Research article

Multiple solutions of a Sturm-Liouville boundary value problem of nonlinear differential inclusion with nonlocal integral conditions

  • Received: 29 December 2021 Revised: 27 March 2022 Accepted: 01 April 2022 Published: 11 April 2022
  • MSC : 34B07, 34B09

  • The existence of solutions for a Sturm-Liouville boundary value problem of a nonlinear differential inclusion with nonlocal integral condition is studied. The maximal and minimal solutions will be studied. The existence of multiple solutions of the nonhomogeneous Sturm-Liouville boundary value problem of differential equation with nonlocal integral condition is considered. The eigenvalues and eigenfunctions are investigated.

    Citation: Ahmed M.A. El-Sayed, Eman M.A. Hamdallah, Hameda M. A. Alama. Multiple solutions of a Sturm-Liouville boundary value problem of nonlinear differential inclusion with nonlocal integral conditions[J]. AIMS Mathematics, 2022, 7(6): 11150-11164. doi: 10.3934/math.2022624

    Related Papers:

  • The existence of solutions for a Sturm-Liouville boundary value problem of a nonlinear differential inclusion with nonlocal integral condition is studied. The maximal and minimal solutions will be studied. The existence of multiple solutions of the nonhomogeneous Sturm-Liouville boundary value problem of differential equation with nonlocal integral condition is considered. The eigenvalues and eigenfunctions are investigated.



    加载中


    [1] J. P. Aubin, A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, vol. 264, Springer, Berlin, 2012.
    [2] A. V. Bitsadze, A. A. Samarskii, Some elementary generalizations of linear elliptic boundary value problems, Dokl. Akad. Nauk, 185 (1969), 739–740.
    [3] K. Bingele, A. Bankauskiene, A. Štikonas, Investigation of Spectrum Curves for a Sturm–Liouville problem with Two-Point Nonlocal Boundary Conditions, Math. Model. Anal., 25 (2020), 53–70. https://doi.org/10.3846/mma.2020.10787 doi: 10.3846/mma.2020.10787
    [4] R. F. Curtain, A. J. Pritchard, Functional analysis in modern appliedmathematics, Academic press, 1977.
    [5] A. M. A. El-Sayed, A. G. Ibrahim, Multivalued fractional differential equations, Appl. Math. Comput., 68 (1995), 15–50. https://doi.org/10.1016/0096-3003(94)00080-N doi: 10.1016/0096-3003(94)00080-N
    [6] A. M. A. El-Sayed, A. G. Ibrahim, Set-valued integral equation of fractional orders, Appl. Math. Comput. 118 (2001), 113–121. https://doi.org/10.1016/S0096-3003(99)00087-9
    [7] A. M. A. El-Sayed, M. Sh. Mohamed, R. E. M Embia, On the multiple solutions of a nonhomogeneous Sturm-Liouville equation with nonlocal boundary conditions, International Journal of Applied Mathematics, 32 (2019), 35–43. https://doi.org/10.12732/ijam.v32i1.3 doi: 10.12732/ijam.v32i1.3
    [8] A. M. A. El-Sayed, H. H. G. Hashem, Sh. M. Al-Issa, Qualitative properties of solutions of fractional order boundary value problems, Int. J. Nonlinear Anal. Appl., 13 (2022), 3427–3440.
    [9] N. S. Imanbaev, Y. Kurmysh, On computation of eigenfunctions of composite type equation with regular boundary conditions, International Journal of Applied Mathematics, 34 (2021), 681–692. https://doi.org/10.12732/ijam.v34i4.7 doi: 10.12732/ijam.v34i4.7
    [10] V. Lakshmikantham, S. Leela, Differential and Integral Inequalities, vol. 1, Academic press, New York-London, 1969.
    [11] A. Skucaite, A. Stikonas, Spectrum curves for SturmLiouville problem with integral boundary condition, Math. Model. Anal., 20 (2015), 802818. https://doi.org/10.3846/13926292.2015.1116470 doi: 10.3846/13926292.2015.1116470
    [12] A. Skucaite, K. Skucaite-Bingele, S. Peciulyte, A. Stikonas, Investigation of the spectrum for the SturmLiouville problem with one integral boundary Condition, Nonlinear Anal. Model. Control, 15 (2010), 501512. https://doi.org/10.15388/NA.15.4.14321 doi: 10.15388/NA.15.4.14321
    [13] A. Skucaite, A. Stikonas, Zeroes and poles of a characteristic function for SturmLiouville problem with nonlocal integral condition, Liet. matem. rink. Proc. LMS, Ser. A, 56 (2015), 95100. https://doi.org/10.15388/LMR.A.2015.17 doi: 10.15388/LMR.A.2015.17
    [14] A. Skucaite, A. Stikonas, Investigation of the spectrum of the Sturm Liouville problem with a nonlocal integral condition, Liet. matem. rink. Proc. LMS, Ser. A, 54 (2013), 67–72. https://doi.org/10.15388/LMR.A.2013.15 doi: 10.15388/LMR.A.2013.15
    [15] A. Skucaite, A. Stikonas, Investigation of the Sturm Liouville problems with integral boundary condition, Liet. matem. rink. Proc. LMS, Ser. A, 52 (2011), 297–302. https://doi.org/10.15388/LMR.2011.sm03 doi: 10.15388/LMR.2011.sm03
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1410) PDF downloads(61) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog