Research article

Sustainable thermal power equipment supplier selection by Einstein prioritized linear Diophantine fuzzy aggregation operators

  • Received: 09 January 2022 Revised: 13 March 2022 Accepted: 21 March 2022 Published: 11 April 2022
  • MSC : 03E72, 94D05, 90B50

  • Clean energy potential can be used on a large scale in order to achieve cost competitiveness and market effectiveness. This paper offers sufficient information to choose renewable technology for improving the living conditions of the local community while meeting energy requirements by employing the notion of q-rung orthopair fuzzy numbers (q-ROFNs). In real-world situations, a q-ROFN is exceptionally useful for representing ambiguous/vague data. A multi-criteria decision-making (MCDM) is proposed in which the parameters have a prioritization relationship and the idea of a priority degree is employed. The aggregation operators (AOs) are formed by awarding non-negative real numbers known as priority degrees among strict priority levels. Consequently, some prioritized operators with q-ROFNs are proposed named as "q-rung orthopair fuzzy prioritized averaging ($\text{q-ROFPA} _d $) operator with priority degrees and q-rung orthopair fuzzy prioritized geometric ($\text{q-ROFPG} _d $) operator with priority degrees". The results of the proposed approach are compared with several other related studies. The comparative analysis results indicate that the proposed approach is valid and accurate which provides feasible results. The characteristics of the existing method are often compared to other current methods, emphasizing the superiority of the presented work over currently used operators. Additionally, the effect of priority degrees is analyzed for information fusion and feasible ranking of objects.

    Citation: Hafiz Muhammad Athar Farid, Muhammad Riaz, Muhammad Jabir Khan, Poom Kumam, Kanokwan Sitthithakerngkiet. Sustainable thermal power equipment supplier selection by Einstein prioritized linear Diophantine fuzzy aggregation operators[J]. AIMS Mathematics, 2022, 7(6): 11201-11242. doi: 10.3934/math.2022627

    Related Papers:

  • Clean energy potential can be used on a large scale in order to achieve cost competitiveness and market effectiveness. This paper offers sufficient information to choose renewable technology for improving the living conditions of the local community while meeting energy requirements by employing the notion of q-rung orthopair fuzzy numbers (q-ROFNs). In real-world situations, a q-ROFN is exceptionally useful for representing ambiguous/vague data. A multi-criteria decision-making (MCDM) is proposed in which the parameters have a prioritization relationship and the idea of a priority degree is employed. The aggregation operators (AOs) are formed by awarding non-negative real numbers known as priority degrees among strict priority levels. Consequently, some prioritized operators with q-ROFNs are proposed named as "q-rung orthopair fuzzy prioritized averaging ($\text{q-ROFPA} _d $) operator with priority degrees and q-rung orthopair fuzzy prioritized geometric ($\text{q-ROFPG} _d $) operator with priority degrees". The results of the proposed approach are compared with several other related studies. The comparative analysis results indicate that the proposed approach is valid and accurate which provides feasible results. The characteristics of the existing method are often compared to other current methods, emphasizing the superiority of the presented work over currently used operators. Additionally, the effect of priority degrees is analyzed for information fusion and feasible ranking of objects.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1007/978-3-7908-1870-3
    [3] R. R. Yager, Pythagorean fuzzy subsets, IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint, Edmonton, Canada, IEEE, (2013), 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [4] R. R. Yager, Pythagorean membership grades in multi-criteria decision-making, IEEE T. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989
    [5] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005
    [6] M. J. Khan, P. Kumam, M. Shutayw, W. Kumam, Improved knowledge measures for q-rung orthopair fuzzy sets, Int. J. Comput. Intell. Syst., 14 (2021), 1700–1713. https://doi.org/10.2991/ijcis.d.210531.002
    [7] M. J. Khan, P. Kumam, M. Shutayw, Knowledge measure for the q-rung orthopair fuzzy sets, Int. J. Intell. Syst., 36 (2021), 628–655. https://doi.org/10.1002/int.22313
    [8] M. J. Khan, M. I. Ali, P. Kumam, W. Kumam, A. N. Al-Kenani, q-Rung orthopair fuzzy modified dissimilarity measure based robust VIKOR method and its applications in mass vaccination campaigns in the context of covid-19, IEEE Access, 9 (2021), 93497–93515. https://doi.org/10.1109/ACCESS.2021.3091179
    [9] M. J. Khan, P. Kumam, N. A. Alreshidi, W. Kumam, Improved cosine and cotangent function-based similarity measures for q-rung orthopair fuzzy sets and TOPSIS method, Complex Intell. Syst., 7 (2021), 2679–2696. https://doi.org/10.1007/s40747-021-00425-7
    [10] M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set, its applications towards multi-attribute decision making problems, J. Intell. Fuzzy Syst., 37 (2019), 5417–5439. https://doi.org/10.3233/JIFS-190550
    [11] J. J. Peng, J. Q. Wang, J. Wang, H. Y. Zhang, Z. H. Chen, Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems, Int. J. Syst. Sci., 47 (2016), 2342–2358. https://doi.org/10.1080/00207721.2014.994050 doi: 10.1080/00207721.2014.994050
    [12] Nancy, H. Garg, Novel single-valued neutrosophic decision making operators under Frank norm operations and its application, Int. J. Uncertain. Quan., 6 (2016), 361–375. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2016018603 doi: 10.1615/Int.J.UncertaintyQuantification.2016018603
    [13] P. Liu, Y. Chu, Y. Li, Y. Chen, Some generalized neutrosophic number Hamacher aggregation operators and their application to group decision making, Int. J. Fuzzy Syst., 16 (2014), 242–255.
