq(si + ω − τ) f (τ)dτ

−

∫ si

0
(si − τ)q−1Pq(si − τ) f (τ)dτ||

= 0. (4.17)

Then, due to (3.16)–(3.18), (4.9), (4.12), (4.16) and (4.17), we conclude that

lim
θ→∞
||y(θ + ω) − y(θ)|| = 0

Step 2. In this step, we show that if x ∈ S APωPCb(J, E) and y ∈ R(x), then y is bounded.
Let θ ∈ [0, θ1]. Then, using Lemma 1.2, (3.9) and (4.8), one has

||y(θ)|| ≤ M||x0|| + Mω||x1||

+L
∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q || f (τ)||dτ. (4.18)

On the hand, from (4.1), we get

|| f (τ)|| ≤ ||F(τ, x(τ))|| ≤ ||F(τ, 0)|| + L1(τ)||x(τ)||
≤ σ(τ) + L1(τ)||x||,∀τ ∈ J. (4.19)

By (4.18) and (4.19), it yields

||y(θ)|| ≤ M||x0|| + Mω||x1||
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+L(λ2 + ||x||λ1)
∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q dτ

= M||x0|| + Mω||x1||

+L(ω2 + ||x||ω1)
∫ θ

0

δq−1

(1 + δ)2q dτ

= M||x0|| + Mω||x1||

+L(ω2 + ||x||ω1)B(q, q), (4.20)

where B is the beta function. Therefore, y is bounded on [0, θ1]. Similarly, one can show that if
θ ∈ [si, θi+1], then

||

∫ θ

0
(θ − τ)q−1Pq(θ − τ) f (τ))dτ||

≤ L(ω2 + ||x||ω1)B(q, q), (4.21)

and ∫ si

0
(si − τ)q−1Pq(si − τ)Π(τ, x(τ))dτ

≤ L(ω2 + ||x||ω1)B(q, q). (4.22)

Then, by (4.20)–(4.22) and by arguing as in (3.28) and (3.29), we deduce that y is bounded on J,
and our claim in this step is proved.

As a result of Eqs 1.1 and 1.2 , R is a multivalued function from S APωPCb(J, E) to the non-empty
subsets of S APωPCb(J, E).

Next, in order to apply Lemma 3.2 and show that R has a fixed point, we have to show that R is a
contraction where its set of values is closed. We do this in two steps.
Step 3. The set of values of R is closed.

Let x ∈ S APωPCb(J, E) and (yn)n≥1be a sequences in R(x) with yn → y in S APωPCb(J, E). Then,
there is fn ∈ S 1

F(.,x(.)) such that

yn(θ) =



Cq(θ)x0 + Kq(θ)x1

+
∫ θ

0
(θ − τ)q−1Pq(θ − τ) fn(τ)dτ, θ ∈ [0, θ1],

gi(θ, x(θ−i )), θ ∈ (θi, si], i ∈ N,
Cq(θ − si)gi(si, x(θ−i )) + Kq(θ − si)g′i(si, x(θ−i ))
−
∫ si

0
(si − τ)q−1Pq(si − τ) fn(τ)dτ

+
∫ θ

0
(θ − τ)q−1Pq(θ − τ) fn(τ)dτ, θ ∈ [si, θi+1], i ∈ N.

(4.23)

We have to show that y ∈ R(x). By arguing as in (4.19) , one obtains

|| fn(τ)|| ≤ σ(τ) + L1(τ)||x||,∀τ ∈ J. (4.24)

Now, let θ be a fixed point in J, and Jθ = [0, θ]. From the fact that σ and L1 are bounded almost
everywhere, we can deduce, from (4.24), that the family { fn : n ≥ 1} is bounded in L2(Jθ, E) and,
hence, it is weakly compact in L2(Jθ, E). Thus, it has a subsequence, denoted again by ( fn)n≥1, such
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that fn → f weakly in L2(Jθ, E). According to Mazur’s lemma, we can find a sequence (zn)n≥1 of
convex combinations of fn with zn → f strongly in L2(Jθ, E). Then, we can assume, without loss of
generality, that zn(τ)→ f (τ), a.e. τ ∈ Jθ. Moreover, from (4.24) and Lemma 1.2, we get

(θ − τ)q−1||Pq(θ − τ) fn(τ)||

≤
M

Γ(2q)
(θ − τ)2q−1(λ2 + λ1||x||), a.e.τ ∈ [0, θ].

Note that the function τ → (θ − τ)2q−1 belongs to L1 ([0, θ], E). Therefore, by the continuity of Pq(.)
and applying the Lebesgue dominated convergence theorem, it yields

lim
n→∞

∫ θ

0
(θ − τ)q−1Pq(θ − τ) fn(τ)dτ

=

∫ θ

0
(θ − τ)q−1Pq(θ − τ) f (τ)dτ. (4.25)

Thus, from (4.25) and the continuity Pq(.) , it follows, by taking the limit as n→ ∞ in (4.23), that

lim
n→∞

yn(θ) =



Cq(θ)x0 + Kq(θ)x1

+
∫ θ

0
(θ − τ)q−1Pq(θ − τ) f (τ)dτ, θ ∈ [0, θ1],

gi(θ, x(θ−i )), θ ∈ (θi, si], i ∈ N,
Cq(θ − si)gi(si, x(θ−i )) + Kq(θ − si)g′i(si, x(θ−i ))
−
∫ si

0
(si − τ)q−1Pq(si − τ) f (τ)dτ

+
∫ θ

0
(θ − τ)q−1Pq(θ − τ) f (τ)dτ, θ ∈ [si, θi+1], i ∈ N.

(4.26)

Note that (HF)(iv) leads to f (s) ∈ F(s, x (s)), a.e. s ∈ J and, hence, (4.26) leads to

y(θ) =



Cq(θ)(x0 − g(x)) + Kq(θ)(x1 − p(x))
+
∫ θ

0
(θ − τ)q−1Pq(θ − τ) f (τ)dτ, θ ∈ [0, θ1],

gi(θ, x(θ−i )), θ ∈ (θi, si], i ∈ N,
Cq(θ − si)gi(si, x(θ−i )) + Kq(θ − si)g′i(si, x(θ−i ))
−
∫ si

0
(si − τ)q−1Pq(si − τ) f (τ)dτ

+
∫ θ

0
(θ − τ)q−1Pq(θ − τ) f (τ)dτ, θ ∈ [si, θi+1], i ∈ N.

Then, y ∈ R(x).
Step 4. We show that R is a contraction.

Let u1, u2 ∈ S APωPC(J, E) and y1 ∈ R(u1). Then, there is f ∈ S 1
F(.,u(.)) such that

y1(θ) =



Cq(θ)x0 + Kq(θ)x1

+
∫ θ

0
(θ − τ)q−1Pq(θ − τ) f1(τ)dτ, θ ∈ [0, θ1],

gi(θ, u1(θ−i )), θ ∈ (θi, si], i ∈ N,
Cq(θ − si)gi(si, u1(θ−i )) + Kq(θ − si)g′i(si, u1(θ−i ))
−
∫ si

0
(si − τ)q−1Pq(si − τ) f1(τ)dτ

+
∫ θ

0
(θ − τ)q−1Pq(θ − τ) f1(τ)dτ, θ ∈ [si, θi+1], i ∈ N.

(4.27)
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Consider the multivalued function Θ : J → 2E defined by:

Θ(θ) = {z ∈ E : ||z − f1(θ)|| ≤ L1(θ)||u1(θ) − u2(θ)||, a.e.θ ∈ J}.

We show that the set of values of Θ is non-empty. Let θ ∈ J. From (4.1), we get

h(F(θ, u1(θ)), F(θ, u2(θ))) ≤ L1(θ) ‖u1(θ) − u2(θ)‖ .

Thus, from the compactness of F(θ, u2(θ)), there is zθ ∈ F(θ, u2(θ)) such that

| | f1(θ) − zθ| | ≤ h(F(θ, u1(θ)), F(θ, u2(θ))) ≤ L1(θ) ‖u1(θ) − u2(θ)‖ ,

which leads to Θ(θ) , φ, θ ∈ J. Moreover, the set Λ(θ) = Θ(θ) ∩ F(θ, u2(θ)), θ ∈ J is not empty.
Because the functions f1, L1, u1, u2 are measurable, Proposition 3.4 in [35] ( Corollary 1.3.1(a) in [36])
guarantees that the multivalued map θ → Λ(θ) is measurable. Note that Θ(θ), θ ∈ J is closed.
Consequently, the set of values of Λ is non-empty and compact and, hence, by Theorem 3.1.1 in [37],
there exists a measurable selection f2 for Λ with

|| f1(θ) − f2(θ)|| ≤ L1(θ) ‖u1(θ) − u2(θ)‖ , a.e.θ ∈ J. (4.28)

Set

y2(θ) =



Cq(θ)x0 + Kq(θ)x1

+
∫ θ

0
(θ − τ)q−1Pq(θ − τ) f2(τ)dτ, θ ∈ [0, θ1],

gi(θ, u2(θ−i )), θ ∈ (θi, si], i ∈ N,
Cq(θ − si)gi(si, u2(θ−i )) + Kq(θ − si)g′i(si, u2(θ−i ))
−
∫ si

0
(si − τ)q−1Pq(si − τ) f2(τ)dτ

+
∫ θ

0
(θ − τ)q−1Pq(θ − τ) f2(τ)dτ, θ ∈ [si, θi+1], i ∈ N.

(4.29)

Obviously, y2 ∈ R(u1). Now, we estimate the value of ||y1 − y2||.

Let θ ∈ [0, θ1]. Using Lemma 1.2, (3.8), (3.9) and (4.27)–(4.29), we get

||y1(θ) − y2(θ)||

≤ ||

∫ θ

0
(θ − τ)q−1Pq(θ − τ)|| f1(τ) − f2(τ)||dτ

≤ Lω1||u1 − u2||

∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q dτ

≤ Lω1||u1 − u2||

∫ ∞

0

(θ − τ)q−1

(1 + θ − τ)2q dτ

≤ ||u1 − u2||Lω1B(q, q)). (4.30)

Let θ ∈ [si, θi+1], i ∈ N. As in (4.30), one can show that

||

∫ θ

0
(θ − τ)q−1Pq(θ − τ) f1(τ)dτ

−

∫ θ

0
(θ − τ)q−1Pq(θ − τ) f2(τ)dτ||
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≤ Lω1||u1 − u2||

∫ θ

0

(θ − τ)q−1

(1 + θ − τ)2q dτ

≤ Lω1B(q, q))||u1 − u2||, (4.31)

and

||

∫ si

0
(si − τ)q−1Pq(si − τ) f1(τ)dτ|

−

∫ si

0
(si − τ)q−1Pq(si − τ) f2(τ)dτ||

≤ Lω1||u1 − u2||

∫ si

0

(si − τ)q−1

(1 + si − τ)2q dτ

≤ Lω1B(q, q)||u1 − u2||. (4.32)

Combining relations (3.34)–(3.36) and (4.30)–(4.32), it yields

||y1(θ) − y2(θ)|| ≤ ||u1 − u2||.(MN + MωN + 2Lω1B(q, q)). (4.33)

Due to (4.7), relation (4.33) becomes

||y1(θ) − y2(θ)|| < ϑ||u1 − u2||, (4.34)

where ϑ = MN + MωN + 2Lλ1B(q, q) < 1. By interchanging the role of y1 and y2 in the above
discussion and using (4.7) and (4.34), we conclude that R is a contraction.

As a result of Steps 1.1–3.1 and by applying Lemma (3.2), R has a fixed-point which is
S -asymptotically ω-periodic solution to Problem(1.2).

Remark 4.1. As in Remark (2.1), if limτ→∞ σ(τ) = limτ→∞ L1(τ) = limτ→∞ L2(τ) = 0, then
relations (4.4)–(4.6) are verified .

Remark 4.2. If there is no impulses effect, then N = N = 0 and, hence, relation (4.7) becomes
2Lλ1B(q, q) < 1.

5. Examples

In this section, we give two examples as applications of our results.

Example 5.1. Let α = 3
2 , q = 3

4 , E = L2[0, π], m = 4, ω = 2π, J = [0,∞), si = iπ2 , i ∈ {0} ∪ N, and
θi = (2i − 1)π2 ; i ∈ N. Observe that s4 = ω and for i ∈ N, si+m = si+4 = (i + 4)π2 = iπ2 + 2π = si + ω, and
θi+m = θi+4 = (2i + 7)π4 = (2i − 1)π4 + 2π = θi + 2π = θi + ω.

Consider an operator A : D(A) ⊂ E → E defined as follows: Av = v′′and

D(A) := {v ∈ L2[0, π] : vyy ∈ L2[0, 1], v(0) = v(π) = 0}.

Note that the operator A has the representation

Ax =

∞∑
n=1

−n2 < x, xn > xn, x ∈ D(A), (5.1)
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where xn(y) =
√

2 sin ny, n = 1, 2, ..., is the orthonormal set of eigenfunctions of A. Moreover, A is the
infinitesimal generator of a strongly continuous cosine family C(t)t∈R which is given by

C(t)(x) =

∞∑
n=1

cos nt < x , xn > xn, x ∈ E,

and the associated sine family S (t)t∈R on E is defined by

S (t)(x) :=
∞∑

n=1

sin nt
n

< x , xn > xn, x ∈ E.

It is known that ||C(t)|| ≤ e−π
2t and ||S (t)|| ≤ e−π

2t for t ≥ 0 ( see [38], P.1307). Therefore, the family
{C(θ) : θ ≥ 0} is exponentially stable and the operator A satisfies (HA)∗ with M = 1.

Consider a function Π : J × E → E defined by

Π(θ, u)(s) := κ sin u(s) + cos θ; θ ∈ J, u ∈ E, s ∈ [0, π], (5.2)

where κ > 0. We demonstrate that Π satisfies the conditions of Corollary (1.1). Let u, v ∈ E = L2[0, π].
One has

||Π(θ, u) − Π(θ, v)||L2[0,π]

= (
∫ π

0
|Π(θ, u)(s) − Π(θ, v)(s)|2ds)

1
2

= κ(
∫ π

0
| sin u(s) − sin v(s)|2ds)

1
2

≤ κ(
∫ π

0
|u(s) − v(s)|2ds)

1
2 = κ||u − v||L2[0,π]. (5.3)

Moreover,

||Π(θ + 2π, u) − Π(θ, u)||L2[0,π]

= (
∫ π

0
|Π(θ + 2π, u)(s) − Π(θ, u)(s)|2ds)

1
2 = 0. (5.4)

Relations (5.3) and (5.4) leads to (HΠ), where h1(θ) = κ and h2(θ) = 0, θ ∈ J.
Next, for any i ∈ N, let gi : [ti, si] × E → E, be defined as:

gi(θ, u)(s) :=
λ(sin iθ)

i2 u(s) ;(θ, u) ∈ [ti, si] × E, s ∈ [0, π], (5.5)

where λ is a positive real number. Then,

g′i(si, u)(s) :=
λ(cos isi)

i
u(s); u ∈ E, s ∈ [0, π], i ∈ N.

Obviously, gi is bounded on bounded subsets. Note that, for any i ∈ N, any θ ∈ J, and any u, v ∈ E, we
have

lim
θ→∞
i→∞

(||gi+m(θ + 2π, u) − gi(θ, u)||L2[0,π])2
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= lim
θ→∞
i→∞

∫ π

0
|gi+m(θ + 2π, u)(s) − gi(θ, u)(s)|2ds

= lim
θ→∞
i→∞

λ2
∫ π

0
|(

sin(i + m)(θ + 2π))u(s)
(i + m)2 −

(sin iθ)u(s)
i2 |2ds

= λ2 lim
θ→∞
i→∞

∫ π

0
|(

sin(i + m)θ)u(s)
(i + m)2 −

(sin iθ)u(s)
i2 |2ds

≤ 4λ2 lim
θ→∞
i→∞

∫ π

0
|

u(s)
(i + m)2 +

u(s)
i2 |

2ds

≤ lim
θ→∞
i→∞

4λ2

i4

∫ π

0
|u(s)|2ds =

4λ2

i4 ||u||
2
L2[0,π] = 0, (5.6)

and

lim
i→∞

(||g′i+m(si + 2π, u) − g′i(si, u)||L2[0,π])2

= lim
i→∞

∫ π

0
|g′i+m(si + 2π, u)(s) − g′i(si, u)(s)|2ds

= λ2 lim
i→∞

∫ π

0
|(

cos(i + m)(si + 2π)u(s)
i + m

−
(cos isi)u(s)

i
|2ds

= λ2 lim
i→∞

∫ π

0
|(

cos(i + m)si)u(s)
i + m

−
(cos isi)u(s)

i
|2ds

≤ 4λ2 lim
i→∞

∫ π

0
|

u(s)
i + m

+
u(s)

i
|2ds

≤ lim
i→∞

4λ
i

∫ π

0
|u(s)|2ds lim

i→∞

4λ
i
||u||2L2[0,π] = 0. (5.7)

In addition,

||gi(θ, u) − gi(θ, v)||L2[0,π]

= λ(
∫ π

0
|
(sin iθ)u(s)

i2 −
(sin iθ)v(s)

i2 |2ds)
1
2

≤ λ||u − v||, (5.8)

and

||g′i(si, u) − g′i(si, v)||L2[0,π]

= λ(
∫ π

0
|
(sin iθ)u(s)

i
−

(sin iθ)v(s)
i

|2ds)
1
2

≤ λ||u − v||. (5.9)

Furthermore,

||gi(θ, u)||L2[0,π] = λ(
∫ π

0
|
(sin iθ)u(s)

i2 |2ds)
1
2 ≤ λ||u||, (5.10)
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and
||g′i(si, u)||L2[0,π] = λ(

∫ π

0
|
(cos iθ)u(s)

i
|2ds)

1
2 ≤ λ||u||. (5.11)

As a result of relations (5.6)–(5.11), (Hgi) is satisfied where N = N = λ and κ1 = κ2 = λ. By
applying Corollary (1.1), we conclude that Problem (1.1) has a unique S−asymptotically 2π−periodic
mild solution provided that

λ(1 + ω) + 2κLB(q, q) < 1, (5.12)

where A, Π, gi are given by (5.1), (5.2) and (5.5), respectively, and L appears in (3.9). By choosing λ
and κ sufficiently small, we can derive (5.12).

Example 5.2. Assume that A, α, q, E, m, ω, J, si, θi, i ∈ N are as in Example (1.1). Let Z be a non-
empty convex compact subset of E, L1 : J → J be a measurable bounded almost everywhere function
such that Limθ→∞L1(θ) = 0 and F : J × E → Pck(E) be a multi-valued function defined by

F(θ, u) =
L1(θ)||u|| sin θ
σ (1 + ||u||)

Z; (θ, u) ∈ J × E, (5.13)

where σ is a constant such that S up{ ||z || : z ∈ Z} ≤ σ. Clearly, for every u ∈ E, θ → F(θ, u) is
strongly measurable and, for any x ∈ PC(J, E), the function f (θ) =

L1(θ) ||x(θ)|| sin θ
σ (1+||x(θ)||) z0, z0 ∈ Z is locally

integrable, and f (θ) ∈ F(θ, x(θ)), θ ∈ J. Moreover, using (5.13), for any u, v ∈ E and any θ ∈ J, we
have

H(F(θ, u), F(θ, v)) ≤ L1(θ)| sin θ| |
||u||

(1 + ||u||)
−

||v||
(1 + ||v||)

|

≤ L1(θ)||u − v||, (5.14)

H(F(θ + 2π, u), F(θ, u)) = 0, (5.15)

and

sup
θ∈J
||F(θ, 0)|| = {0}. (5.16)

Then, from (5.14)–(5.16), it follows that assumption (HF) is verified where L2(θ) = σ(θ) = 0, θ ∈
J. Thus, applying Theorem 1.2, Problem (1.2), where A, F, gi are given by (5.1), (5.13) and (5.5),
respectively, and L appears in (3.9), has an S−asymptotically 2π−periodic mild solution provided that

λ + 2πλ + 2Lλ1B(q, q) < 1,

where λ1 is a positive number such that |L1(θ)| ≤ λ1, a.e. for θ ∈ J.

6. Conclusions

Because, in some works, it was demonstrated that there are no non-stationary periodic solutions of
fractional differential equations, studying the existence of S -asymptotically ω-periodic solutions for
fractional differential equations is necessary and important. Sufficient conditions that assure the
existence of S -asymptotically ω-periodic solutions for non-instantaneous impulsive semilinear
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differential equations of order 1 < α < 2 and generated by the infinitesimal generator of a strongly
continuous cosine family of bounded linear operators have been obtained. Also, the case when the
single-valued function in the right-hand side is replaced by a multi-valued function is investigated.
Examples are given to demonstrate the possibility of applicability of our results. Moreover, our results
generalize the obtained one in [12] into the case where the order is 1 < α < 2, there are
non-instantaneous impulse effects, and the right-hand side is a multi-valued function instead of a
single-valued-function. Furthermore, our technique can be used to extend many problems that are
considered in the literatures such as [13, 15–17, 20–25, 27–29] to the case where there are
non-instantaneous impulse effects and the right-hand side is a multi-valued function instead of a
single-valued-function.
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