In this paper, we propose and prove an extension and generalization, which extends and generalizes the Darbo's fixed point theorem (DFPT) in the context of measure of noncompactness (MNC). Thereafter, we use DFPT to investigate the existence of solutions to mixed-type fractional integral equations (FIE), which include both the generalized proportional (κ,τ)-Riemann-Liouville and Hadamard fractional integral equations. We've included a suitable example to strengthen the article.
Citation: Rahul, Nihar Kumar Mahato, Sumati Kumari Panda, Manar A. Alqudah, Thabet Abdeljawad. An existence result involving both the generalized proportional Riemann-Liouville and Hadamard fractional integral equations through generalized Darbo's fixed point theorem[J]. AIMS Mathematics, 2022, 7(8): 15484-15496. doi: 10.3934/math.2022848
[1] | Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112 |
[2] | Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha . On ψ-Hilfer generalized proportional fractional operators. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005 |
[3] | Pinghua Yang, Caixia Yang . The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative. AIMS Mathematics, 2023, 8(5): 11837-11850. doi: 10.3934/math.2023599 |
[4] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[5] | Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059 |
[6] | Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018 |
[7] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
[8] | Saud Fahad Aldosary, Mohamed M. A. Metwali . Solvability of product of n-quadratic Hadamard-type fractional integral equations in Orlicz spaces. AIMS Mathematics, 2024, 9(5): 11039-11050. doi: 10.3934/math.2024541 |
[9] | Majid K. Neamah, Alawiah Ibrahim . Generalized proportional fractional integral inequalities for convex functions. AIMS Mathematics, 2021, 6(10): 10765-10777. doi: 10.3934/math.2021625 |
[10] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
In this paper, we propose and prove an extension and generalization, which extends and generalizes the Darbo's fixed point theorem (DFPT) in the context of measure of noncompactness (MNC). Thereafter, we use DFPT to investigate the existence of solutions to mixed-type fractional integral equations (FIE), which include both the generalized proportional (κ,τ)-Riemann-Liouville and Hadamard fractional integral equations. We've included a suitable example to strengthen the article.
The MNC is one of the most powerful tool of modern mathematical analysis, which was introduced by Kuratowski [1] in 1930. It was generalized by Banas [2] for solving functional equations, which is applicable to numerous mathematical problems. Darbo [3] has generalized of Schauder fixed point theorem (SFPT) and Banach contraction principle, using the concept of MNC.
In the present time, the fixed point theory (FPT) have so many applications in several area of mathematics along with FPT can be apply for the existence of solutions of FIE. It is still continue to earned the attention of researchers in various applications of functional calculus in science and technology.
Fractional calculus is a very powerful tool to achieve differentiation and integration with real or complex number order of operators. For recent research on fractional calculus, we refer the reader to (see [4,5,6,7,8,9,10,11,12]). On the other hand, there are various known forms of fractional integrals and their applications. For example: Katugampola [13] introduced a new FIE, which generalize Riemann-Liouville and Hadamard FIE into single form, Mubeen and Habibullah [14] have introduced the κ-fractional integral of Riemann-Liouville by using κ-gamma function defined by Diaz and Pariguan [15], Mehmet et al. [16] generalized a new FIE known as (κ,τ)-Riemann-Liouville FIE. Jarad et al. [17] have given the concept of generalized proportional integral operator, which has been specify certain probability density functions and has interested applications in statistics.
Inspired and motivated by ([16,17]), in the context of MNC, we generalize the DFPT and a new FIE involving both the generalized proportional (κ,τ)-Riemann-Liouville and Hadamard. Thereafter, we use DFPT to investigate the existence of solutions of mixed-type FIE, which include both the generalized proportional (κ,τ)-Riemann-Liouville and Hadamard.
We have used the notations in this paper.
● Ξ: Banach space with the norm ∥.∥Ξ.
● ˉℵ: closure of ℵ.
● Convℵ: convex closure of ℵ.
● MΞ: subset of all nonempty and bounded subsets of Ξ.
● NΞ: subset which contains all relatively compact sets.
● R: (−∞,∞), R+=[0,∞) and N be set of natural numbers.
Banas and Lecko [18] have defined MNC as follows:
Definition 1.1. A mapping Λ:MΞ→R+ is said to be MNC in Ξ if it satisfies the following conditions:
(N1) The family ker Λ={ℵ∈MΞ:Λ(ℵ)=0} is nonempty and ker Λ⊂NΞ.
(N2) ℵ1⊂ℵ2⟹Λ(ℵ1)≤Λ(ℵ2).
(N3) Λ(ˉℵ)=Λ(ℵ)=Λ(Convℵ).
(N4) Λ(kℵ1+(1−k)ℵ2)≤kΛ(ℵ1)+(1−k)Λ(ℵ2), for k∈[0,1].
(N5) If (ℵn) is a sequence of closed sets from MΞ, such that ℵn+1⊂ℵn for n=1,2,3,... and if limn→∞Λ(ℵn)=0, then ℵ∞=∞⋂n=1ℵn≠∅.
Example 1.2. Let Ξ=C(I) be the space of real continuous functions on I, where I=[a,b]. Then g:MΞ→R+ is defined as
‖g‖=sup{‖g(t)‖:t∈I},g∈Ξ. |
Then g satisfies all the properties of MNC.
Remark 1.3. Since Λ(ℵ∞)=⋃(∞⋂n=1ℵn)≤Λ(ℵn),Λ(ℵ∞)=0. So ℵ∞∈kerΛ.
Theorem 1.4. (Schauder)[19] A mapping ℑ:ℵ→ℵ which is compact and continuous have a fixed point (FP), where ℵ is a nonempty, bounded, closed and convex (NBCC) subset of a Banach space Ξ.
Theorem 1.5. (Darbo)[20] Let ℑ:ℵ→ℵ be a continuous mapping and Λ is an MNC. If for any nonempty subset ς of ℵ, there exists a k∈[0,1) having the inequality,
Λ(ℑς)≤kΛ(ς), |
then the mapping ℑ have a FP in ℵ.
Definition 1.6. Let ℵ be bounded subset of metric space Ξ. Then for bounded set ℵ, the Hausdorff MNC Λ is defined as
Λ(ℵ)=inf{ϵ>0:ℵ hasfiniteϵ−netinΞ}. |
Definition 1.7. [21] The functions F:R2+→R, which are continuous known by C-class function if it satisfies
(F1) F(ω,ν)≤ω.
(F2) F(ω,ν)=ω⟹ω=0orν=0 for all ω,ν∈R.
Example 1.8. (i)F(ω,ν)=ω−ν.
(ii)F(ω,ν)=kω,where0≤k<1.
Definition 1.9. Suppose Ψ is the set of continuous functions ψ:R+→R+ satisfy
(a) ψ(t)=0 if and only if t=0.
(b) ψ is non decreasing.
(c) ψ(t)<tforeveryt>0.
Let Ξ=C(I) be the space of real continuous functions on I, where I=[a,b]. Then Ξ is a Banach space with the norm
∥ϰ∥=sup{|ϰ(ς)|:ς∈I},ϰ∈Ξ. |
Let Υ be a non-empty bounded subset of Ξ then, for ϰ∈Υ and ϵ>0, ω(ϰ,ϵ) be the modulus of the continuity of ϰ and defined as
ω(ϰ,ϵ)=sup{|ϰ(ς1)−ϰ(ς2)|:ς1,ς2∈I,|ς1−ς2|≤ϵ}. |
Again, we define
ω(Υ,ϵ)=sup{ω(ϰ,ϵ):ϰ∈Υ}, |
ω0(Υ)=limϵ→0ω(Υ,ϵ). |
Hence the function ω0 is a MNC in Ξ in such a way that the Hausdorff MNC Λ is given by Λ(Υ)=12ω0(Υ) (see [2]).
Theorem 2.1. Let (Ξ,∥.∥) be a Banach space. Suppose ℑ:ℵ→ℵ is a continuous, nondecreasing and bounded (CNB) mapping fulfills the following inequality
ϑ(Λ(ℑℵ)∫0π(ς)dς)≤F(ϑ(Λ(ℵ)∫0π(ς)dς),ψ(ϑ(Λ(ℵ)∫0π(ς)dς))) | (2.1) |
for each bounded ℵ of Ξ, where π:R+→R+ is continuous functions, ϑ:R+→R+ is nondecreasing, continuous functions with ϑ(ς)=0 if and only if ς=0, ψ:R+→[0,1) is a continuous function and Λ is MNC. Then ℑ contains at least one FP.
Proof. Assume that ℵn with ℵ0=ℵ and ℵn+1=conv(ℑℵn) for all n≥0.
Also, ℑℵ0=ℑℵ⊆ℵ=ℵ0,ℵ1=conv(ℑℵ0)⊆ℵ=ℵ0. Continuing in the similar manner gives
ℵ0⊃ℵ1⊃,...,⊃ℵn⊃,... | (2.2) |
Let Λ(ℵn)>0 for n∈N. We claim {(Λ(ℑℵn)∫0π(ς)dς)} is positive decreasing sequence. By using (2.1), we have
ϑ(Λ(ℵn+1)∫0π(ς)dς)=ϑ(Λ(conv(ℑℵn))∫0π(ς)dς)=ϑ(Λ(ℑℵn)∫0π(ς)dς)≤F(ϑ(Λ(ℵn)∫0π(ς)dς),ψ(ϑ(Λ(ℵn)∫0π(ς)dς)))≤ϑ(Λ(ℑℵn)∫0π(ς)dς). |
Since ϑ is nondecreasing function, we get
ϑ(Λ(ℵn+1)∫0π(ς)dς)≤ϑ(Λ(ℑℵn)∫0π(ς)dς). |
Then {(Λ(ℑℵn)∫0π(ς)dς)} is positive decreasing and bounded below, so it converges to r={(Λ(ℑℵn)∫0π(ς)dς)}. Now suppose r>0, then from Eq (2.1), we have
0≤ϑ(Λ(ℵn+1)∫0π(ς)dς)=ϑ(Λ(conv(ℑℵn))∫0π(ς)dς)=ϑ(Λ(ℑℵn)∫0π(ς)dς)≤F(ϑ(Λ(ℵn)∫0π(ς)dς),ψ(ϑ(Λ(ℵn)∫0π(ς)dς))), |
i.e.,ϑ(Λ(ℑℵn)∫0π(ς)dς)≤F(ϑ(Λ(ℵn)∫0π(ς)dς),ψ(ϑ(Λ(ℵn)∫0π(ς)dς))). Taking the limit n→∞ on both the sides of this inequality, we have
ϑ(r)≤F(ϑ(r),ψ(ϑ(r)))≤ϑ(r) |
which means
F(ϑ(r),ψ(ϑ(r)))=ϑ(r), |
so from (F2), we get ϑ(r)=0, hence r=0. which implies Λ(ℵn)→0.
Since ℵn is nested sequence, so by the (N5) property of (MNC), we conclude that ℵ∞=∩∞n=1ℵn is NBCC of Ξ. Also, we know that ℵ∞∈kerΛ. Therefore ℵ∞ is compact and invariant under the mapping ℑ. Hence by the SFPT, ℑ have a FP in ℵ∞⊂Ξ.
Corollary 2.2. If we take π(ς)=1 for ς∈[0,∞) in Theorem (2.1), then we have
ϑ(Λ(ℑℵ))≤F(ϑ(Λ(ℵ)),ψ(ϑ(Λ(ℑℵ)))). |
Corollary 2.3. Take F(ω,ν)=ων in Corollary(2.2), then we have
ϑ(Λ(ℑℵ))≤ψ(ϑ(Λ(ℑℵ)))ϑ(Λ(ℵ)). |
It is extension of DFPT extended by Ghaemi and Samadi [23].
Corollary 2.4. Take F(ω,ν)=ω−ν in Corollary(2.2), then we have
ϑ(Λ(ℑℵ))≤ϑ(Λ(ℵ))−ψ(ϑ(Λ(ℑℵ))). |
It is generalization of DFPT generalize by Parvaneh et al. [22].
Corollary 2.5. If we take ψ(τ)=k,0≤k<1,ϑ(τ)=τ in Corollary (2.3), then we have
Λ(ℑℵ)≤k(Λ(ℵ)). |
Then it is DFPT[20].
Corollary 2.6. If we take ϑ(τ)=eτandψ(τ)=τ−τk,0≤k<1 in Corollary (2.4), then we have DFPT[20]
Λ(ℑℵ)≤k(Λ(ℵ)). |
Corollary 2.7. If we take ϑ(τ)=τandψ(τ)=τ−kτ,0≤k<1 in Corollary (2.4), then we have DFPT[20]
Λ(ℑℵ)≤k(Λ(ℵ)). |
Corollary 2.8. If we take F(ω,ν)=kω,where0≤k<1,ϑ(τ)=τ in Corollary (2.2), then we have
Λ(ℑℵ)≤k(Λ(ℵ)). |
Then it is also DFPT[20].
Remark 2.9. Hence it can be seen that the Theorem 2.2 is the generalization of the DFPT.
We define a new generalization of Mehmet et al.[16] and known as the (κ,τ)-type generalized proportional FIE integral equation of order ϖ>0 and defined as
(τκIϖ,ρaΘ)(ς)=(τ+1)1−ϖκρϖκΓκ(ϖ)∫ςaexp[(ρ−1)(ςτ+1−ητ+1 )ρ](ςτ+1−ητ+1)ϖκ−1ητΘ(η)dη, |
where ρ∈(0,1],τ∈R+/{−1} and ϖ,κ>0.
Also, motivated by Hadamard [9], we define a new generalization of Hadamard FIE, which is known as GPHF integral equation of order ϖ>0 and defined as
(Hℷϖ,ρaΘ)(ς)=1ρϖΓ(ϖ)∫ςaexp[(ρ−1)(log(ς)−log(η))ρ](log(ς)−log(η))ϖ−1Θ(η)ηdη, |
where ρ∈(0,1] and ς∈[a,b].
The present study, we have considered the following FIE:
Θ(ς)=ϝ(ς,£(ς,Θ(ς)),(τκIϖ,ρa=1Θ)(ς),(Hℷϖ,ρa=1Θ)(ς)), | (3.1) |
where ϖ>1,κ>0,ρ∈(0,1],τ∈R+/{−1} and ς∈I=[a,b],a>0,b=T.
Let Bνo={Θ∈Ξ:∥Θ∥≤ν0}. We consider the following assumptions to solve the Eq (3.1):
(i) ϝ:I×R3→R,£:I×R→R be continuous and there exists constants ℘1,℘2,℘3≥0, which satisfy
|ϝ(ς,£,I1,J1)−ϝ(ς,ˉ£,ˉI1,ˉJ1)|≤℘1|£−ˉ£|+℘2|I1−ˉI1|+℘3|J1−ˉJ1|,ς∈I,£,I1,J1,ˉ£,ˉI1,ˉJ1∈R |
and
|£(ς,P1)−£(ς,P2)|≤℘4|P1−P2|,whereP1,P2∈R. |
(ii) There exists ν0∈R+, which satisfy
ϝ=sup{|ϝ(ς,£,I1,J1|:ς∈I,£∈[−L,L],I1∈[−I,I],J1∈[−J,J]}≤ν0,℘1℘4<1, |
L=sup{|£(ς,Θ(ς))|:ς∈I,Θ(ς)∈[−ν0,ν0]}, |
I=sup{|(τκIϖ,ρ1Θ)(ς)|:ς∈I,Θ(ς)∈[−ν0,ν0]}, |
and
J=sup{|(Hℷϖ,ρ1Θ)(ς)|:ς∈I,Θ(ς)∈[−ν0,ν0]}. |
(iii) |ϝ(ς,0,0,0)|=0,£(ς,0)=0.
(iv) For a positive solution ν0∈R+ having inequality,
℘1℘4ν0+℘2ν0exp[(ρ−1)Tτ+1ρ](τ+1)−ϖκϖρϖκκϖκ−1Γ(1κ)(T(τ+1)−1)ϖκ+℘3ν0exp[(ρ−1)logTρ]ρϖΓ(ϖ+1)(logT)ϖ≤ν0. |
Theorem 3.1. If the conditions (i)–(iv) holds, then the Eq (3.1) have a solution in Ξ=C(I).
Proof. Let the operator ℑ:Bνo→Ξ is define as
(ℑΘ)(ς)=ϝ(ς,£(ς,Θ(ς)),(τκIϖ,ρ1Θ)(ς),(Hℷϖ,ρ1Θ)(ς)). |
Step 1: First, we have to prove ℑ maps Bνo into Bνo. Let ℑ∈Bνo, we have
|(ℑΘ)(ς)|=|ϝ(ς,£(ς,Θ(ς)),(τκIϖ,ρ1Θ)(ς),(Hℷϖ,ρ1Θ)(ς))−ϝ(ς,0,0,0)|+|ϝ(ς,0,0,0)|≤℘1|£(ς,Θ(ς))−0|+℘2|(τκIϖ,ρ1Θ)(ς)−0|+℘3|(Hℷϖ,ρ1Θ)(ς)−0|+|ϝ(ς,0,0,0)| |
where,
|(τκIϖ,ρ1Θ)(ς)−0|=|(τ+1)1−ϖκρϖκκϖκΓ(ϖκ)∫ς1exp[(ρ−1)(ςτ+1−ητ+1)ρ](ςτ+1−ητ+1)ϖκ−1ητΘ(η)dη|=(τ+1)1−ϖκρϖκκϖκΓ(ϖκ)|∫ς1exp[(ρ−1)(ςτ+1−ητ+1)ρ](ςτ+1−ητ+1)ϖκ−1ητΘ(η)dη|≤ν0(τ+1)1−ϖκexp[(ρ−1)Tτ+1ρ]ρϖκκϖκΓ(ϖκ)∫ς1(ςτ+1−ητ+1)ϖκ−1ητdη≤ν0exp[(ρ−1)Tτ+1ρ](τ+1)−ϖκϖρϖκκϖκ−1Γ(1κ)(T(τ+1)−1)ϖκ |
and
|(Hℷϖ,ρ1Θ)(ς)−0|=|1ρϖΓ(ϖ)∫ς1exp[(ρ−1)(log(ς)−log(η))ρ](log(ς)−log(η))ϖ−1Θ(η)ηdη|≤ν0exp[(ρ−1)logTρ]ρϖΓ(ϖ)∫ς1(log(ς)−log(η))ϖ−1dηη≤ν0exp[(ρ−1)logTρ]ρϖΓ(ϖ+1)(logT)ϖ. |
Therefore if ‖Θ‖<ν0 then
‖ℑΘ‖<℘1℘4ν0+℘2ν0exp[(ρ−1)Tτ+1ρ](τ+1)−ϖκϖρϖκκϖκ−1Γ(1κ)(T(τ+1)−1)ϖκ+℘3ν0exp[(ρ−1)logTρ]ρϖΓ(ϖ+1)(logT)ϖ. |
So by the assumption (iv), ℑ maps Bν0 into Bν0.
Step 2: Now, we have to prove ℑ is continuous on Bνo. Let ϵ>0 and Θ,ˉΘ∈Bνo such that ∥Θ−ˉΘ∥<ϵ, we have
|(ℑΘ)(ς)−(ℑˉΘ)(ς)|≤|ϝ(ς,£(ς,Θ(ς)),(τκIϖ,ρ1Θ)(ς),(Hℷϖ,ρ1Θ)(ς))−ϝ(ς,£(ς,ˉΘ(ς)),(τκIϖ,ρ1ˉΘ)(ς),(Hℷϖ,ρ1ˉΘ)(ς))|≤℘1|£(ς,Θ(ς))−£(ς,ˉΘ(ς))|+℘2|(τκIϖ,ρ1Θ)(ς)−(τκIϖ,ρ1ˉΘ)(ς)|+℘3|(Hℷϖ,ρ1Θ)(ς)−(Hℷϖ,ρ1ˉΘ)(ς)|. |
Also,
|(τκIϖ,ρ1Θ)(ς)−(τκIϖ,ρ1ˉΘ)(ς)|=|(τ+1)1−ϖκρϖκκϖκΓ(ϖκ)∫ς1exp[(ρ−1)(ςτ+1−ητ+1)ρ](ςτ+1−ητ+1)ϖκ−1ητ(Θ(η)−ˉΘ(η))dη|≤(τ+1)1−ϖκρϖκκϖκΓ(ϖκ)∫ς1exp[(ρ−1)(ςτ+1−ητ+1)ρ](ςτ+1−ητ+1)ϖκ−1ητ|Θ(η)−ˉΘ(η)|dη<ϵ(τ+1)−ϖκexp[(ρ−1)Tτ+1ρ]ϖρϖκκϖκ−1Γ(1κ)(T(τ+1)−1)ϖκ, |
and
|(Hℷϖ,ρ1Θ)(ς)−(Hℷϖ,ρ1ˉΘ)(ς)|=|1ρϖΓ(ϖ)∫ς1exp[(ρ−1)(log(ς)−log(η))ρ](log(ς)−log(η))ϖ−1(Θ(ς)−ˉΘ(ς))dηη|≤1ρϖΓ(ϖ)∫ς1exp[(ρ−1)(log(ς)−log(η))ρ](log(ς)−log(η))ϖ−1|Θ(η)−ˉΘ(η)|dηη<ϵexp[(ρ−1)logTρ]ρϖΓ(ϖ+1)(logT)ϖ. |
Hence ∥Θ−ˉΘ∥<ϵ, gives that
|(ℑΘ)(ς)−(ℑˉΘ)(ς)|<℘1℘4ϵ+℘2ϵ(τ+1)−ϖκexp[(ρ−1)Tτ+1ρ]ϖρϖκκϖκ−1Γ(1κ)(T(τ+1)−1)ϖκ+℘3ϵexp[(ρ−1)logTρ]ρϖΓ(ϖ+1)(logT)ϖ.
If ϵ→0, we get |(ℑΘ)(ς)−(ℑˉΘ)(ς)|→0. Hence ℑ become continuous on Bνo.
Step 3: Finally, to show an estimate of ℑ with respect to ω0, suppose Υ(≠ϕ)⊆Bν0.
For an arbitrary ϵ>0 and choose Θ∈Υ and ς1,ς2∈I such that |ς2−ς1|≤ϵ and ς2≥ς1, then,
|(ℑΘ)(ς2)−(ℑΘ)(ς1)|=|ϝ(ς2,£(ς2,Θ(ς2)),(τκIϖ,ρ1Θ)(ς2),(Hℷϖ,ρ1Θ)(ς2))−ϝ(ς1,£(ς1,Θ(ς1)),(τκIϖ,ρ1Θ)(ς1),(Hℷϖ,ρ1Θ)(ς1))|≤|ϝ(ς2,£(ς2,Θ(ς2)),(τκIϖ,ρ1Θ)(ς2),(Hℷϖ,ρ1Θ)(ς2))−ϝ(ς2,£(ς2,Θ(ς2)),(τκIϖ,ρ1Θ)(ς1),(Hℷϖ,ρ1Θ)(ς2))|+|ϝ(ς2,£(ς2,Θ(ς2)),(τκIϖ,ρ1Θ)(ς1),(Hℷϖ,ρ1Θ)(ς1))−ϝ(ς2,£(ς1,Θ(ς1)),(τκIϖ,ρ1Θ)(ς1),(Hℷϖ,ρ1Θ)(ς1))|+|ϝ(ς2,£(ς1,Θ(ς1)),(τκIϖ,ρ1Θ)(ς1),(Hℷϖ,ρ1Θ)(ς1))−ϝ(ς1,£(ς1,Θ(ς1)),(τκIϖ,ρ1Θ)(ς1),(Hℷϖ,ρ1Θ)(ς1))|≤℘3|(Hℷϖ,ρ1Θ)(ς2)−(Hℷϖ,ρ1Θ)(ς1)|+℘2|(τκIϖ,ρ1Θ)(ς2)−(τκIϖ,ρ1Θ)+℘1|£(ς2,Θ(ς2))−£(ς1,Θ(ς1))|+ωϝ(I,ϵ)(ς1)|≤℘3|(Hℷϖ,ρ1Θ)(ς2)−(Hℷϖ,ρ1Θ)(ς1)|+℘2|(τκIϖ,ρ1Θ)(ς2)−(τκIϖ,ρ1Θ)(ς1)|+℘1℘4|Θ(ς2)−Θ(ς1)|+ωϝ(I,ϵ), |
where ωϝ(I,ϵ)=sup{|ϝ(ς2,£,I1,J1)−ϝ(ς1,£,I1,J1)|:|ς2−ς1|≤ϵ;ς1,ς2∈I}.
Also,
|(τκIϖ,ρ1Θ)(ς2)−(τκIϖ,ρ1Θ)(ς1)|=(τ+1)1−ϖκρϖκκϖκΓ(ϖκ)|∫ς21exp[(ρ−1)(ςτ+12−ητ+1)ρ](ςτ+12−ητ+1)ϖκ−1ητΘ(η)dη−∫ς11exp[(ρ−1)(ςτ+12−ητ+1)ρ](ςτ+12−ητ+1)ϖκ−1ητΘ(η)dη|+(τ+1)1−ϖκρϖκκϖκΓ(ϖκ)|∫ς11exp[(ρ−1)(ςτ+12−ητ+1)ρ](ςτ+12−ητ+1)ϖκ−1ητΘ(η)dη |
≤(τ+1)1−ϖκρϖκκϖκΓ(ϖκ)∫ς2ς1exp[(ρ−1)(ςτ+12−ητ+1)ρ](ςτ+12−ητ+1)ϖκ−1ητ|Θ(η)|dη+(τ+1)1−ϖκρϖκκϖκΓ(ϖκ)∫ς11|(exp[(ρ−1)(ςτ+12−ητ+1)ρ](ςτ+12−ητ+1)ϖκ−1−exp[(ρ−1)(ςτ+12−ητ+1)ρ](ςτ+11−ητ+1)ϖκ−1)ητΘ(η)|dη≤exp[(ρ−1)Tτ+1ρ](τ+1)−ϖκϖρϖκκϖκ−1Γ(1κ)‖Θ‖(T(τ+1)−1)ϖκ+‖Θ‖(τ+1)1−ϖκρϖκκϖκΓ(ϖκ)∫ς11(exp[(ρ−1)(ςτ+12−ητ+1)ρ](ςτ+12−ητ+1)ϖκ−1−exp[(ρ−1)(ςτ+12−ητ+1)ρ](ςτ+11−ητ+1)ϖκ−1)ητ|dη. |
As ϵ→0, then ς2→ς1, and we have |(τκIϖ,ρ1Θ)(ς2)−(τκIϖ,ρ1Θ)(ς1)|→0. And
|(Hℷϖ,ρ1Θ)(ς2)−(Hℷϖ,ρ1Θ)(ς1)|≤1ρϖΓ(ϖ)|∫ς21exp[(ρ−1)(log(ς2)−log(η))ρ](log(ς2)−log(η))ϖ−1Θ(η)ηdη−∫ς11exp[(ρ−1)(log(ς2)−log(η))ρ](log(ς2)−log(η))ϖ−1Θ(η)ηdη|+1ρϖΓ(ϖ)|∫ς11exp[(ρ−1)(log(ς2)−log(η))ρ](log(ς2)−log(η))ϖ−1Θ(η)ηdη−∫ς11exp[(ρ−1)(log(ς1)−log(η))ρ](log(ς1)−log(η))ϖ−1Θ(η)ηdη|≤1ρϖΓ(ϖ)∫ς2ς1exp[(ρ−1)(log(ς2)−log(η))ρ](log(ς2)−log(η))ϖ−1|Θ(η)|ηdη+1ρϖΓ(ϖ)∫ς11|(exp[(ρ−1)(log(ς2)−log(η))ρ](log(ς2)−log(η))ϖ−1−exp[(ρ−1)(log(ς2)−log(η))ρ](log(ς1)−log(η))ϖ−1)Θ(η)η|dη≤exp[(ρ−1)logTρ]ρϖΓ(ϖ+1)‖Θ‖(logT)ϖ+‖Θ‖1ρϖΓ(ϖ)∫ς11|(exp[(ρ−1)(log(ς2)−log(η))ρ](log(ς2)−log(η))ϖ−1−exp[(ρ−1)(log(ς2)−log(η))ρ](log(ς1)−log(η))ϖ−1)1η|dη. |
As ϵ→0, then ς2→ς1 and we have |(Hℷϖ,ρ1Θ)(ς2)−(Hℷϖ,ρ1Θ)(ς1)|→0. Therefore
|(ℑΘ)(ς2)−(ℑΘ)(ς1)|≤℘3|(Hℷϖ,ρ1Θ)(ς2)−(Hℷϖ,ρ1Θ)(ς1)|+℘2|(τκIϖ,ρ1Θ)(ς2)−(τκIϖ,ρ1Θ)(ς1)|+℘1℘4ω(Θ,ϵ)+ωϝ(I,ϵ), |
gives
ω(ℑΘ,ϵ)≤℘3|(Hℷϖ,ρ1Θ)(ς2)−(Hℷϖ,ρ1Θ)(ς1)|+℘2|(τκIϖ,ρ1Θ)(ς2)−(τκIϖ,ρ1Θ)(ς1)|+℘1℘4ω(Θ,ϵ)+ωϝ(I,ϵ). |
Using the uniform continuity of ϝ on I×[−£,£]×[−I,I]×[−J,J], we get ωϝ(I,ϵ)→0 as ϵ→0.
Taking supℑ∈Υ and ϵ→0 we get,
ω0(ℑΥ)≤℘1℘4ω0(Υ), |
Thus, by DFPT ℑ has a FP in Υ⊆Bν0. Hence the Eq (3.1) have a solution in Ξ.
Example 3.2. Consider the following FIE
Θ(ς)=ς2+Θ(ς)1+ς4+(1515I5,151Θ)(ς)575+(Hℷ5,151Θ)(ς)510 | (3.2) |
for ς∈[1,2]=I.
Here
(1515I5,151Θ)(ς)=574624Γ(25)∫ς1exp[−(ς32−η32)](ς32−η32)η12Θ(ς)dη, |
and
(Hℷ5,151Θ)(ς)=3125Γ(5)∫ς1exp[−4(log(ς)−log(η))](log(ς)−log(η))4Θ(η)ηdη. |
Also ϝ(ς,£,I1,J1)=ς2+£+I1575+J1510 and £(ς,Θ)=Θ(ς)1+ς4. It is obvious that ϝ,£ are continuous satisfying
|£(ς,P1)−£(ς,P2)|≤|P1−P2|2 |
and |ϝ(ς,£,I1,J1)−ϝ(ς,ˉ£,ˉI1,ˉJ1)|≤|£−ˉ£|+1575|I1−ˉI1|+1510|J1−ˉJ1|.
Therefore ℘1=1,℘2=1575,℘3=1510and℘4=12,℘1℘4=12(510)<1 If ∥Θ∥≤ν0 then
L=ν02,I=ν0[exp(−4(265))]574(265−1)25(625)Γ(5),J=ν055exp[−4(log2)](log2)4Γ(6). |
Further,
|ϝ(ς,£,I1,J1|≤ν02+ν0[exp(−4(265))]574(265−1)25(625)Γ(5)+ν055exp[−4(log2)](log2)4Γ(6)≤ν0. |
If we choose ν0=5, then we have
L=52,I=574[exp(−4(265))](265−1)25(625)Γ(5),J=56exp[−4(log2)](log2)4Γ(6). |
ϝ≤5,σ1σ4<1. |
As we see, all the assumption of Theorem 3.1 from (i)–(iv) are fulfills. So by the Theorem 3.1 we conclude that the Eq (3.1) have a solution in Ξ.
In the present paper, we have generalized the DFPT and introduced a new class of (κ,τ)-fractional integral operators, which can be reduce to another related operators by choosing suitable values of κ, τ and ρ. Then, we established the existence of solution involving both the generalized proportional FIE of Riemann-Liouville and Hadamard, using DFPT. Finally, obtained result is illustrated by an example.
M. A. Alqudah was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R14), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The author T. Abdeljawad would like to thank Prince Sultan University for the support through the TAS research lab.
The authors declare that they have no competing interests.
[1] | K. Kuratowski, Sur les espaces complets, Fundam. Math., 15 (1930), 301–309. |
[2] | J. Banas, K. Goebel, Measures of noncompactness in Banach spaces, Marcel Dekker: New York, 1980. |
[3] | G. Darbo, Punti uniti in trasformazioni a codominio non compatto (Italian), Rend. Semin. Mat. Univ. Padova, 24 (1955), 84–92. |
[4] |
Rahul, N. K. Mahato, Existence solution of a system of differential equations, using generalized Darbo's fixed point theorem, AIMS Mathematics, 6 (2021), 13358–13369. https://doi.org/10.3934/math.2021773 doi: 10.3934/math.2021773
![]() |
[5] |
R. Arab, H. K. Nashine, N. H. Can, T. B. Tran, Solvability of functional-integral equations (fractional order) using measure of noncompactness, Adv. Differ. Equ., 2020 (2020), 12. https://doi.org/10.1186/s13662-019-2487-4 doi: 10.1186/s13662-019-2487-4
![]() |
[6] | Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Gruss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2 (2010), 93–99. |
[7] | L. G. Romero, L. L. Luque, G. A. Dorrego, R. A. Cerutti, On the k-Riemann Liouville fractional derivative, Int. J. Contemp. Math. Sci., 8 (2013), 41–51. |
[8] |
M. Tunc, On new inequalities for h-convex functions via Riemann-Liouville fractional integration, Filomat, 27 (2013), 559–565. https://doi.org/10.2298/FIL1304559T doi: 10.2298/FIL1304559T
![]() |
[9] | J. Hadamard, Essai sur l'etude des fonctions donnees par leur developpement de Taylor, Paris: Gauthier-Villars, 1892. |
[10] |
R. Bourguiba, F. Toumi, Positive solutions for singular semipositone nonlinear fractional differential system, Filomat, 35 (2021), 169–179. https://doi.org/10.2298/FIL2101169B doi: 10.2298/FIL2101169B
![]() |
[11] |
S. Etemad, M.M. Matar, M.A. Ragusa, S. Rezapour, Tripled fixed points and existence study to a tripled impulsive fractional differential system via measures of noncompactness, Mathematics, 10 (2022), 25. https://doi.org/10.3390/math10010025 doi: 10.3390/math10010025
![]() |
[12] |
W. Shammakh, H. Z. Alzumi, B. A. AlQahtani, On more general fractional differential equations involving mixed generalized derivatives with nonlocal multipoint and generalized fractional integral boundary conditions, J. Funct. Spaces, 2020 (2020), 3102142. https://doi.org/10.1155/2020/3102142 doi: 10.1155/2020/3102142
![]() |
[13] |
U. N. Katugompola, New approach generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
![]() |
[14] | S. Mubeen, G. M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89–94. |
[15] | R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Math., 15 (2007), 179–192. |
[16] |
M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, F. Ahmad, (k;s)-Riemann-Liouville fractional integral and applications, Hacettepe J. Math. Stat., 45 (2016), 77–89. https://doi.org/10.15672/HJMS.20164512484 doi: 10.15672/HJMS.20164512484
![]() |
[17] |
F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. https://doi.org/10.1140/epjst/e2018-00021-7 doi: 10.1140/epjst/e2018-00021-7
![]() |
[18] |
J. Banas, M. Lecko, Solvability of infinite systems of differential equations in Banach sequence spaces, J. Comput. Appl. Math., 2 (2001), 363–375. https://doi.org/10.1016/S0377-0427(00)00708-1 doi: 10.1016/S0377-0427(00)00708-1
![]() |
[19] |
A. Aghajani, A. Banas, N. Sabzali, Some generalizations of Darbo's fixed point theorem and applications, Bull. Belg. Math. Soc. Simon Stevin, 20 (2013), 345–358. https://doi.org/10.36045/bbms/1369316549 doi: 10.36045/bbms/1369316549
![]() |
[20] | I. Altun, D. Turkoglu, A Fixed point theorem for mappings satisfying a general condition of operator type, J. Comput. Anal. Appl., 9 (2007), 9–14. |
[21] | A. H. Ansari, Note on ϕ−ψ-contractive type mappings and related fixed point, The 2nd Regional Conference on Mathematics and Application, 2014,377–380. |
[22] |
V. Parvaneh, N. Hussain, A. Mukheimer, H. Aydi, On fixed point results for modified JS-contractions with applications, Axioms, 8 (2019), 84. https://doi.org/10.3390/axioms8030084 doi: 10.3390/axioms8030084
![]() |
[23] |
A. Samadi, M. B. Ghaemi, An extension of Darbo's fixed point theorem and its application to coupled fixed point and integral equations, Filomat, 28 (2014), 879–886. https://doi.org/10.2298/FIL1404879S doi: 10.2298/FIL1404879S
![]() |
1. | Pradip Ramesh Patle, Moosa Gabeleh, Manuel De La Sen, ON BEST PROXIMITY POINT APPROACH TO SOLVABILITY OF A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS, 2023, 13, 2156-907X, 3294, 10.11948/20230007 | |
2. | Nihar Kumar Mahato, Bodigiri Sai Gopinadh, , 2024, Chapter 15, 978-981-99-9545-5, 339, 10.1007/978-981-99-9546-2_15 |