    [14] H. Y. Zhang, J. Q. Wang, X. H. Chen, Interval neutrosophic sets and their application in multicriteria decision making problems, The Scientific World J., (2014), 645953. https://doi.org/10.1155/2014/645953
    [15] X. H. Wu, J. Q. Wang, J. J. Peng, X. H. Chen, Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems, Int. J. Fuzzy Syst., 18 (2016), 1104–1116. https://doi.org/10.1007/s40815-016-0180-2 doi: 10.1007/s40815-016-0180-2
    [16] Z. S. Xu, Intuitionistic fuzzy aggregation operators, IEEE T. Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
    [17] Z. S. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. General Syst., 35 (2006), 417–433. https://doi.org/10.1080/03081070600574353 doi: 10.1080/03081070600574353
    [18] T. Mahmood, F. Mehmood, Q. Khan, Some generalized aggregation operators for cubic hesitant fuzzy sets and their application to multi-criteria decision making, Punjab Univ. J. Math., 49 (2017), 31–49.
    [19] G. Wei, H. Wang, X. Zhao, R. Lin, Hesitant triangular fuzzy information aggregation in multiple attribute decision making, J. Intell. Fuzzy Syst., 26 (2014), 1201–1209. https://doi.org/10.3233/IFS-130806 doi: 10.3233/IFS-130806
    [20] M. Akram, U. Amjad, J. C. R. Alcantud, G. S. Garc??a, Complex Fermatean fuzzy N-soft sets: A new hybrid model with applications, J. Amb. Intell. Hum. Comp., (2022). https://doi.org/10.1007/s12652-021-03629-4
    [21] F. Feng, Y. Zheng, B. Sun, M. Akram, Novel score functions of generalized orthopair fuzzy membership grades with application to multiple attribute decision making, Granular Comput., 7 (2022), 95–111. https://doi.org/10.1007/s41066-021-00253-7 doi: 10.1007/s41066-021-00253-7
    [22] W. Wang, X. Liu, Intuitionistic fuzzy information aggregation using Einstein operators, IEEE T. Fuzzy Syst., 20 (2012), 923–938. https://doi.org/10.1109/TFUZZ.2012.2189405 doi: 10.1109/TFUZZ.2012.2189405
    [23] H. Garg, A new generalized Pythagorean fuzzy information aggregation using Einstein operators and its applications to decision-making, Int. J. Intell. Syst., 31 (2016), 886–920. https://doi.org/10.1002/int.21809 doi: 10.1002/int.21809
    [24] L. Wang, H. Garg, N. Li, Pythagorean fuzzy interactive Hamacher power aggregation operators for assessment of express service quality with entropy weight, Soft Comput., 25 (2021), 973–993. https://doi.org/10.1007/s00500-020-05193-z doi: 10.1007/s00500-020-05193-z
    [25] L. Wang, N. Li, Pythagorean fuzzy interaction power Bonferroni mean aggregation operators in multiple attribute decision making, J. Intell. Fuzzy Syst., 35 (2020), 150–183. https://doi.org/10.1002/int.22204 doi: 10.1002/int.22204
    [26] M. Riaz, H. M. A. Farid, M. Aslam, D. Pamucar, D. Bozanic, Novel approach for third-party reverse logistic provider selection process under linear Diophantine fuzzy prioritized aggregation operators, Symmetry, 13 (2021), 1152. https://doi.org/10.3390/sym13071152 doi: 10.3390/sym13071152
    [27] A. Iampan, G. S. Garcia, M. Riaz, H. M. A. Farid, R. Chinram, Linear Diophantine fuzzy Einstein aggregation operators for multi-criteria decision-making problems, J. Math., (2021), 5548033. https://doi.org/10.1155/2021/5548033
    [28] M. Riaz, W. Salabun, H. M. A. Farid, N. Ali, J. Watróbski, A robust q-rung orthopair fuzzy information aggregation using Einstein operations with application to sustainable energy planning decision management, Energies, 13 (2020), 2125. https://doi.org/10.3390/en13092155 doi: 10.3390/en13092155
    [29] M. Riaz, D. Pamucar, H. M. A. Farid, M. R. Hashmi, q-Rung orthopair fuzzy prioritized aggregation operators and their application towards green supplier chain management, Symmetry, 12 (2020), 976. https://doi.org/10.3390/sym12060976 doi: 10.3390/sym12060976
    [30] M. Riaz, H. M. A. Farid, H. Kalsoom, D. Pamucar, Y. M. Chu, A Robust q-rung orthopair fuzzy Einstein prioritized aggregation operators with application towards MCGDM, Symmetry, 12 (2020), 1058. https://doi.org/10.3390/sym12061058 doi: 10.3390/sym12061058
