The appreciation of inequalities in convexity is critical for fractional calculus and its application in a variety of fields. In this paper, we provide a unique analysis based on Hermite-Hadamard inequalities in the context of newly defined class of convexity which is known as left and right harmonically h-convex IVF (left and right H-h-convex IVF), as well as associated integral and fractional inequalities, are addressed by the suggested technique. Because of its intriguing character in the numerical sciences, there is a strong link between fractional operators and convexity. There have also been several exceptional circumstances studied, and numerous well-known Hermite-Hadamard inequalities have been derived for left and right H-h-convex IVF. Moreover, some applications are also presented in terms of special cases which are discussed in this study. The plan's outcomes demonstrate that the approach may be implemented immediately and is computationally simple and precise. We believe, our findings, generalize certain well-known new and classical harmonically convexity discoveries from the literature.
Citation: Muhammad Bilal Khan, Omar Mutab Alsalami, Savin Treanțǎ, Tareq Saeed, Kamsing Nonlaopon. New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities[J]. AIMS Mathematics, 2022, 7(8): 15497-15519. doi: 10.3934/math.2022849
[1] | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024 |
[2] | Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273 |
[3] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[4] | Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637 |
[5] | Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan . Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232 |
[6] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[7] | Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for $ m $-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115 |
[8] | Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096 |
[9] | Muhammad Bilal Khan, Savin Treanțǎ, Hleil Alrweili, Tareq Saeed, Mohamed S. Soliman . Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings. AIMS Mathematics, 2022, 7(8): 15659-15679. doi: 10.3934/math.2022857 |
[10] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
The appreciation of inequalities in convexity is critical for fractional calculus and its application in a variety of fields. In this paper, we provide a unique analysis based on Hermite-Hadamard inequalities in the context of newly defined class of convexity which is known as left and right harmonically h-convex IVF (left and right H-h-convex IVF), as well as associated integral and fractional inequalities, are addressed by the suggested technique. Because of its intriguing character in the numerical sciences, there is a strong link between fractional operators and convexity. There have also been several exceptional circumstances studied, and numerous well-known Hermite-Hadamard inequalities have been derived for left and right H-h-convex IVF. Moreover, some applications are also presented in terms of special cases which are discussed in this study. The plan's outcomes demonstrate that the approach may be implemented immediately and is computationally simple and precise. We believe, our findings, generalize certain well-known new and classical harmonically convexity discoveries from the literature.
The study of fractional order integral and derivative functions over real and complex domains, as well as its applications, is now the focus of fractional calculus. In many issues, using arithmetic from classical analysis in fractional analysis is crucial for generating more realistic results. Differential equations of fractional order are capable of handling a wide range of mathematical models. Because fractional mathematical models are special instances of fractional order mathematical models, they have more broad and accurate conclusions than classical mathematical models. Integer orders aren't an effective model for nature in classical analysis. On the other side, fractional computing allows us to look at any number of orders and come up with far more quantifiable goals.
Wang et al. [1] looked into fractional integral identities for a differentiable mapping involving Riemann–Liouville fractional integrals and Hadamard fractional integrals, and came up with some inequalities using standard convex, r-convex, m-convex, s-convex, (s, m)-convex, (β,m)-convex, Işcan [10] also used fractional integrals for preinvex functions to get various Hermite–Hadamard type inequalities. See [2,3,4,5,6,7] for other applications of the Hermite-Hadamard inequality.
Moore [8] used interval arithmetic, interval-valued functions, and integrals of interval-valued functions to establish arbitrarily sharp upper and lower limits on accurate solutions to various problems in practical mathematics. Moore [8] shown that if a real-valued function 𝛶(ϖ) meets an ordinary Lipschitz condition in Y, |𝛶(ϖ)−𝛶(y)|≤L|ϖ−y|, for ϖ,y∈Y, then the united extension of is a Lipschitz interval extension in Y. Hilger [9] proposed a time scales theory that may be used to combine the study of discrete and continuous dynamical systems. The widespread use of dynamic equations and integral inequalities on time scales in domains as diverse as electrical engineering, quantum physics, heat transfer, neural networks, combinatorics, and population dynamics [9] has highlighted the need for this theory. Young's inequality, Hölder's inequality, Minkoswki's inequality, Jensen's inequality, Steffensen's inequality, Hermite–Hadamard inequality and Opial type inequality were all explored by Agarwal et al. [9]. Srivastava et al. [10] discovered some generic time scale weighted Opial type inequalities in 2010. Srivastava et al. [11] also proposed several time-based expansions and generalizations of Maroni's inequality. Under some favorable conditions, Wei et al. [12] created a local fractional integral counterpart of Anderson's inequality on fractal space and also demonstrated that the fractal space local fractional integral inequality is a novel extension of Anderson's inequality Tunç et al. [13] also constructed an identity for local fractional integrals and derived numerous modifications of the well-known Steffensen's inequality for fractional integrals. [10,14] and the references therein might be consulted for further information.
Bhurjee and Panda [15] identified the parametric form of an interval-valued function and devised a technique to investigate the existence of a generic interval optimization issue solution. Using the notion of the generalized Hukuhara difference, Lupulescu [16] developed differentiability and integrability for interval-valued functions on time scales. Cano et al. [17] developed a novel form of Ostrowski inequality for gH-differentiable interval-valued functions in 2015, and achieved an extension of the class of real functions that are not always differentiable. For gH-differentiable interval-valued functions, Cano et al. [17] found error limitations to quadrature rules. In addition, Roy and Panda [18] developed the idea of the -monotonic property of interval-valued functions in the higher dimension and used extended Hukuhara differentiability to obtain various conclusions.
The findings of Iscan [19] and Noor et al. [20] have largely influenced our research. The concept of harmonically h-convexity for interval-valued functions is introduced first. Then, given the introduced class of functions, we show certain new Hermite-Hadamard type inequalities. The conclusions from [19,20] have interval-valued analogues in our inequalities. We refer to [21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37] and the references therein for further information on real-valued and interval-valued functions.
Furthermore, Khan et al. introduced the different classes of convex functions like (h1,h2)-preinvex fuzzy IVFs [38], log-s-convex fuzzy IVFs in the second sense [39], harmonically convex fuzzy IVFs [40], (h1,h2)-convex fuzzy IVFs [41], generalized p-convex fuzzy IVFs [42] and introduced Hermite-Hadamard type inequalities of these functions. For more information, see [43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63] and the references are therein.
The following is a breakdown of the paper's structure. Following the preliminaries in Section 2, Section 3 introduces the left and right harmonically h-convexity idea for interval-valued functions and proves new Hermite-Hadamard fractional integral type inequalities. Section 4 concludes with conclusions and further study.
First, we offer some background information on interval-valued functions, the theory of convexity, interval-valued integration, and interval-valued fractional integration, which will be utilized throughout the article.
We offer some fundamental arithmetic regarding interval analysis in this paragraph, which will be quite useful throughout the article.
Z=[Z∗,Z∗],Q=[Q∗,Q∗](Z∗≤ϰ≤Z∗ and Q∗≤z≤Q∗,ϰ,z∈R) |
Z+Q=[Z∗,Z∗]+[Q∗,Q∗]=[Z∗+Q∗,Z∗+Q∗], | (1) |
Z−Q=[Z∗,Z∗]−[Q∗,Q∗]=[Z∗−Q∗,Z∗−Q∗], | (2) |
Z×Q=[Z∗,Z∗]×[Q∗,Q∗]=[minX,maxX] | (3) |
minX=min{Z∗Q∗,Z∗Q∗,Z∗Q∗,Z∗Q∗},maxX=max{Z∗Q∗,Z∗Q∗,Z∗Q∗,Z∗Q∗} |
ν.[Z∗,Z∗]={[νZ∗,νZ∗] if ν>0, {0} if ν=0,[νZ∗,νZ∗] if ν<0. | (4) |
Let KC, K+C, K−C be the set of all closed intervals of R, the set of all closed positive intervals of R and the set of all closed negative intervals of R. Then, KC, K+C, and K−C are defined as
KC={[Z∗,Z∗]:Z∗,Z∗∈R and Z∗≤Z∗}, |
K+C={[Z∗,Z∗]:Z∗,Z∗∈KC and Z∗>0}, |
K−C={[Z∗,Z∗]:Z∗,Z∗∈KC and Z∗<0}. |
For [Z∗,Z∗],[Q∗,Q∗]∈KC, the inclusion "⊆" is defined by [Z∗,Z∗]⊆[Q∗,Q∗], if and only if, Q∗≤Z∗, Z∗≤Q∗.
Remark 2.1. [36] The relation "≤p" defined on KC by
[Q∗,Q∗]≤p[Z∗,Z∗] if and only if Q∗≤Z∗,Q∗≤Z∗, | (5) |
for all [Q∗,Q∗],[Z∗,Z∗]∈KC, it is an pseudo-order relation.
Theorem 2.2. [9] If 𝛶:[μ,υ]⊂R→KC is an IV-F on such that 𝛶(ω)=[𝛶∗(ω),𝛶∗(ω)], then 𝛶 is Riemann integrable over [μ,υ] if and only if, 𝛶∗(ω) and 𝛶∗(ω) are both Riemann integrable over [μ,υ] such that
(IR)∫υμ𝛶(ω)dω=[(R)∫υμ𝛶∗(ω)dω,(R)∫υμ𝛶∗(ω)dω], | (6) |
where, 𝛶∗,𝛶∗:[μ,υ]→R.
The following interval Riemann-Liouville fractional integral operators were introduced by Budak et al. [26] and Lupulescu [37]:
Definition 2.3. [26,37] Let β>0 and L([μ,υ],KC) be the collection of all Lebesgue measurable IVFs on [μ,υ]. Then the interval left and right Riemann-Liouville fractional integral of 𝛶 with order β>0 are defined by
Jβμ+𝛶(ϖ)=1Γ(β)∫ϖμ(ϖ−θ)β−1𝛶(θ)dθ,(ϖ>μ), | (7) |
and
Jβυ−𝛶(ϖ)=1Γ(β)∫υϖ(θ−ϖ)β−1𝛶(θ)dθ,(ϖ<υ), | (8) |
respectively, where Γ(ϖ)=∫∞0θϖ−1e−θdθ is the Euler gamma function. The interval left and right Riemann-Liouville fractional integral ϖ based on left and right end point functions can be defined, that is
Jβμ+𝛶(ϖ)=1Γ(β)∫ϖμ(ϖ−θ)β−1𝛶(θ)dθ |
=1Γ(β)∫ϖμ(ϖ−θ)β−1[𝛶∗(θ),𝛶∗(θ)]dθ,(ϖ>μ), | (9) |
where
Jβμ+𝛶∗(ϖ)=1Γ(β)∫ϖμ(ϖ−θ)β−1𝛶∗(θ)dθ,(ϖ>μ), | (10) |
and
Jβμ+𝛶∗(ϖ)=1Γ(β)∫ϖμ(ϖ−θ)β−1𝛶∗(θ)dθ,(ϖ>μ), | (11) |
Similarly, the left and right end point functions can be used to define the right Riemann-Liouville fractional integral 𝛶 of ϖ.
Definition 2.4. [19] A set K=[μ,υ]⊂R+=(0,∞) is said to be harmonically convex set, if, for all ϖ,z∈K,θ∈[0,1], we have
ϖzθϖ+(1−θ)z∈K. | (12) |
Definition 2.5. [19] The 𝛶:[μ,υ]→R+ is called harmonically convex function on [μ,υ] if
𝛶(ϖzθϖ+(1−θ)z)≤(1−θ)𝛶(ϖ)+θ𝛶(z), | (13) |
for all ϖ,z∈[μ,υ],θ∈[0,1]. If (13) is reversed then, 𝛶 is called harmonically concave IVF on [μ,υ].
Definition 2.6. [20] The positive real-valued function 𝛶:[μ,υ]→R+ is called H−h-convex function on [μ,υ] if
𝛶(ϖzθϖ+(1−θ)z)≤h(1−θ)𝛶(ϖ)+h(θ)𝛶(z), | (14) |
for all ϖ,z∈[μ,υ],θ∈[0,1], and h:[0,1]⊆[μ,υ]→R+ such that h≢0. If (14) is reversed then, 𝛶 is called H−h-concave function on [μ,υ]. The set of all H−h-convex (H−h-concave) functions is denoted by
HSX([μ,υ],R+,h) (HSV([μ,υ],R+,h)). |
Definition 2.7. [35] The IVF 𝛶:[μ,υ]→K+C is called left and right h-convex IVF on [μ,υ] if
𝛶((1−θ)ϖ+θz)≤ph(1−θ)𝛶(ϖ)+h(θ)𝛶(z), | (15) |
for all ϖ,z∈[μ,υ],θ∈[0,1], and h:[0,1]⊆[μ,υ]→R+ such that h≢0. If (15) is reversed then, 𝛶 is called left and right h-concave IVF on [μ,υ]. The set of all left and right h-convex (left and right h-concave) IVF is denoted by
LRSX([μ,υ],R+,h) (LRSV([μ,υ],R+,h)). |
Definition 2.8. The IVF 𝛶:[μ,υ]→K+C is called left and right harmonically convex IVF (left and right H-convex IVF) on [μ,υ] if
𝛶(ϖzθϖ+(1−θ)z)≤p(1−θ)𝛶(ϖ)+θ𝛶(z), | (16) |
for all ϖ,z∈[μ,υ],θ∈[0,1]. If (16) is reversed then, 𝛶 is called left and right harmonically concave IVF (left and right H-concave IVF) on [μ,υ].
Definition 2.9. The IVF 𝛶:[μ,υ]→K+C is called left and right harmonically h-convex (left and right H−h-convex IVF) on [μ,υ] if
𝛶(ϖzθϖ+(1−θ)z)≤ph(1−θ)𝛶(ϖ)+h(θ)𝛶(z), | (17) |
for all ϖ,z∈[μ,υ],θ∈[0,1], for all ϖ∈[μ,υ] and h:[0,1]⊆[μ,υ]→R+ such that h≢0. If (17) is reversed then, 𝛶 is called left and right H−h-concave IVF on [μ,υ]. The set of all left and right H−h-convex (left and right H−h-concave) IVF is denoted by
LRHSX([μ,υ],K+C,h) (LRHSV([μ,υ],K+C,h)). |
Theorem 2.10. Let [μ,υ] be harmonically convex set, and let 𝛶:[μ,υ]→K+C be an IVF such that
𝛶(ϖ)=[𝛶∗(ϖ),𝛶∗(ϖ)],∀ϖ∈[μ,υ]. | (18) |
for all ϖ∈[μ,υ]. Then, 𝛶∈LRHSX([μ,υ],K+C,h), if and only if, 𝛶∗(ϖ), 𝛶∗(ϖ)∈HSX([μ,υ],R+,h).
Proof. Assume that 𝛶∗(ϖ), 𝛶∗(ϖ)∈HSX([μ,υ],R+,h). Then, from (15), we have
𝛶∗(ϖzθϖ+(1−θ)z)≤h(1−θ)𝛶∗(ϖ)+h(θ)𝛶∗(z),∀ϖ,z∈[μ,υ],θ∈[0,1], |
And
𝛶∗(ϖzθϖ+(1−θ)z)≤h(1−θ)𝛶∗(ϖ)+h(θ)𝛶∗(z),∀ϖ,z∈[μ,υ],θ∈[0,1]. |
Then by (18), (4) and (5), we obtain
𝛶(ϖzθϖ+(1−θ)z)=[𝛶∗(θϖ+(1−θ)z),𝛶∗(θϖ+(1−θ)z)], |
≤ph(1−θ)[𝛶∗(ϖ),𝛶∗(ϖ)]+h(θ)[𝛶∗(z),𝛶∗(z)], |
that is
𝛶(ϖzθϖ+(1−θ)z)≤ph(1−θ)𝛶(ϖ)+h(θ)𝛶(z),∀ϖ,z∈[μ,υ],θ∈[0,1]. |
Hence, 𝛶∈LRHSX([μ,υ],K+C,h).
Conversely, let 𝛶∈LRHSX([μ,υ],K+C,h). Then for all ϖ,z∈[μ,υ], θ∈[0,1], we have
𝛶(ϖzθϖ+(1−θ)z)≤ph(1−θ)𝛶(ϖ)+h(θ)𝛶(z), |
Therefore, from (18), left side of above inequality, we have
𝛶(ϖzθϖ+(1−θ)z)=[𝛶∗(ϖzθϖ+(1−θ)z),𝛶∗(ϖzθϖ+(1−θ)z)]. |
Again, from (18), we obtain
h(1−θ)𝛶(ϖ)+h(θ)𝛶(z)=h(1−θ)[𝛶∗(ϖ),𝛶∗(ϖ)]+h(θ)[𝛶∗(z),𝛶∗(z)], |
for all ϖ,z∈[μ,υ], θ∈[0,1]. Then by H−h-convexity of 𝛶, we have for all ϖ,z∈[μ,υ], θ∈[0,1] such that
𝛶∗(ϖzθϖ+(1−θ)z)≤h(1−θ)𝛶∗(ϖ)+h(θ)𝛶∗(z), |
and
𝛶∗(ϖzθϖ+(1−θ)z)≤h(1−θ)𝛶∗(ϖ)+h(θ)𝛶∗(z), |
Hence, 𝛶∗(ϖ), 𝛶∗(ϖ)∈HSX([μ,υ],R+,h).
Remark 2.11. On fixing 𝛶∗(ϖ)=𝛶∗(ϖ), then from Definition 2.9, we obtain Definition 2.6.
On fixing h(θ)=θ, then from Definition 2.9, we obtain Definition 2.8.
Example 2.12. We consider the IVFs 𝛶:[0,2]→K+C defined by,
𝛶(ϖ)=[1,2]√ϖ. | (19) |
Since 𝛶∗(ϖ), 𝛶∗(ϖ)∈HSX([μ,υ],R+,h) with h(θ)=θ. Hence, 𝛶∈LRHSX([μ,υ],K+C,h).
We shall develop a relationship between h-convex IVF and H−h-convex IVF in the next finding.
Theorem 2.13. Let 𝛶:[μ,υ]→K+C be a IVF such that 𝛶(ϖ)=[𝛶∗(ϖ),𝛶∗(ϖ)], for all ϖ∈[μ,υ]. Then 𝛶∈LRHSX([μ,υ],K+C,h), if and only if, 𝛶(1ϖ)∈LRSX([μ,υ],K+C,h).
Proof. Since 𝛶∈LRHSX([μ,υ],K+C,h), then, for ϖ,z∈[μ,υ],θ∈[0,1], we have
𝛶(ϖzθϖ+(1−θ)z)≤ph(1−θ)𝛶(ϖ)+h(θ)𝛶(z). |
Therefore, we have
𝛶∗(ϖzθϖ+(1−θ)z)≤h(1−θ)𝛶∗(ϖ)+h(θ)𝛶∗(z),𝛶∗(ϖzθϖ+(1−θ)z)≤h(1−θ)𝛶∗(ϖ)+h(θ)𝛶∗(z). | (20) |
Consider η(ϖ)=𝛶(1ϖ). Taking m=1ϖ and n=1z to replace ϖ and z, respectively. Then, by applying (20) we have
𝛶∗(1ϖzθ1ϖ+(1−θ)1z)=𝛶∗(1(1−θ)ϖ+θz)=η∗((1−θ)ϖ+θz)≤h(θ)𝛶∗(1z)+h(1−θ)𝛶∗(1ϖ)=h(θ)η∗(z)+h(1−θ)η∗(ϖ),𝛶∗(1ϖzθ1ϖ+(1−θ)1z)=𝛶∗(1(1−θ)ϖ+θz)=η∗((1−θ)ϖ+θz)≤h(θ)𝛶∗(1z)+h(1−θ)𝛶∗(1ϖ)=h(θ)η∗(z)+h(1−θ)η∗(ϖ). |
It follows that
[𝛶∗(1ϖzθ1ϖ+(1−θ)1z),𝛶∗(1ϖzθ1ϖ+(1−θ)1z)]=[η∗((1−θ)ϖ+θz),η∗((1−θ)ϖ+θz)] |
≤ph(θ)[η∗(z),η∗(z)]+h(1−θ)[η∗(ϖ),η∗(ϖ)]. |
that is
η((1−θ)ϖ+θz)≤ph(θ)η(z)+h(1−θ)η(ϖ) |
This concludes that η(ϖ)∈LRSX([μ,υ],K+C,h),.
Conversely, let η∈LRSX([μ,υ],K+C,h),. Then, for all ϖ,z∈[μ,υ], θ∈[0,1], we have
η(θϖ+(1−θ)z)≤ph(θ)η(ϖ)+h(1−θ)η(z), |
By using same steps as above, we have
η∗(θ1ϖ+(1−θ)1z)=𝛶∗(1θ1ϖ+(1−θ)1z)=𝛶∗(ϖz(1−θ)ϖ+θz)≤h(θ)η∗(1ϖ)+h(1−θ)η∗(1z)=h(θ)𝛶∗(ϖ)+h(1−θ)𝛶∗(z)η∗(θ1ϖ+(1−θ)1z)=𝛶∗(1θ1ϖ+(1−θ)1z)=𝛶∗(ϖz(1−θ)ϖ+θz)≤h(θ)η∗(1ϖ)+h(1−θ)η∗(1z)=h(θ)𝛶∗(ϖ)+h(1−θ)𝛶∗(z) |
that is
𝛶(ϖzθϖ+(1−θ)z)≤ph(1−θ)𝛶(ϖ)+h(θ)𝛶(z), |
the proof the theorem has been completed.
Remark 2.14. If h(θ)=θ, and 𝛶∗(ϖ)=𝛶∗(ϖ), then from Theorem 2.14, we obtain Lemma 2.1 of [36].
In this section, we will prove two types of inequalities. First one is H·H and their variant forms, and the second one is H·H Fejér inequalities for H−h-convex IVFs where the integrands are IVFs. The family of Lebesgue measurable IVFs is denoted by L([μ,υ],K+C) in the following.
Theorem 3.1. Let 𝛶:[μ,υ]→K+C be a IVF such that 𝛶(ϖ)=[𝛶∗(ϖ),𝛶∗(ϖ)], for all ϖ∈[μ,υ]. If 𝛶∈LRHSX([μ,υ],K+C,h) and 𝛶∈L([μ,υ],K+C), then
1βh(12)𝛶(2μυμ+υ)≤pΓ(β)(μυυ−μ)β[Jβ1μ−(𝛶oδ)(1υ)+Jβ1υ+(𝛶oδ)(1μ)]≤p[𝛶(μ)+𝛶(υ)]∫10θβ−1[h(θ)+h(1−θ)]dθ. | (21) |
If 𝛶(ϖ) is concave IVF then
1βh(12)𝛶(2μυμ+υ)≥pΓ(β)(μυυ−μ)β[Jβ1μ−(𝛶oδ)(1υ)+Jβ1υ+(𝛶oδ)(1μ)]≥p[𝛶(μ)+𝛶(υ)]∫10θβ−1[h(θ)+h(1−θ)]dθ. | (22) |
where δ(ϖ)=1ϖ.
Proof. Let 𝛶∈LRHSX([μ,υ],K+C,h),. Then, by hypothesis, we have
1h(12)𝛶(2μυμ+υ)≤p𝛶(μυθμ+(1−θ)υ)+𝛶(μυ(1−θ)μ+θυ). |
Therefore, we have
1h(12)𝛶∗(2μυμ+υ)≤𝛶∗(μυθμ+(1−θ)υ)+𝛶∗(μυ(1−θ)μ+θυ),1h(12)𝛶∗(2μυμ+υ)≤𝛶∗(μυθμ+(1−θ)υ)+𝛶∗(μυ(1−θ)μ+θυ). |
Consider η(ϖ)=𝛶(1ϖ). By Theorem 2.13, we have η(ϖ)∈LRSX([μ,υ],K+C,h), then above inequality, we have
1h(12)η∗(μ+υ2μυ)≤η∗(θμ+(1−θ)υμυ)+η∗((1−θ)μ+θυμυ),1h(12)η∗(μ+υ2μυ)≤η∗(θμ+(1−θ)υμυ)+η∗((1−θ)μ+θυμυ). |
Multiplying both sides by θβ−1 and integrating the obtained result with respect to θ over (0,1), we have
1βh(12)∫10θβ−1η∗(μ+υ2μυ)dθ≤∫10θβ−1η∗(θμ+(1−θ)υμυ)dθ+∫10θβ−1η∗((1−θ)μ+θυμυ)dθ,1βh(12)∫10θβ−1η∗(μ+υ2μυ)dθ≤∫10θβ−1η∗(θμ+(1−θ)υμυ)dθ+∫10θβ−1η∗((1−θ)μ+θυμυ)dθ. |
Let ϖ=(1−θ)μ+θυμυ and z=θμ+(1−θ)υμυ. Then we have
1βh(12)η∗(μ+υ2μυ)≤(μυυ−μ)β1μ∫1υ(1μ−z)β−1η∗(z)dz+(μυυ−μ)β1μ∫1υ(ϖ−1υ)β−1η∗(ϖ)dϖ1βh(12)η∗(μ+υ2μυ)≤(μυυ−μ)β1μ∫1υ(1μ−z)β−1η∗(z)dz+(μυυ−μ)β1μ∫1υ(ϖ−1υ)β−1η∗(ϖ)dϖ, |
=Γ(β)(μυυ−μ)β[Jβ(1μ)−η∗(1υ)+Jβ(1υ)+η∗(1μ)]=Γ(β)(μυυ−μ)β[Jβ(1μ)−η∗(1υ)+Jβ(1υ)+η∗(1μ)], |
It follows that
1βh(12)[η∗(μ+υ2μυ),η∗(μ+υ2μυ)]≤IΓ(β+1)(μυυ−μ)β[Jβ(1μ)−η∗(1υ)+Jβ(1υ)+η∗(1μ),Jβ(1μ)−η∗(1υ)+Jβ(1υ)+η∗(1μ)]. |
That is,
1βh(12)η(μ+υ2μυ)≤pΓ(β+1)(μυυ−μ)β[Jβ(1μ)−η(1υ) +Jβ(1υ)+η(1μ)]. | (23) |
In a similar way as above, we have
Γ(β)(μυυ−μ)β[Jβ(1μ)−η(1υ)+Jβ(1υ)+η(1μ)]≤p[η(1μ)+η(1υ)]∫10θβ−1[h(θ)+h(1−θ)]. | (24) |
Combining (23) and (24), we have
1βh(12)η(μ+υ2μυ)≤pΓ(β)(μυυ−μ)β[Jβ(1μ)−η(1υ)+Jβ(1υ)+η(1μ)]≤p[η(1μ)+η(1υ)]∫10θβ−1[h(θ)+h(1−θ)]dθ, |
that is
1βh(12)𝛶(2μυμ+υ)≤pΓ(β)(μυυ−μ)β[Jβ1μ−(𝛶oδ)(1υ)+Jβ1υ+(𝛶oδ)(1μ)] |
≤p[𝛶(μ)+𝛶(υ)]∫10θβ−1[h(θ)+h(1−θ)]dθ. |
Hence, the required result.
Remark 3.2. Followings results can be obtained through inequality (21):
On fixing h(θ)=θ, the following H·H inequality is obtained, which is also new one;
𝛶(2μυμ+υ)≤pΓ(β+1)2(υ−μ)β[Jβ1μ−(𝛶oδ)(1υ)+Jβ1υ+(𝛶oδ)(1μ)]≤p𝛶(μ)+𝛶(υ)2. |
On fixing h(θ)=θ and β=1, the following H·H inequality is obtained, which is also new one;
𝛶(2μυμ+υ)≤pμυυ−μ∫υμ𝛶(ϖ)ϖ2dϖ≤p𝛶(μ)+𝛶(υ)2. | (25) |
On fixing h(θ)=θ and 𝛶∗(ϖ)=𝛶∗(ϖ), the following H·H inequality is obtained, see [36]:
𝛶(2μυμ+υ)≤Γ(β+1)2(υ−μ)β[Jβ1μ−(𝛶oδ)(1υ)+Jβ1υ+(𝛶oδ)(1μ)]≤𝛶(μ)+𝛶(υ)2. | (26) |
On fixing h(θ)=θ and 𝛶∗(ϖ)=𝛶∗(ϖ) with β=1, the following H·H inequality is obtained, see [19].
𝛶(2μυμ+υ)≤μυυ−μ∫υμ𝛶(ϖ)ϖ2dϖ≤𝛶(μ)+𝛶(υ)2. | (27) |
For the product of H−h-convex IVFs, we now have some H·H inequalities. These inequalities are modifications of previously published inequalities [38,34,43].
Theorem 3.3. Let 𝛶,G:[μ,υ]→K+C be a IVFs such that 𝛶(ϖ)=[𝛶∗(ϖ),𝛶∗(ϖ)] and G(ϖ)=[G∗(ϖ),G∗(ϖ)] for all ϖ∈[μ,υ], respectively. If 𝛶∈LRHSX([μ,υ],K+C,h1), G∈LRHSX([μ,υ],K+C,h2), and 𝛶×G∈L([μ,υ],K+C), then
Γ(β)(μυυ−μ)β[Jβ(1υ)+𝛶oδ(1μ)×Goδ(1μ)+Jβ(1μ)−𝛶oδ(1υ)×Goδ(1υ)] |
≤pM(μ,υ)∫10[θβ−1+(1−θ)β−1]h1(θ)h2(θ)dθ |
+M(μ,υ)∫10[θβ−1+(1−θ)β−1]h1(θ)h2(1−θ)dθ. |
Where M(μ,υ)=𝛶(μ)×G(μ)+𝛶(υ)×G(υ), N(μ,υ)=𝛶(μ)×G(υ)+𝛶(υ)×G(μ), and M(μ,υ)=[M∗(μ,υ),M∗(μ,υ)] and N(μ,υ)=[N∗(μ,υ),N∗(μ,υ)].
Proof. Since 𝛶,G are H−h1 and H−h2-convex IVFs then, we have
𝛶∗(μυθμ+(1−θ)υ)≤h1(1−θ)𝛶∗(μ)+h1(θ)𝛶∗(υ)𝛶∗(μυθμ+(1−θ)υ)≤h1(1−θ)𝛶∗(μ)+h1(θ)𝛶∗(υ).. |
and
G∗(μυθμ+(1−θ)υ)≤h2(1−θ)G∗(μ)+h2(θ)G∗(υ)G∗(μυθμ+(1−θ)υ)≤h2(1−θ)G∗(μ)+h2(θ)G∗(υ). |
From the definition of H −h-convex IVFs it follows that 0≤p𝛶(ϖ) and 0≤pG(ϖ), so
𝛶∗(μυθμ+(1−θ)υ)×G∗(μυθμ+(1−θ)υ)≤(h1(1−θ)𝛶∗(μ)+h1(θ)𝛶∗(υ))(h2(1−θ)G∗(μ)+θG∗(υ))=h1(1−θ)h2(1−θ)𝛶∗(μ)×G∗(μ)+h1(θ)h2(θ)𝛶∗(υ)×G∗(υ)+h1(1−θ)h2(θ)𝛶∗(μ)×G∗(υ)+h1(θ)h2(1−θ)𝛶∗(υ)×G∗(μ)𝛶∗(μυθμ+(1−θ)υ)×G∗(μυθμ+(1−θ)υ)≤(h1(1−θ)𝛶∗(μ)+h1(θ)𝛶∗(υ))(h2(1−θ)G∗(μ)+h2(θ)G∗(υ))=h1(1−θ)h2(1−θ)𝛶∗(μ)×G∗(μ)+h1(θ)h2(θ)𝛶∗(υ)×G∗(υ)+h1(1−θ)h2(θ)𝛶∗(μ)×G∗(υ)+h1(θ)h2(1−θ)𝛶∗(υ)×G∗(μ). | (28) |
Analogously, we have
𝛶∗(μυ(1−θ)μ+θυ)G∗(μυ(1−θ)μ+θυ)≤h1(θ)h2(θ)𝛶∗(μ)×G∗(μ)+h1(1−θ)h2(1−θ)𝛶∗(υ)×G∗(υ)+h1(θ)h2(1−θ)𝛶∗(μ)×G∗(υ)+h1(1−θ)h2(θ)𝛶∗(υ)×G∗(μ)𝛶∗(μυ(1−θ)μ+θυ)×G∗(μυ(1−θ)μ+θυ)≤h1(θ)h2(θ)𝛶∗(μ)×G∗(μ)+h1(1−θ)h2(1−θ)𝛶∗(υ)×G∗(υ)+h1(θ)h2(1−θ)𝛶∗(μ)×G∗(υ)+h1(1−θ)h2(θ)𝛶∗(υ)×G∗(μ). | (29) |
Adding (28) and (29), we have
𝛶∗(μυθμ+(1−θ)υ)×G∗(μυθμ+(1−θ)υ)+𝛶∗(μυ(1−θ)μ+θυ)×G∗(μυ(1−θ)μ+θυ)≤[h1(θ)h2(θ)+h1(1−θ)h2(1−θ)][𝛶∗(μ)×G∗(μ)+𝛶∗(υ)×G∗(υ)]+[h1(θ)h2(1−θ)+h1(1−θ)h2(θ)][𝛶∗(υ)×G∗(μ)+𝛶∗(μ)×G∗(υ)]𝛶∗(μυθμ+(1−θ)υ)×G∗(μυθμ+(1−θ)υ)+𝛶∗(μυ(1−θ)μ+θυ)×G∗(μυ(1−θ)μ+θυ)≤[h1(θ)h2(θ)+h1(1−θ)h2(1−θ)][𝛶∗(μ)×G∗(μ)+𝛶∗(υ)×G∗(υ)]+[h1(θ)h2(1−θ)+h1(1−θ)h2(θ)][𝛶∗(υ)×G∗(μ)+𝛶∗(μ)×G∗(υ)]. | (30) |
Taking the result of multiplying (30) by θβ−1 and integrating it with respect to θ over (0, 1), we get
∫10θβ−1𝛶∗(μυθμ+(1−θ)υ)×G∗(μυθμ+(1−θ)υ)dθ+∫10θβ−1𝛶∗(μυ(1−θ)μ+θυ)×G∗(μυ(1−θ)μ+θυ)dθ≤M∗(μ,υ)∫10θβ−1[h1(θ)h2(θ)+h1(1−θ)h2(1−θ)]dθ+N∗(μ,υ)∫10θβ−1[h1(θ)h2(1−θ)+h1(1−θ)h2(θ)]dθ∫10θβ−1𝛶∗(μυθμ+(1−θ)υ)×G∗(μυθμ+(1−θ)υ)dθ+∫10θβ−1𝛶∗(μυ(1−θ)μ+θυ)×G∗(μυ(1−θ)μ+θυ)dθ≤M∗(μ,υ)∫10θβ−1[h1(θ)h2(θ)+h1(1−θ)h2(1−θ)]dθ+N∗(μ,υ)∫10θβ−1[h1(θ)h2(1−θ)+h1(1−θ)h2(θ)]dθ. |
It follows that,
Γ(β)(μυυ−μ)β[Jβ(1υ)+𝛶∗(1μ)×G∗(1μ)+Jβ(1μ)−𝛶∗(1υ)×G∗(1υ)]≤M∗(μ,υ)∫10[θβ−1+(1−θ)β−1]h1(θ)h2(θ)dθ+N∗(μ,υ)∫10[θβ−1+(1−θ)β−1]h1(θ)h2(1−θ)dθΓ(β)(μυυ−μ)β[Jβ(1υ)+𝛶∗(1μ)×G∗(1μ)+Jβ(1μ)−𝛶∗(1υ)×G∗(1υ)]≤M∗(μ,υ)∫10[θβ−1+(1−θ)β−1]h1(θ)h2(θ)dθ+N∗(μ,υ)∫10[θβ−1+(1−θ)β−1]h1(θ)h2(1−θ)dθ. |
that is
Γ(β)(μυυ−μ)β[Jβ(1υ)+𝛶∗(1μ)×G∗(1μ)+Jβ(1μ)−𝛶∗(1υ)×G∗(1υ),Jβ(1υ)+𝛶∗(1μ)×G∗(1μ)+Jβ(1μ)−𝛶∗(1υ)×G∗(1υ)]≤I[M∗(μ,υ),M∗(μ,υ)]∫10[θβ−1+(1−θ)β−1]h1(θ)h2(θ)dθ+[N∗(μ,υ),N∗(μ,υ)]∫10[θβ−1+(1−θ)β−1]h1(θ)h2(1−θ)dθ. |
Thus,
Γ(β)(μυυ−μ)β[Jβ(1υ)+𝛶oδ(1μ)×Goδ(1μ)+Jβ(1μ)−𝛶oδ(1υ)×Goδ(1υ)] |
≤pM(μ,υ)∫10[θβ−1+(1−θ)β−1]h1(θ)h2(θ)dθ |
+N(μ,υ)∫10[θβ−1+(1−θ)β−1]h1(θ)h2(1−θ)dθ. |
As a result, the theorem has been proven.
Theorem 3.4. Let 𝛶,G:[μ,υ]→K+C be a IVF such that 𝛶(ϖ)=[𝛶∗(ϖ),𝛶∗(ϖ)] and G(ϖ)=[G∗(ϖ),G∗(ϖ)] for all ϖ∈[μ,υ], respectively. If 𝛶∈LRHSX([μ,υ],K+C,h1) and G∈LRHSX([μ,υ],K+C,h2) with h1(12)h2(12)≠0, and 𝛶×G∈L([μ,υ],K+C), then
1βh1(12)h2(12)𝛶(2μυμ+υ)×G(2μυμ+υ) |
≤pΓ(β)(μυυ−μ)β[Jβ(1υ)+𝛶oδ(1μ)×Goδ(1μ)+Jβ(1μ)−𝛶oδ(1υ)×Goδ(1υ)] |
+M(μ,υ)∫10[θβ−1+(1−θ)β−1]h1(θ)h2(1−θ)dθ |
+N(μ,υ)∫10[θβ−1+(1−θ)β−1]h1(θ)h2(θ)dθ. |
Where M(μ,υ)=𝛶(μ)×G(μ)+𝛶(υ)×G(υ), N(μ,υ)=𝛶(μ)×G(υ)+𝛶(υ)×G(μ), and M(μ,υ)=[M∗(μ,υ),M∗(μ,υ)] and N(μ,υ)=[N∗(μ,υ),N∗(μ,υ)].
Proof. Consider 𝛶,G:[μ,υ]→K+C are H−h1 and H−h2-convex IVFs. Then by hypothesis, we have
𝛶∗(2μυμ+υ)×G∗(2μυμ+υ)𝛶∗(2μυμ+υ)×G∗(2μυμ+υ) |
≤h1(12)h2(12)[𝛶∗(μυθμ+(1−θ)υ)×G∗(μυθμ+(1−θ)υ)+𝛶∗(μυθμ+(1−θ)υ)×G∗(μυ(1−θ)μ+θυ)]+h1(12)h2(12)[𝛶∗(μυ(1−θ)μ+θυ)×G∗(μυθμ+(1−θ)υ)+𝛶∗(μυ(1−θ)μ+θυ)×G∗(μυ(1−θ)μ+θυ)]≤h1(12)h2(12)[𝛶∗(μυθμ+(1−θ)υ)×G∗(μυθμ+(1−θ)υ)+𝛶∗(μυθμ+(1−θ)υ)×G∗(μυ(1−θ)μ+θυ)]+h1(12)h2(12)[𝛶∗(μυ(1−θ)μ+θυ)×G∗(μυθμ+(1−θ)υ)+𝛶∗(μυ(1−θ)μ+θυ)×G∗(μυ(1−θ)μ+θυ)], |
≤h1(12)h2(12)[𝛶∗(μυθμ+(1−θ)υ)×G∗(μυθμ+(1−θ)υ)+𝛶∗(μυ(1−θ)μ+θυ)×G∗(μυ(1−θ)μ+θυ)]+h1(12)h2(12)[(h1(θ)𝛶∗(μ)+h1(1−θ)𝛶∗(υ))×(h2(1−θ)G∗(μ)+h2(θ)G∗(υ))+(h1(1−θ)𝛶∗(μ)+h1(θ)𝛶∗(υ))×(h2(θ)G∗(μ)+h2(1−θ)G∗(υ))]≤h1(12)h2(12)[𝛶∗(μυθμ+(1−θ)υ)×G∗(μυθμ+(1−θ)υ)+𝛶∗(μυ(1−θ)μ+θυ)×G∗(μυ(1−θ)μ+θυ)]+h1(12)h2(12)[(h1(θ)𝛶∗(μ)+h1(1−θ)𝛶∗(υ))×(h2(1−θ)G∗(μ)+h2(θ)G∗(υ))+(h1(1−θ)𝛶∗(μ)+h1(θ)𝛶∗(υ))×(h2(θ)G∗(μ)+h2(1−θ)G∗(υ))], |
=h1(12)h2(12)[𝛶∗(μυθμ+(1−θ)υ)×G∗(μυθμ+(1−θ)υ)+𝛶∗(μυ(1−θ)μ+θυ)×G∗(μυ(1−θ)μ+θυ)]+h1(12)h2(12)[{h1(θ)h2(1−θ)+h1(1−θ)h2(θ)}M∗(μ,υ)+{h1(θ)h2(θ)+h1(1−θ)h2(1−θ)}N∗(μ,υ)]=h1(12)h2(12)[𝛶∗(μυθμ+(1−θ)υ)×G∗(μυθμ+(1−θ)υ)+𝛶∗(μυ(1−θ)μ+θυ)×G∗(μυ(1−θ)μ+θυ)]+h1(12)h2(12)[{h1(θ)h2(1−θ)+h1(1−θ)h2(θ)}M∗(μ,υ)+{h1(θ)h2(θ)+h1(1−θ)h2(1−θ)}N∗(μ,υ)]. | (31) |
Inequality (31) is multiplied by θβ−1 and integrated over (0,1),
1h1(12)h2(12)𝛶∗(2μυμ+υ)×G∗(2μυμ+υ)∫10θβ−1dθ≤[∫10θβ−1𝛶∗(μυθμ+(1−θ)υ)×G∗(μυθμ+(1−θ)υ)dθ+∫10θβ−1𝛶∗(μυ(1−θ)μ+θυ)×G∗(μυ(1−θ)μ+θυ)dθ]+[M∗(μ,υ)∫10θβ−1{h1(θ)h2(1−θ)+h1(1−θ)h2(θ)}dθ+N∗(μ,υ)∫10{h1(θ)h2(θ)+h1(1−θ)h2(1−θ)}dθ]1h1(12)h2(12)𝛶∗(2μυμ+υ)×G∗(2μυμ+υ)∫10θβ−1dθ≤[∫10θβ−1𝛶∗(μυθμ+(1−θ)υ)×G∗(μυθμ+(1−θ)υ)dθ+∫10θβ−1𝛶∗(μυ(1−θ)μ+θυ)×G∗(μυ(1−θ)μ+θυ)dθ]+[M∗(μ,υ)∫10θβ−1{h1(θ)h2(1−θ)+h1(1−θ)h2(θ)}dθ+N∗(μ,υ)∫10θβ−1{h1(θ)h2(θ)+h1(1−θ)h2(1−θ)}dθ] |
Taking ϖ=μυθμ+(1−θ)υ and z=μυ(1−θ)μ+θυ, then we get
1βh1(12)h2(12)𝛶∗(2μυμ+υ)×G∗(2μυμ+υ)≤Γ(β)(μυυ−μ)β[Jβ(1υ)+𝛶∗oδ(1μ)×G∗oδ(1μ)+Jβ(1μ)−𝛶∗oδ(1υ)×G∗oδ(1υ)]+[M∗(μ,υ)∫10θβ−1{h1(θ)h2(1−θ)+h1(1−θ)h2(θ)}dθ+N∗(μ,υ)∫10{h1(θ)h2(θ)+h1(1−θ)h2(1−θ)}dθ]1βh1(12)h2(12)𝛶∗(2μυμ+υ)×G∗(2μυμ+υ)≤Γ(β)(μυυ−μ)β[Jβ(1υ)+𝛶∗oδ(1μ)×G∗oδ(1μ)+Jβ(1μ)−𝛶∗oδ(1υ)×G∗oδ(1υ)]+[M∗(μ,υ)∫10θβ−1{h1(θ)h2(1−θ)+h1(1−θ)h2(θ)}dθ+N∗(μ,υ)∫10θβ−1{h1(θ)h2(θ)+h1(1−θ)h2(1−θ)}dθ], |
that is
1βh1(12)h2(12)𝛶(2μυμ+υ)×G(2μυμ+υ)≤pΓ(β)(μυυ−μ)β[Jβ(1υ)+𝛶oδ(1μ)×Goδ(1μ)+Jβ(1μ)−𝛶oδ(1υ)×Goδ(1υ)]+M(μ,υ)∫10[θβ−1+(1−θ)β−1]h1(θ)h2(1−θ)dθ |
+N(μ,υ)∫10[θβ−1+(1−θ)β−1]h1(θ)h2(θ)dθ. |
As a result, the desired outcome has been achieved.
We now give H·H Fejér inequalities for H−h-convex IVFs. Firstly, we obtain the second H·H Fejér inequality for H−h-convex IVF.
Theorem 3.5. Let 𝛶:[μ,υ]→K+C be a IVF such that 𝛶(ϖ)=[𝛶∗(ϖ),𝛶∗(ϖ)] for all ϖ∈[μ,υ], respectively. If 𝛶∈LRHSX([μ,υ],K+C,h), 𝛶∈L([μ,υ],K+C) and Ω:[μ,υ]→R,Ω(11μ+1υ−1ϖ)=Ω(ϖ)≥0, then
Γ(β)(μυυ−μ)β[Jβ1υ+(Ωoδ)(1μ)+Jβ1μ−(Ωoδ)(1υ)] |
≤p𝛶(μ)+𝛶(υ)2∫10θβ−1{h(θ)+h(1−θ)}Ω(μυθμ+(1−θ)υ)dθ. | (32) |
If 𝛶∈LRHSV([μ,υ],K+C,h), then inequality (32) is reversed such that
Γ(β)(μυυ−μ)β[Jβ1υ+(Ωoδ)(1μ)+Jβ1μ−(Ωoδ)(1υ)] |
≥p𝛶(μ)+𝛶(υ)2∫10θβ−1{h(θ)+h(1−θ)}Ω(μυθμ+(1−θ)υ)dθ. |
Proof. Let 𝛶∈LRHSX([μ,υ],K+C,h) and θβ−1Ω(μυθμ+(1−θ)υ)≥0. Then, we have
θβ−1𝛶∗(μυθμ+(1−θ)υ)Ω(μυθμ+(1−θ)υ)≤θβ−1(h(1−θ)𝛶∗(μ)+h(θ)𝛶∗(υ))Ω(μυθμ+(1−θ)υ)θβ−1𝛶∗(μυθμ+(1−θ)υ)Ω(θμ+(1−θ)υ)≤θβ−1(h(1−θ)𝛶∗(μ)+h(θ)𝛶∗(υ))Ω(μυθμ+(1−θ)υ). | (33) |
And
θβ−1𝛶∗(μυ(1−θ)μ+θυ)Ω(μυθμ+(1−θ)υ)≤θβ−1(h(θ)𝛶∗(μ)+h(1−θ)𝛶∗(υ))Ω(μυθμ+(1−θ)υ)θβ−1𝛶∗(μυ(1−θ)μ+θυ)Ω(μυθμ+(1−θ)υ)≤θβ−1(h(θ)𝛶∗(μ)+h(1−θ)𝛶∗(υ))Ω(μυθμ+(1−θ)υ). | (34) |
After adding (33) and (34), and integrating over [0,1], we get
∫10θβ−1𝛶∗(μυθμ+(1−θ)υ)Ω(μυθμ+(1−θ)υ)dθ+∫10θβ−1𝛶∗(μυ(1−θ)μ+θυ)Ω(μυθμ+(1−θ)υ)dθ≤∫10[θβ−1𝛶∗(μ){h(θ)+h(1−θ)}Ω(μυθμ+(1−θ)υ)+θβ−1𝛶∗(υ){h(1−θ)+h(θ)}Ω(μυθμ+(1−θ)υ)]dθ,∫10θβ−1𝛶∗(μυθμ+(1−θ)υ)Ω(μυθμ+(1−θ)υ)dθ+∫10θβ−1𝛶∗(μυ(1−θ)μ+θυ)Ω(μυθμ+(1−θ)υ)dθ≤∫10[θβ−1𝛶∗(μ){h(θ)+h(1−θ)}Ω(μυθμ+(1−θ)υ)+θβ−1𝛶∗(υ){h(1−θ)+h(θ)}Ω(μυθμ+(1−θ)υ)]dθ, |
=𝛶∗(μ)∫10θβ−1{h(θ)+h(1−θ)}Ω(μυθμ+(1−θ)υ)dθ+𝛶∗(υ)∫10θβ−1{h(1−θ)+h(θ)}Ω(μυθμ+(1−θ)υ)dθ,=𝛶∗(μ)∫10θβ−1{h(θ)+h(1−θ)}Ω(μυθμ+(1−θ)υ)dθ+𝛶∗(υ)∫10θβ−1{h(1−θ)+h(θ)}Ω(μυθμ+(1−θ)υ)dθ. |
that is
Γ(β)(μυυ−μ)β[Jβ1υ+(Ωoδ)(1μ)+Jβ1μ−(Ωoδ)(1υ)] |
≤p𝛶(μ)+𝛶(υ)2∫10θβ−1{h(θ)+h(1−θ)}Ω(μυθμ+(1−θ)υ)dθ. | (35) |
As a result, the desired result has been achieved.
Following result obtain the first interval fractional H⋅H Fejér inequality.
Theorem 3.6. Let 𝛶:[μ,υ]→K+C be a IVF such that 𝛶(ϖ)=[𝛶∗(ϖ),𝛶∗(ϖ)] for all ϖ∈[μ,υ], respectively. If 𝛶∈LRHSX([μ,υ],K+C,h), 𝛶∈L([μ,υ],K+C) and Ω:[μ,υ]→R,Ω(11μ+1υ−1ϖ)=Ω(ϖ)≥0, then
12h(12)𝛶(2μυμ+υ)[Jβ(1υ)+(Ωoδ)(1μ)+Jβ(1μ)−(Ωoδ)(1υ)]≤p[Jβ(1υ)+(𝛶Ωoδ)(1μ)+Jβ(1μ)−(𝛶Ωoδ)(1υ)]. | (36) |
If 𝛶∈LRHSV([μ,υ],K+C,h), then inequality (36) is reversed such that
12h(12)𝛶(2μυμ+υ)[Jβ(1υ)+(Ωoδ)(1μ)+Jβ(1μ)−(Ωoδ)(1υ)]≥p[Jβ(1υ)+(𝛶Ωoδ)(1μ)+Jβ(1μ)−(𝛶Ωoδ)(1υ)]. |
Proof. Since 𝛶∈LRHSX([μ,υ],K+C,h), then we have
𝛶∗(2μυμ+υ)≤h(12)(𝛶∗(μυθμ+(1−θ)υ)+𝛶∗(μυ(1−θ)μ+θυ))𝛶∗(2μυμ+υ)≤h(12)(𝛶∗(μυθμ+(1−θ)υ)+𝛶∗(μυ(1−θ)μ+θυ)), | (37) |
Multiplying both sides by (37) by θβ−1Ω(μυ(1−θ)μ+θυ) and then integrating the resultant with respect to θ over [0,1], we obtain
𝛶∗(2μυμ+υ)∫10θβ−1Ω(μυ(1−θ)μ+θυ)dθ≤h(12)(∫10θβ−1𝛶∗(μυθμ+(1−θ)υ)Ω(μυ(1−θ)μ+θυ)dθ+∫10θβ−1𝛶∗(μυ(1−θ)μ+θυ)Ω(μυ(1−θ)μ+θυ)dθ),𝛶∗(2μυμ+υ)∫10θβ−1Ω(μυ(1−θ)μ+θυ)dθ≤h(12)(∫10θβ−1𝛶∗(μυθμ+(1−θ)υ)Ω(μυ(1−θ)μ+θυ)dθ+∫10θβ−1𝛶∗(μυ(1−θ)μ+θυ)Ω(μυ(1−θ)μ+θυ)dθ). | (38) |
Let ϖ=μυθμ+(1−θ)υ. Then, we have
1h(12)(μυυ−μ)β𝛶∗(2μυμ+υ)1μ∫1υ(ϖ−1υ)β−1Ω(1ϖ)dϖ≤(μυυ−μ)β∫1μ1υ(ϖ−1υ)β−1𝛶∗(11μ+1υ−1ϖ)Ω(1ϖ)dϖ+(μυυ−μ)β∫1μμ(ϖ−1υ)β−1𝛶∗(1ϖ)Ω(1ϖ)dϖ=(μυυ−μ)β∫1μ1υ(1μ−ϖ)β−1𝛶∗(ϖ)Ω(11μ+1υ−1ϖ)dϖ+(μυυ−μ)β∫1μ1υ(ϖ−1υ)β−1𝛶∗(1ϖ)Ω(1ϖ)dϖ=2Γ(β)(μυυ−μ)β[Jβ(1υ)+𝛶∗Ω(1μ)+Jβ(1μ)−𝛶∗Ω(1υ)],1h(12)(μυυ−μ)β𝛶∗(2μυμ+υ)1μ∫1υ(ϖ−1υ)β−1Ω∗(1ϖ)dϖ≤2Γ(β)(μυυ−μ)β[Jβ(1υ)+𝛶∗Ω(1μ)+Jβ(1μ)−𝛶∗Ω(1υ)]. | (39) |
From (39), we have
Γ(β)12h(12)(μυυ−μ)β[𝛶∗(2μυμ+υ),𝛶∗(2μυμ+υ)][Jβ(1υ)+Ω(1μ)+Jβ(1μ)−Ω(1υ)]≤IΓ(β)(μυυ−μ)β[Jβ(1υ)+𝛶∗Ω(1μ)+Jβ(1μ)−𝛶∗Ω(1υ),Jβ(1υ)+𝛶∗Ω(1μ)+Jβ(1μ)−𝛶∗Ω(1υ)], |
that is
12h(12)𝛶(2μυμ+υ)[Jβ(1υ)+(Ωoδ)(1μ)+Jβ(1μ)−(Ωoδ)(1υ)]≤p[Jβ(1υ)+(𝛶Ωoδ)(1μ)+Jβ(1μ)−(𝛶Ωoδ)(1υ)]. |
The theorem has been proved.
Remark 3.7. From Theorem 3.5 and Theorem 3.6, following result can be obtained:
On fixing h(θ)=θ and β=1 then following H·H inequality is obtained, which is also new one:
𝛶(2μυμ+υ)∫υμΩ(ϖ)ϖ2dϖ≤p∫υμ𝛶(ϖ)ϖ2Ω(ϖ)dϖ≤p𝛶(μ)+𝛶(υ)2∫υμΩ(ϖ)ϖ2dϖ. |
On fixing h(θ)=θ and Ω(ϖ)=1, the inequality (21) is obtained.
On fixing h(θ)=θ, Ω(ϖ)=1 and β=1, the following H·H inequality is obtained:
𝛶(2μυμ+υ)≤pμυυ−μ∫υμ𝛶(ϖ)ϖ2dϖ≤p𝛶(μ)+𝛶(υ)2. |
The concept of left and right H−h-convex IVFs has been discussed. We've also demonstrated that this type of convexity includes a few other types of classical convexity. The left and right H−h-convex IVF is a harmonically convex function with distinct approaches that has been suggested. Furthermore, we have developed several novel classical and fractional integral inequalities of the Hermite-Hadamard and related Hermite-Hadamard type inequalities using the concept of left and right H-h-convex IVF. The findings in this article can be used to identify different types of inequality. Furthermore, these results are universal and may be used to generate other, potentially useful, and fascinating inequalities using various fractional operators. In near future, we will generalize the class of left and right H−h-convex IVFs and with the help of this class, we will try to obtain some new version of different type inequalities.
The authors declare that they have no competing interests.
[1] |
J. Wang, M. Feckan, Fractional Hermite-Hadamard Inequalities, de Gruyter, Berlin, (2018). https://doi.org/10.1515/9783110523621 doi: 10.1515/9783110523621
![]() |
[2] | I. Işcan, Hermite-Hadamard's inequalities for preinvex functions via fractional integrals and related fractional inequalities, arXiv preprint arXiv: 1204.0272, 2012. https://doi.org/10.12691/ajma-1-3-2 |
[3] |
J. E. Macías-Díaz, M. B. Khan, M. A. Noor, A. M. Abd Allah, S. M. Alghamdi, Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus, AIMS Math., 7 (2022), 4266–4292. https://doi.org/10.3934/math.2022236 doi: 10.3934/math.2022236
![]() |
[4] |
M. B. Khan, H. G. Zaini, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, Riemann-Liouville fractional integral inequalities for generalized pre-invex functions of interval-valued settings based upon Pseudo order relation, Mathematics, 10 (2022), 204. https://doi.org/10.3390/math10020204 doi: 10.3390/math10020204
![]() |
[5] |
S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. https://doi.org/10.1006/jmaa.1995.1057 doi: 10.1006/jmaa.1995.1057
![]() |
[6] |
N. Sharma, S. K. Mishra, A. A. Hamdi, Weighted version of Hermite-Hadamard type inequalities for strongly GA-convex functions, Int. J. Adv. Appl. Sci., 7 (2020), 113–118. https://doi.org/10.21833/ijaas.2020.03.012 doi: 10.21833/ijaas.2020.03.012
![]() |
[7] | S. vHilger, Ein Makettenkalkl mit anwendung auf zentrumsmannigfaltigkeiten, Universtat Wurzburg, Wurzburg, (1988). https://doi.org/10.4236/ce.2018.916219 |
[8] | R. E. Moore, Methods and Applications of Interval Analysis, SIAM, Philadelphia, (1966). |
[9] | R. Agarwal, D. O'Regan, S. Saker, Dynamic Inequalities on Time Scales, Springer, Berlin, (2014). https://doi.org/10.1007/978-3-319-11002-8 |
[10] |
H. M. Srivastava, K. L. Tseng, S. J. Tseng, J. C. Lo, Some weighted Opial type inequalities on time scales, Taiwan. J. Math., 14 (2010), 107–122. https://doi.org/10.11650/twjm/1500405730 doi: 10.11650/twjm/1500405730
![]() |
[11] |
H. M. Srivastaa, K. L. Tseng, S. J. Tseng, J. C. Lo, Some generalization of Maroni's inequality on time scales, Math. Inequal. Appl., 14 (2011), 469–480. https://doi.org/10.7153/mia-14-39 doi: 10.7153/mia-14-39
![]() |
[12] |
W. Wei, H. M. Srivastava, Y. Zhang, L. Wang, P. Shan, T. Zhang, A local fractional integral inequality on fractal space analogous to Anderson's inequality, Abstr. Appl. Anal., 2014 (2014), 1–7. https://doi.org/10.1155/2014/797561 doi: 10.1155/2014/797561
![]() |
[13] | T. Tunç, M. Z. Sarikaya, H. M. Srivastava, Some generalized Steffensen's inequalities via a new identity for local fractional integrals, Int. J. Anal. Appl., 13 (2017), 98–107. |
[14] |
H. M. Srivastava, Z. H. Zhang, Y. D. Wu, Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variables, Math. Comput. Model., 54 (2011), 2709–2717. https://doi.org/10.1016/j.mcm.2011.06.057 doi: 10.1016/j.mcm.2011.06.057
![]() |
[15] |
A. K. Bhurjee, G. Panda, Efficient solution of interval optimization problem, Math. Methods Oper. Res., 76 (2012), 273–288. https://doi.org/10.1007/s00186-012-0399-0 doi: 10.1007/s00186-012-0399-0
![]() |
[16] |
V. Lupulescu, Hukuhara differentiability of interval-valued functions and interval differential equations on time scales, Inf. Sci., 248 (2013), 50–67. https://doi.org/10.1016/j.ins.2013.06.004 doi: 10.1016/j.ins.2013.06.004
![]() |
[17] |
Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293–3300. https://doi.org/10.1007/s00500-014-1483-6 doi: 10.1007/s00500-014-1483-6
![]() |
[18] |
P. Roy, G. Panda, Expansion of generalized Hukuhara differentiable interval-valued function, New Math. Nat. Comput., 15 (2019), 553–570. https://doi.org/10.1142/S1793005719500327 doi: 10.1142/S1793005719500327
![]() |
[19] | I. Işcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935–942. |
[20] |
M. A. Noor, K. I. Noor, M. U. Awan, S. Costache, Some integral inequalities for harmonically h-convex functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 77 (2015), 5–16. https://doi.org/10.1155/2019/2394021 doi: 10.1155/2019/2394021
![]() |
[21] |
M. B. Khan, M. A. Noor, T. Abdeljawad, A. A. A. Mousa, B. Abdalla, S. M. Alghamdi, LR-preinvex interval-valued functions and Riemann-Liouville fractional integral inequalities, Fractal Fract., 5 (2022), 243. https://doi.org/10.3390/fractalfract5040243 doi: 10.3390/fractalfract5040243
![]() |
[22] |
M. B. Khan, M. A. Noor, H. M. Al-Bayatti, K. I. Noor, Some new inequalities for LR-Log-h-convex interval-valued functions by means of pseudo order relation, Appl. Math., 15 (2021), 459–470. https://doi.org/10.18576/amis/150408 doi: 10.18576/amis/150408
![]() |
[23] |
V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Set. Syst., 265 (2015), 63–85. https://doi.org/10.1016/j.fss.2014.04.005 doi: 10.1016/j.fss.2014.04.005
![]() |
[24] |
Y. An, G. Ye, D. Zhao, W. Liu, Hermite-Hadamard type inequalities for interval (h1, h2)-convex functions, Mathematics, 7 (2019), 436. https://doi.org/10.3390/math7050436 doi: 10.3390/math7050436
![]() |
[25] |
D. F. Zhao, T. Q. An, G. J. Ye, D. F. M. Torres, On Hermite-Hadamard type inequalities for harmonical h-convex interval-valued functions, Math. Inequal. Appl., 23 (2020), 95–105. https://doi.org/10.7153/mia-2020-23-08 doi: 10.7153/mia-2020-23-08
![]() |
[26] |
H. Budak, T. Tunç, M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Am. Math. Soc., 148 (2019), 705–718. https://doi.org/10.1515/math-2021-0067 doi: 10.1515/math-2021-0067
![]() |
[27] |
M. B. Khan, M. A. Noor, K. I. Noor, K. Nisar, K. I. Ismail, A. Elfasakhany, Some inequalities for LR-(h1, h2)-convex interval-valued functions by means of pseudo order relation, Int. J. Comput. Intell. Syst., 14 (2021), 1–15. https://doi.org/10.1007/s44196-021-00032-x doi: 10.1007/s44196-021-00032-x
![]() |
[28] | M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 5 (2007), 126–131. |
[29] | J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, Journal De MathématiquesPpures Et Appliquées, 5 (1893), 171–215. http://eudml.org/doc/234668 |
[30] | C. Hermite, Sur deux limites d'une intégrale définie, Mathesis, 3 (1883), 1–82. |
[31] | B. G. Pachpatte, On some inequalities for convex functions, RGMIA Res. Rep. Coll., 6 (2003), 1–9. |
[32] |
M. A. Noor, Fuzzy preinvex functions, Fuzzy Set. Syst., 4 (1994), 95–104. https://doi.org/10.1016/0165-0114(94)90011-6 doi: 10.1016/0165-0114(94)90011-6
![]() |
[33] | M. A. Noor, K. I. Noor, On strongly generalized preinvex functions, J. Inequalities Pure Appl. Math., 6 (2005), 102. |
[34] |
D. Zhang, C. Guo, D. Chen, G. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Set. Syst., 2020 (2020), 1–27. https://doi.org/10.1016/j.fss.2020.06.003 doi: 10.1016/j.fss.2020.06.003
![]() |
[35] |
M. B. Khan, M. A. Noor, M. M. Al‐Shomrani, L. Abdullah, Some novel inequalities for LR‐h‐convex interval‐valued functions by means of pseudo‐order relation, Math. Methods Appl. Sci., 45 (2022), 1310–1340. https://doi.org/10.1002/mma.7855 doi: 10.1002/mma.7855
![]() |
[36] |
F. Chen, Extensions of the Hermite–Hadamard inequality for harmonically convex functions via fractional integrals, Appl. Math. Comput., 268 (2015), 121–128. https://doi.org/10.1016/j.amc.2015.06.051 doi: 10.1016/j.amc.2015.06.051
![]() |
[37] |
M. B. Khan, P. O. Mohammed, M. A. Noor, K. Abuahalnaja, Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions, Math. Biosci. Eng., 18 (2021), 6552–6580. https://doi.org/10.3934/mbe.2021325 doi: 10.3934/mbe.2021325
![]() |
[38] |
M. B. Khan, M. A. Noor, L. Abdullah, Y. M. Chu, Some new classes of preinvex fuzzy-interval-valued functions and inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1403–1418. https://doi.org/10.2991/ijcis.d.210409.001 doi: 10.2991/ijcis.d.210409.001
![]() |
[39] |
P. Liu, M. B. Khan, M. A. Noor, K. I. Noor, New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense, Complex. Intell. Syst., 2021 (2021), 1–15. https://doi.org/10.1007/s40747-021-00379-w doi: 10.1007/s40747-021-00379-w
![]() |
[40] |
G. Sana, M. B. Khan, M. A. Noor, P. O. Mohammed, Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1809–1822. https://doi.org/10.2991/ijcis.d.210620.001 doi: 10.2991/ijcis.d.210620.001
![]() |
[41] |
M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions, Adv. Differ. Equ., 2021 (2021), 6–20. https://doi.org/10.1186/s13662-021-03245-8 doi: 10.1186/s13662-021-03245-8
![]() |
[42] |
M. B. Khan, S. Treanțǎ, H. Budak, Generalized p-convex fuzzy-interval-valued functions and inequalities based upon the fuzzy-order relation, Fractal Fract., 6 (2022), 63. https://doi.org/10.3390/fractalfract6020063 doi: 10.3390/fractalfract6020063
![]() |
[43] |
M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hamed, New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry, 13 (2021), 673. https://doi.org/10.3390/sym13040673 doi: 10.3390/sym13040673
![]() |
[44] |
M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some Hadamard–Fejér Type inequalities for LR-convex interval-valued functions, Fractal Fract., 6 (2022), 6. https://doi.org/10.3390/fractalfract6010006 doi: 10.3390/fractalfract6010006
![]() |
[45] |
M. B. Khan, H. G. Zaini, S. Treanțǎ, G. Santos-García, J. E. Macías-Díaz, M. S. Soliman, Fractional calculus for convex functions in interval-valued settings and inequalities, Symmetry, 14 (2022), 341. https://doi.org/10.3390/sym14020341 doi: 10.3390/sym14020341
![]() |
[46] |
M. B. Khan, M. A. Noor, N. A. Shah, K. M. Abualnaja, T. Botmart, Some new versions of Hermite-Hadamard integral inequalities in fuzzy fractional calculus for generalized Pre-Invex functions via Fuzzy-Interval-Valued settings, Fractal Fract., 6 (2022), 83. https://doi.org/10.3390/fractalfract6020083 doi: 10.3390/fractalfract6020083
![]() |
[47] |
M. B. Khan, H. G. Zaini, J. E. Macías-Díaz, S. Treanțǎ, M. S. Soliman, Some fuzzy Riemann-Liouville fractional integral inequalities for preinvex fuzzy interval-valued functions, Symmetry, 14 (2022), 313. https://doi.org/10.3390/sym14020313 doi: 10.3390/sym14020313
![]() |
[48] |
M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some new versions of integral inequalities for left and right preinvex functions in the interval-valued settings, Mathematics, 10 (2022), 611. https://doi.org/10.3390/math10040611 doi: 10.3390/math10040611
![]() |
[49] |
M. B. Khan, G. Santos-García, H. G. Zaini, S. Treanțǎ, M. S. Soliman, Some new concepts related to integral operators and inequalities on coordinates in fuzzy fractional calculus, Mathematics, 10 (2022), 534. https://doi.org/10.3390/math10040534 doi: 10.3390/math10040534
![]() |
[50] | M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, Higher-order strongly preinvex fuzzy mappings and fuzzy mixed variational-like inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1856–1870. |
[51] |
S. Treanţă, S. Jha, M. B. Khan, T. Saeed, On some constrained optimization problems, Mathematics, 10 (2022), 818. https://doi.org/10.2991/ijcis.d.210616.001 doi: 10.2991/ijcis.d.210616.001
![]() |
[52] |
S. Treanţă, M. B. Khan, T. Saeed, Optimality for control problem with PDEs of second-order as constraints, Mathematics, 10 (2022), 977. https://doi.org/10.3390/math10060977 doi: 10.3390/math10060977
![]() |
[53] |
M. B. Khan, J. E. Macías-Díaz, S. Treanțǎ, M. S. Soliman, H. G. Zaini, Hermite-Hadamard inequalities in fractional calculus for left and right harmonically convex functions via interval-valued settings, Fractal Fract., 6 (2022), 178. https://doi.org/10.3390/fractalfract6040178 doi: 10.3390/fractalfract6040178
![]() |
[54] |
M. B. Khan, H. M. Srivastava, P. O. Mohammed, K. Nonlaopon, Y. S. Hamed, Some new estimates on coordinates of left and right convex interval-valued functions based on pseudo order relation, Symmetry, 14 (2022), 473. https://doi.org/10.3390/sym14030473 doi: 10.3390/sym14030473
![]() |
[55] |
S. Treanţă, M. B. Khan, T. Saeed, On some variational inequalities involving second-order partial derivatives, Fractal Fract., 6 (2022), 236. https://doi.org/10.3390/fractalfract6050236 doi: 10.3390/fractalfract6050236
![]() |
[56] |
M. B. Khan, H. G. Zaini, J. E. Macías-Díaz, S. Treanțǎ, M. S. Soliman, Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions, AIMS Math., 7 (2022), 10454–10482. https://doi.org/10.3934/math.2022583 doi: 10.3934/math.2022583
![]() |
[57] |
M. B. Khan, M. A. Noor, T. Abdeljawad, B. Abdalla, A. Althobaiti, Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions, AIMS Math., 7 (2022), 349–370. https://doi.org/10.3934/math.2022024 doi: 10.3934/math.2022024
![]() |
[58] |
H. Zhang, J. Cheng, H. Zhang, W. Zhang, J. Cao, Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects, Math. Comput. Simul., 197 (2022), 341–357. https://doi.org/10.1016/j.matcom.2022.02.022 doi: 10.1016/j.matcom.2022.02.022
![]() |
[59] |
H. Zhang, J. Cheng, H. Zhang, W. Zhang, J. Cao, Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays, Chaos, Soliton. Fract., 152 (2021), 111432. https://doi.org/10.1016/j.chaos.2021.111432 doi: 10.1016/j.chaos.2021.111432
![]() |
[60] |
C. Wang, H. Zhang, H. Zhang, W. Zhang, Globally projective synchronization for Caputo fractional quaternion-valued neural networks with discrete and distributed delays, AIMS Math., 6 (2021), 14000–14012. https://doi.org/10.3934/math.2021809 doi: 10.3934/math.2021809
![]() |
[61] |
Y. Cheng, H. Zhang, W. Zhang, H. Zhang, Novel algebraic criteria on global Mittag-Leffler synchronization for FOINNs with the Caputo derivative and delay, J. Appl. Math. Comput., 2021 (2021), 1–18. https://doi.org/10.1007/s12190-021-01672-0 doi: 10.1007/s12190-021-01672-0
![]() |
[62] |
Y. Tian, Z. Wang, A new multiple integral inequality and its application to stability analysis of time-delay systems, Appl. Math. Lett., 105 (2020), 106325. https://doi.org/10.1016/j.aml.2020.106325 doi: 10.1016/j.aml.2020.106325
![]() |
[63] |
Y. Tian, Z. Wang, Composite slack-matrix-based integral inequality and its application to stability analysis of time-delay systems, Appl. Math. Lett., 120 (2021), 107252. https://doi.org/10.1016/j.aml.2021.107252 doi: 10.1016/j.aml.2021.107252
![]() |
1. | Muhammad Bilal Khan, Aleksandr Rakhmangulov, Najla Aloraini, Muhammad Aslam Noor, Mohamed S. Soliman, Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities, 2023, 11, 2227-7390, 656, 10.3390/math11030656 | |
2. | Muhammad Bilal Khan, Gustavo Santos-García, Savin Treanțǎ, Mohamed S. Soliman, New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals, 2022, 14, 2073-8994, 2322, 10.3390/sym14112322 | |
3. | Muhammad Bilal Khan, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman, New Class of Preinvex Fuzzy Mappings and Related Inequalities, 2022, 10, 2227-7390, 3753, 10.3390/math10203753 | |
4. | Muhammad Bilal Khan, Gustavo Santos-García, Hüseyin Budak, Savin Treanțǎ, Mohamed S. Soliman, Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for $ \left({p}, \mathfrak{J}\right) $-convex fuzzy-interval-valued functions, 2023, 8, 2473-6988, 7437, 10.3934/math.2023374 | |
5. | Muhammad Bilal Khan, Savin Treanțǎ, Mohamed S. Soliman, Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type Inequalities, 2022, 14, 2073-8994, 1901, 10.3390/sym14091901 | |
6. | Muhammad Bilal Khan, Hatim Ghazi Zaini, Jorge E. Macías-Díaz, Mohamed S. Soliman, Up and Down h-Pre-Invex Fuzzy-Number Valued Mappings and Some Certain Fuzzy Integral Inequalities, 2022, 12, 2075-1680, 1, 10.3390/axioms12010001 | |
7. | Muhammad Bilal Khan, Hakeem A. Othman, Michael Gr. Voskoglou, Lazim Abdullah, Alia M. Alzubaidi, Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings, 2023, 11, 2227-7390, 550, 10.3390/math11030550 | |
8. | Waqar Afzal, Khurram Shabbir, Thongchai Botmart, Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued $ (h_1, h_2) $-Godunova-Levin functions, 2022, 7, 2473-6988, 19372, 10.3934/math.20221064 | |
9. | Muhammad Bilal Khan, Jorge E. Macías-Díaz, Savin Treanțǎ, Mohamed S. Soliman, Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions, 2022, 10, 2227-7390, 3851, 10.3390/math10203851 | |
10. | Muhammad Bilal Khan, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman, New Hermite–Hadamard Inequalities for Convex Fuzzy-Number-Valued Mappings via Fuzzy Riemann Integrals, 2022, 10, 2227-7390, 3251, 10.3390/math10183251 | |
11. | Zainab E. Abdulnaby, 2025, 3224, 0094-243X, 070049, 10.1063/5.0254282 |