    [31] H. M. A. Farid, M. Riaz, Some generalized q-rung orthopair fuzzy Einstein interactive geometric aggregation operators with improved operational laws, Int. J. Intell. Syst., 36 (2021), 7239–7273. https://doi.org/10.1002/int.22587 doi: 10.1002/int.22587
    [32] M. Riaz, M. T. Hamid, H. M. A. Farid, D. Afzal, TOPSIS, VIKOR and aggregation operators based on q-rung orthopair fuzzy soft sets and their applications, J. Intell. Fuzzy Syst., 39 (2020), 6903–6917. https://doi.org/10.3233/JIFS-192175 doi: 10.3233/JIFS-192175
    [33] P. Liu, J. Liu, Some q-rung orthopai fuzzy Bonferroni mean operators and their application to multi-attribute group decision making, Int. J. Intell. Syst., 33 (2018), 315–347. https://doi.org/10.1002/int.21933 doi: 10.1002/int.21933
    [34] M. Riaz, H. Garg, H. M. A. Farid, R. Chinram, Multi-criteria decision making based on bipolar picture fuzzy operators and new distance measures, Comp. Model. Eng., 127 (2021), 771–800. https://doi.org/10.32604/cmes.2021.014174 \newpage doi: 10.32604/cmes.2021.014174
    [35] Z. Liu, S. Wang, P. Liu, Multiple attribute group decision making based on q-rung orthopair fuzzy Heronianmean operators, Int. J. Intell. Syst., 33 (2018), 2341–2363. https://doi.org/10.1002/int.22032 doi: 10.1002/int.22032
    [36] F. B. Mesa, E. L. Castro, J. M. Merigo, A bibliometric analysis of aggregation operators, Appl. Soft Comput., 81 (2019), 105488. https://doi.org/10.1016/j.asoc.2019.105488 doi: 10.1016/j.asoc.2019.105488
    [37] F. B. Mesa, J. M. Merigo, A. M. G. Lafuente, Fuzzy decision making: A bibliometric-based review, J. Intell. Fuzzy Syst., 32 (2017), 2033–2050. https://doi.org/10.3233/JIFS-161640 doi: 10.3233/JIFS-161640
    [38] R. R. Yager, Prioritized aggregation operators, Int. J. Approx. Reason., 48 (2008) 263–274. https://doi.org/10.1016/j.ijar.2007.08.009
    [39] H. Gao, Pythagorean fuzzy Hamacher prioritized aggregation operators in multiple attribute decision making, J. Intell. Fuzzy Syst., 35 (2018), 2229–2245. https://doi.org/10.3233/JIFS-172262 doi: 10.3233/JIFS-172262
    [40] E. L. Castro, F. B. Mesa, A. M. R. Serrano, M. V. Cazares, The ordered weighted average human development index, Axioms, 10 (2021), 87. https://doi.org/10.3390/axioms10020087 doi: 10.3390/axioms10020087
    [41] L. A. P. Arellano, E. L. Castro, E. A. Ochoa, J. M. Merigo, Prioritized induced probabilistic operator, its application in group decision making, Int. J. Mach. Learn. Cyb., 10 (2019), 451–462.
    [42] L. A. P. Arellano, E. L. Castro, F. B. Mesa, G. F. Cifuentes, The ordered weighted government transparency average: Colombia case, J. Intell. Fuzzy Syst., 40 (2021), 1837–1849. https://doi.org/10.3233/JIFS-189190 doi: 10.3233/JIFS-189190
    [43] J. Ye, Interval-valued hesitant fuzzy prioritized weighted aggregation operators for multiple attribute decision making, J. Algorithms Comput., 8 (2014), 179–192. https://doi.org/10.1260/1748-3018.8.2.179 doi: 10.1260/1748-3018.8.2.179
    [44] S. Khan, H. F. Ashraf, Analysis of Pakistan's electric power sector, Blekinge Institute of Technology, Department of Electrical Engineering, (2015).
    [45] D. Anderson, F. Britt, D. Favre, The seven principles of supply chain management, Supply Chain Management Rev., 1 (1997), 21–31.
    [46] X. Y. Deng, Y. Hu, Y. Deng, S. Mahadevan, Supplier selection using AHP methodology extended by D numbers, Expert Syst. Appl., 41 (2014), 156–167. https://doi.org/10.1016/j.eswa.2013.07.018 doi: 10.1016/j.eswa.2013.07.018
    [47] G. W. Dickson, An analysis of vendor selection: Aystems and decisions, J. Purch., 1 (1966), 5–17. https://doi.org/10.1111/j.1745-493X.1966.tb00818.x doi: 10.1111/j.1745-493X.1966.tb00818.x
    [48] Y. Wind, P. E. Green, P. J. Robinson, The determinants of vendor selection: the evaluation function approach, J. Purch., 8 (1968), 29–41. https://doi.org/10.1111/j.1745-493X.1968.tb00592.x doi: 10.1111/j.1745-493X.1968.tb00592.x
    [49] W. Ho, X. Xu, P. K. Dey, Multi-criteria decision making approaches for supplier evaluation and selection: a literature review, Eur. J. Oper. Res., 202 (2010), 16–24. https://doi.org/10.1016/j.ejor.2009.05.009 doi: 10.1016/j.ejor.2009.05.009
    [50] C. A. Weber, J. R. Current, W. C. Benton, Vendor selection criteria and methods, Eur. J. Oper. Res., 50 (1991), 2–18. https://doi.org/10.1016/0377-2217(91)90033-R doi: 10.1016/0377-2217(91)90033-R
    [51] A. Amid, S. H. Ghodsypour, C. Brien, A weighted max-min model for fuzzy multi-objective supplier selection in a supply chain, Int. J. Prod. Econ., 131 (2011), 139–145. https://doi.org/10.1016/j.ijpe.2010.04.044 doi: 10.1016/j.ijpe.2010.04.044
    [52] F. Jolai, S. A. Yazdian, K. Shahanaghi, M. A. Khojasteh, Integrating fuzzy TOPSIS and multiperiod goal programming for purchasing multiple products from multiple suppliers, J. Purch. Supply Manag., 17 (2011), 42–53. https://doi.org/10.1016/j.pursup.2010.06.004 doi: 10.1016/j.pursup.2010.06.004
    [53] M. Sevkli, S. C. L. Koh, S. Zaim, M. Demirbag, E. Tatoglu, Hybrid analytical hierarchy process model for supplier selection, Ind. Manage. Data Syst., 108 (2008), 122–142. https://doi.org/10.1108/02635570810844124 doi: 10.1108/02635570810844124
    [54] A. Anastasiadis, S. Konstantinopoulos, G. Kondylis, G. A. Vokas, M. J. Salame, Carbon tax, system marginal price and environmental policies on smart microgrid operation, Manag. Environ. Qual., 29 (2018), 76–88. https://doi.org/10.1108/MEQ-11-2016-0086 doi: 10.1108/MEQ-11-2016-0086
    [55] K. Govindan, R. Sivakumar, Green supplier selection and order allocation in a lowcarbon paper industry: integrated multi-criteria heterogeneous decision-making and multiobjective linear programming approaches, Ann. Oper. Res., 238 (2016), 243–276. https://doi.org/10.1007/s10479-015-2004-4 doi: 10.1007/s10479-015-2004-4
    [56] J. D. Qin, X. W. Liu, W. Pedrycz, An extended TODIM multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment, Eur. J. Oper. Res., 258 (2017), 626–638. https://doi.org/10.1016/j.ejor.2016.09.059 doi: 10.1016/j.ejor.2016.09.059
    [57] M. Davood, H. G. Seyed, H. Ashkan, A game theoretic analysis in capacity-constrained supplier-selection and cooperation by considering the total supply chain inventory costs, Int. J. Prod. Econ., 181 (2016), 87–97. https://doi.org/10.1016/j.ijpe.2015.11.016 doi: 10.1016/j.ijpe.2015.11.016
    [58] X. Tong, Z. J. Wang, A group decision framework with intuitionistic preference relations and its application to low carbon supplier selection, Int. J. Environ. Res. Public Heal., 13 (2016), 923. https://doi.org/10.3390/ijerph13090923 doi: 10.3390/ijerph13090923
    [59] S. Zeng, X. Peng, T. BaleAzentis, D. Streimikiene, Prioritization of low-carbon suppliers based on Pythagorean fuzzy group decision making with self-confidence level, Economic Research-Ekonomska Istraazivanja, 32 (2019), 1073–1087. https://doi.org/10.1080/1331677X.2019.1615971 doi: 10.1080/1331677X.2019.1615971
    [60] Z. S. Xu, Intuitionistic fuzzy aggregation operators, IEEE T. Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
    [61] Z. S. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. General Syst., 35 (2006), 417–433. https://doi.org/10.1080/03081070600574353 doi: 10.1080/03081070600574353
    [62] Z. S. Xu, R. R. Yager, Intuitionistic fuzzy Bonferroni means, IEEE T. Syst., 41 (2011), 568–578. https://doi.org/10.1109/TSMCB.2010.2072918 doi: 10.1109/TSMCB.2010.2072918
    [63] H. Zhao, Z. S. Xu, M. F. Ni, Generalized aggregation operators for intuitionistic fuzzy sets, Int. J. Intell. Syst., 25 (2010), 1–30. https://doi.org/10.1002/int.20386 doi: 10.1002/int.20386
    [64] Z. S. Xu, M. M. Xia, Induced generalized intuitionistic fuzzy operators, Knowl-Based Syst., 24 (2011), 197–209. https://doi.org/10.1016/j.knosys.2010.04.010 doi: 10.1016/j.knosys.2010.04.010
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1505) PDF downloads(75) Cited by(18)

Article outline

Figures and Tables

Figures(3)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog