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1. Introduction

The Sturm-Liouville problem arises within many areas of science, engineering and applied
mathematics. It has been studied for more than two decades. Many physical, biological and chemical
processes are described using models based on it (see [1-3], [8], [9] and [11]).

For the homogeneous Sturm-Liouville problem with nonlocal conditions you can see [2], [9] and
[11-15]. For the nonhomogeneous equation see [7]. In [7] the authors studied the nonhomogeneous
Sturm-Liouville boundary value problem of the differential equation

X’(t) + m(t) = =22x(1), te(0,n),

with the conditions
x(0)=0, X&)+ =0, £€(0,n].

Here, we are concerned, firstly, with the nonlocal problem of the nonlinear differential inclusion

- x"(t) € F(t, Ax(t)), a.e. te(0,n), (1.1)
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with the nonlocal conditions ( 1 > &)
1
x'(0) — Ax(0) =0 and f x(tydr =0, £€[0,n), ne0,n]. (1.2)
4

For
h(t, ) + /lzx(t) = f(t, Ax(t)) € F(t, Ax(1)),

we study the existence of multiple solutions ( eignevalues and eignefunctions) of the nonhomogeneous
Sturm-Liouville problem of the differential equation

X' (t) + h(t, 1) = =2x(t), te€(0,n), (1.3)

with the conditions (1.2).
The special case of the nonlocal condition (1.2)

x'"(0) = Ax(0) =0 and f x(T)dr =0, (1.4)
0
will be considered.
2. Existence of solutions

Consider the nonlocal boundary value problem of the nonlinear differential inclusion (1.1)-(1.2)
under the following assumptions.
(i) The set F'(z, x) is nonempty, closed and convex for all (¢, x) € [0, 1] X R X R.
(i1) F (¢, x) is measurable in ¢ € [0, 1] for every x,y € R.
(ii1) F (¢, x) 1s upper semicontinuous in x and y for every ¢ € [0, 1].
(iv) There exist a bounded measurable function m : [0, 1] — R and a constant A, such that

IF (0l = supllf] : f € F(t,0)} < Im(@)] +2%|x].

Remark 1. From the assumptions (i)-(iv) we can deduce that (see [1], [5] and [6]) there exists [ €
F(t, x), such that

(v) f: I X R — R is measurable in t for every x,y € R and continuous in x for t € [0, 1] and there
exist a bounded measurable function m : [0,n] — R and a constant A* such that

(2, 01 < Im(0)] + 2|,
and f satisfies the nonlinear differential equation
- x"(t) = f(t,Ax(t)), a.e. te(0,m). 2.1)
So, any solution of (2.1) is a solution of (1.1).
(vi)A(m—=§&)# -2, 1€R.
(vii)
2(1 + |Am)n? + 7

|A]
For the integral representation of the solution of (2.1) and (1.2) we have the following lemma.

o< 1.
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Lemma 2.1. If the solution of the problem (2.1) and (1.2) exists, then it can be represented by the
integral equation

2(1 + 1) f" (- 57 f"(f—S)z
= ,/l d - ’/l d
x(0) = [ S s Ax(snds — | S5 s (s

— f (t—5)f(s, Ax(s))ds, 2.2)
0

where A =m—-&)[2+ A(n—-&)] #0.

Proof. Integrating both sides of Eq (2.1) twice, we obtain
!
x(®) — x(0) — tx'(0) = — f (t—5)f(s, Ax(s))ds 2.3)
0
and using the assumption x’(0) — Ax(0) = 0, we obtain
1,
X(0) = ~x'(0). (2.4)

The assumption f; x(t)dt = 0 implies that

x(0) fn dt + x'(0) fn Tdt fﬂ fT(T —8)f(s, Ax(s))ds dr,
3 3 & Jo

_ )2 ¢
(n—-&x0) + (7 26) Ax(0) = f fn(T — s)dt f(s, Ax(s))ds
0 3

+v[77 fn(r— s)dt f(s, Ax(s))ds,
& s

—_ —_ - 2 - 2
(=R + =91 _ f[m s (€-9) ] s, Ax(s))ds
0

2 2 2
Y
+ f PO = s
— ¢)2 ¢ _ )2
- f PO = s s - f C= S (s, Ax(s)ds
0 2 0 2
and we can get
_ 2 " (-9 f‘ (€=
x(0) = (U—f)[z"'/l(fl—f)][fo > f(s, Ax(s))ds — \ > f(s, Ax(s))ds
2 7 )2 ¢ Q2
_ ﬁ[ fo (7 zs) F(s, Ax(s))ds — fo( € 2S) f(s,/lx(s))ds]. (2.5)
Substituting (2.5) into (2.4), we obtain
— §)2 é )2
x'(0) = %[ﬁn U 2S) f(s,/lx(s))ds—f:(f 2s) f(s,/lx(s))ds]. (2.6)
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Now from (2.3), (2.5) and (2.6), we obtain

2(1 + A9 f" (n—s)? f(f—S)z
= ,/l d - 7/1 d
x(0) = [ S Ads = | S ST (s, Ax(s)ds

— f (t—5)f(s, Ax(s))ds.
0

To complete the proof, differentiate equation (2.2) twice, we obtain

) 221 ("~ ) f (-9
= — s A ds — . A d
x'(1) A [fo > f(s, Ax(s))ds .2 S (s, Ax(s))ds

- f Fls, Ax())ds,
0

and
X'(t) = — f(t,Ax(t)), a.et€ 0,T).
Now : ) )
X(0) = %[ fo (7 _2” £(s, Ax(s))ds — f: & _2” (s, /lx(s))ds],
and

241 (" (p - s5)? f(f—s)z
Ax(0) = — A ds — , A ds|.
x(0) ﬂ[ fo 3 x5 = | S5 (s s s]

From that, we get x’(0) — Ax(0) =
Now, to ensure that f; x(t)ydt =0,
we have

= = =1,
A A A

from that, we obtain as before

— ¢)2 2
f ! f 1244, f =9 s Ax(s))ds — f E= 9 s Ax(s))ds
3
ff(‘r—s)f(s Ax(s))ds d,
— )2 ¢ 2
_ f PO = s s - f E= S (s, Ax(s)ds
0 2 o 2

_ 2 ¢ _ 2
_ f PO = s A + f E= S (s, Ax(s))ds = 0
0 2 0 2

This proves the equivalence between the integral equation (2.2) and the nonlocal boundary value
problem (1.1)-(1.2).

f” 20+ 2m=-6)+A07 =€) =2+ An-¥&)]
13

O

Now, for the existence of at least one continuous solution for the problem of the integral equation
(2.2), we have the following theorem.
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Theorem 2.1. Let the assumptions (v)-(vii) be satisfied, then there exists at least one solution x €
C[0, ] of the nonlocal boundary value problem (2.1) and (1.2). Moreover, from Remark 1, then there
exists at least one solution x € C[0, ] of the nonlocal boundary value problem (1.1)-(1.2).

Proof. Define the set Q, c C[0, 7] by

2(1 + |Am)m? + 7 |lm| 2
r = € C : S ’ 2 .
0, =1{x lxl<r}, r |Al = [2(1 + [Am)n? + 7] Px

It is clear that the set Q, is nonempty, closed and convex.
Define the operator 7" associated with (2.2) by

—_ ¢)? )2
Tx(1) = W[ f PO = s (s — f C= S s, Ax(s)ds
0 0

2 2
- f (t— 5)f(s, Ax(s))ds.
0

Let x € Q,, we have

ITx(t)] < 2<1+|ﬂ|t)[ f” (- s)? (& - s)*
0

Al 7 If(SJX(S))IdS+f0( 7 1f (s, Ax(s))ds]

+f(t—S)|f(S,/1X(S))Ids,
0

2 T T
20+ W f {lm(s)| +ﬂZIX(S)|}dS+7Tf {Im(s)| + 2|x(s)l}ds,
A 0 0
[2(1 + | Alm)m? N
|A|
2(1 + | mym® + n
|A|

IA

IA

n] Qs + 2l

{Imll + ar} < r,

IA

and we have

21 + (Ao + 7 21 + Ao + 7 2 )

7l
|Al |A|

Then T : Q, — Q, and the class {Tx} C Q, is uniformly bounded in Q,.

In what follows we show that the class {T'x}, x € Q, is equicontinuous. For #{,1, € [0, 7], #; < t, such

that |, — ;] < 8, we have

il < r(l -

Tx(12) — Tx(t1) 3

12 )2
- [ axtonas - X [TIZD g avas
0 A 0 2

_ f &—5) f(s, /lx(s))ds] - f (ty = $)f (s, Ax(s))ds,
0 2 0

’2(1 ;(/UZ)[fon ! 2S) f(s, Ax(s))ds — f : 2S) J(s, Ax(s))dss

f— 2 : - 2
20+ A fo I s Ax(sds - f: E s, antsnas|

1T x(t2) = Tx(ty)|
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2(1 + /ltl) f” (n-s)
2

- fz(tz — ) f(s, Ax(s))ds — f(s, Ax(s))ds

2
f E=9) s /lx(s))ds] f (11 — $)f(s, Ax(s))ds],

A 0] (MO 5 sy + f; E s, At

1

iy —11) ; If(S,/UC(S))IdS+7Tf £ (s, Ax(s))lds,

IA

2|/1|(tz - t)n’

IA

f |/ (s, Ax(s))lds
+(tz—t1)f I/ Cs, JX(S))IdS+7Tf |/ (s, Ax(s))ldss,
0 3

2|1A/(r, — ty)m*
A

7 f 2{|m(s)|+/12|x(s)|}ds

3l

el + A2lxll) + (22 = 1) {llmlle + A%[1x]]}

IA

Hence the class of function {7 x}, x € Q, is equicontinuous. By Arzela-Ascolis [4] Theorem, we found
that the class {7 x} is relatively compact.

Now we prove that T : Q, — Q, is continuous.

Let {x,} C Q,, such that x,, — x, € Q,, then

2(1 + A1) f"<n—s>2 f‘ &— 5P
Tx, () = Ax,(s))ds — Ax,(s))d
(1) ~ [ S s A0 = | S5 s s

_ f (1 = $)£(5, Axn($))ds,
0

and

— )2 2
lim T x,(t) lim {2(1+/lt) f @ )f(s /lxn(s))ds—f(f )f( , Ax,(8))ds

- f (t—s)f(s,/lxn(s))ds}.
0

Now, we have
S5, x,(8)) = f(s,x0(s)) asn — oo,

and
£ (s, Ax,(5))] < m(s) + A|x,] € L'[0, ],

then applying Lebesgue Dominated convergence theorem [4], we obtain

— ¢)2 ¢ _o\2
lim Tx,(f) = 2(1”0[ f "= i fs Axy(5)ds — f €= lim £(s, Ax,(s))ds

n—oo
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— f (t—s) lim f(s, Ax,(s))ds,
0 n—co

—5)? £ e o2
2(1\;(%)[]0‘” Y ZS) S (s, Axo(s))ds — f: ¢ 2s) f(s, Axo(s))ds

- [) (t — 5)f(s, Axo(5))ds = F(xo).

Then Tx,(t) — Txo(t). Which means that the operator 7 is continuous.

Since all conditions of Schauder theorem [4] are hold, then 7 has a fixed point in Q,, then the integral
equation (2.2) has at least one solution x € C[O0, r].

Consequently the nonlocal boundary value problem (2.1)-(1.2) has at least one solution x € C[O0, r].
Moreover, from Remark 1, then there exists at least one solution x € C[0, 7] of the nonlocal boundary
value problem (1.1)-(1.2).

Now, we have the following corollaries

Corollary 1. Let 2*x(t) = f(t,Ax(t)) € F(t,Ax(t)). Let the assumptions of Theorem 2.1 be satisfied.
Then there exists at lease one solution x € C[0, ] of

—x"(t) = x(t), te€(0,7).

with the nonlocal condition (1.2). Moreover, from Remark 1, there exists at lease one solution x €

C[0, ] of the problem (1.1)-(1.2).

Corollary 2. Let the assumptions of Theorem 2.1 be satisfied. Then there exists a solution x € C[0, ]
of the problem (2.1) and (1.4).

Proof. Putting ¢ = 0 and 7 = 7 and applying Theorem 2.1 we get the result. O
3. Maximal and minimal solutions

Taking J = (0, 7). Here, we study the existence of maximal and minimal solutions of the problem
(2.1) and (1.2) which is equivalent to the integral equation (2.2).

Definition 3.1. [10] Let q(t) be a solution x(t) of (2.2) Then q(t) is said to be a maximal solution
of (2.2) if every solution of (2.2) on J satisfies the inequality x(t) < ¢(t), t € J. A minimal solution
s(t) can be defined in a similar way by reversing the above inequality i.e. x(t) > s(t), t € J.

We need the following lemma to prove the existence of maximal and minimal solutions of (2.2).

Lemma 3.2. Let f(t,x) satisfies the assumptions in Theorem 2.1 and let x(t), y(t) be continuous
Jfunctions on J satisfying

— ¢)2 ¢ _ o\
X < 2(1;%)[ fo B zs) £(s, Ax(s))ds — fO[ € 2S) £(s, Ax(s))dss
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—ft(t—s)f(s, Ax(s))ds,
0
— ¢)? 2
w0 > [T aysas - f; E (s, aysds

. fo (i - $)f(s, Y(s))ds

where one of them is strict.
Suppose f(t,x) is nondecreasing function in x. Then

x(t) < y(t), teJ 3.1
Proof. Let the conclusion (3.1) be false; then there exists #; such that
x(t) = y(t), >0

and
x(t) < y(b), 0<t<t.

From the monotonicity of the function f in x, we get

— )2 2
x(t) < W[ fo Y zs) £(s, Ax(s))ds — f € zs) (s, /lx(s))ds]
_ f (& = $)f (5, Ax(s))ds.

2(1”“) f i )f( a(s))ds—f(f )f(s ﬁy(s))ds]

—f; (t = 9)f(s, Ay(s))ds
< y(t).

This contradicts the fact that x(t;) = y(#;); then
x(t) < y(t), teJ
O

Theorem 3.2. Let the assumptions of Theorem 2.1 be satisfied. Furthermore, if f(t,x) is
nondecreasing function in x, then there exist maximal and minimal solutions of (2.2).

Proof. Firstly, we shall prove the existence of maximal solution of (2.2). Let € > 0 be given. Now
consider the integral equation

2(1 + A1) f" (- 57 ff € - 5P
€ = € ’/15 d - € ?AE d
x(?) = [ IS At A = | ST s Axe(9)s

AIMS Mathematics Volume 7, Issue 6, 11150-11164.
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- f (t = 8) fe(s, Ax(5))ds, (3.2)
0

where

fe(taxe(t)) = f(t,xe(t)) + €.

Clearly the function f.(¢, x.) satisfies assumption (v) and
| fult,x) | < Im@)] + Plxl + € < |my(@0)] + Plxl, |my ()] = Im(0)] + €.

Therefore, Equation (3.2) has a continuous solution x.(f) according to Theorem 2.1.
Let ¢ and e, be such that 0 < & < ¢ < €. Then

_ 2 ¢ _ 2
X, () = 2“;{“[ f " zs) £ (5, Axe, (5))dss — f & 2” fq(s,/lxﬂ(s))ds]
0 0
. f (1 = $)fo (5, A (5))ds,
0
—_ )2 ¢ 2
- 21 fo I s v (9) + e - f: E (s A (59 + )|
_ f (= $)(f(5 A, (8) + €1)ds,
0
—_ )2 ¢ 2
., A ] fo R (s, A (5) + s - f: E (5, Ao 51 + s
- [ =90 o) + e, (3.3)
0
—_ )2 é 2
o = 2 st fo @ (15, A5 + eds - f: E (5, A5 + eds|

- f (t = $)(f(s, Ax,(5)) + €)ds. 3.4)
0

Applying Lemma 3.2, then (3.3) and (3.4) imply that
Xe (1) < x(2) forte J

As shown before in the proof of Theorem 2.1, the family of functions x.(f) defined by Eq (3.2) is
uniformly bounded and of equi-continuous functions. Hence by the Arzela-Ascoli Theorem, there
exists a decreasing sequence €, suchthat €, — 0 as n — oo, and lim x () exists uniformly in /.

We denote this limit by ¢(7). From the continuity of the function f; in the second argument, we get

— ¢)? ¢ V)
) = Jim () = 2 f I s agtsyds - f E= (s, Ag(s)ds

_ fo (i - $)f (s, da())ds,

AIMS Mathematics Volume 7, Issue 6, 11150-11164.
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which proves that ¢(7) is a solution of (2.2).
Finally, we shall show that ¢(#) is maximal solution of (2.2). To do this, let x(#) be any solution of
(2.2). Then

xe(1)

- f (t = 5)fe(s, Axc(s5))ds,
0

— )2 ‘ Y
- X ;M[ fo RY zs) (f(s, Axe(s)) + €)ds — f: ¢ 2s) (f(s,/lxe(s))+e)ds]

—f(t— $)(f(s, Axe(s)) + €)ds,
0

> 2(1;1/10[]: ! 2S) fGs, ﬂxe(s))ds_f(f : f(s’/le(s))ds]

2
t
- f (t = 85)f(s, Ax(5))ds. 3.5
0
Applying Lemma 3.2, then (2.2) and (3.5 imply that
x(t) > x(t) fort € J.

From the uniqueness of the maximal solution (see [10]), it is clear that x.(¢#) tends to g(f) uniformly
inteJase—N0.
In a similar way we can prove that there exists a minimal solution of (2.2). O

4. The homogeneous problem

Here, we study the existence and some general properties of the eigenvalues and eigenfunctions of
the problem of the homogeneous equation

xX'(t) = =-2x@1), te(0,n), 4.1)

with the nonlocal condition (1.2).

Lemma 4.3. The eigenfunctions of the nonlocal boundary value problem (4.1) and (1.2) are in the

form of
-1+ 4nn)t -1+ 4nn) t
x,(1) = c,,(sin M + cos M), n=12,---. “4.2)
2m+%) 2m+%)
Proof. Firstly, we prove that the eigenvalues are
-+ 4nn
Ap=——, n=1,2,---. 4.3)
2+ %)
The general solution of the problem (4.1) and (1.2) is given by
x(t) = ¢y sin At + ¢ cos At. “4.4)

AIMS Mathematics Volume 7, Issue 6, 11150-11164.
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Differentiating equation (4.4), we obtain
x'(t) = Acy cos At — Ac, sin At.
Using the first condition, when ¢ = 0, we obtain
1 = . (4.5)

Integrating both sides of (4.4) from £ to 1, we obtain

C1 C1 Cy . C .
—coSAE — —cosAn+ —=sinAn — —sin A€ = 0.
q CosAE = peos Ay + —psindn = 2 sindg
Substituting ¢; = ¢,, we obtain

%005/15—%cos/ln+c—/{sin/ln—%sin/l§:0. (4.6)

Multiplying (4.6) by il, we obtain

c

cos A& — cos An + sin A — sin A€ = 0,
A+ . An—&) An-9  An+d _

2 si 2 si
sin > 5 + 2sin > 7 0,
. AE+7) An+&) _
smT + cos——= =0,
A
2
A€ +
AC+m) . n _ G @7
From (4.7), we deduce that
4= A o
2+ &)
Therefore, from (4.4) we can get
(—m+4nn)t (—m+4nn)t

(1) = cn(sin ) n=1.2. ...

cos
2+ &) 2 +¢)
Corollary 3. The eigenfunctions of the nonlocal boundary value problem (4.1) and (1.4) are in the

form of

-1 +4n)t -1 +4n)t
x,(1) = cn( sin & + cos %), n=172,.... 4.8)
Proof. Putting ¢ = 0 and 17 = 7 and applying Lemma 4.3 we obtain the result. O

5. The nonhomogeneous problem

Now, we study the existence of multiple solutions of the nonhomogeneous problem (1.3) and (1.2).
Let x;, x, be two solutions of the problem (1.3) and (1.2). Let u(t) = x,(¢) — x,(¢), then the function u
satisfy the Sturm-Liouville problem

u’(t) = —2u(?)

AIMS Mathematics Volume 7, Issue 6, 11150-11164.
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with the nonlocal conditions

1’ (0) — Au(0) =0 and fﬂ u(t)dr=0, £€[0,m), ne,mnr].
¢

So, the values of (eigenvalues) A, for the non zero solution of (4.1) and (1.2) is the same values
(eigenvalues) of A, for the multiple solutions (eigenfunctions) of (1.3) and (1.2), i.e.

i+ 4
A, = 2T
2+ &)

Theorem 5.3. The multiple solutions (eigenfunctions) x,(t) of the problem (1.3) and (1.2) are given by

s (—m+4nn)(t—s)
(= +4nn)t N (=7 + 47n) t) _ f’ SIN —507%)
0

x,(1) = A,,( sin 2+ 6 cos 2+ E)

h(s, )ds. (5.1)

—n+4nn
2(m+d)

Proof. Here we use the variation of parameter method to get the solution of (1.3) and (1.2). Assume
that the solutions of (1.3) and (1.2) are given by

Xa(1) = Ay cos At + Ay sin At + x,(1). (5.2)

So, we have
x1(t) = cos At, x,(f) = sin Ar.

Now, we can get W(xy, x,) = A. Hence

‘sin 1  cos A
x,(1) = —cos At f S“; *h(s, ds + sin At f CO; > (s, A)ds,
0 0

thus )
in A(t —
x,(1) = - f Wh(s, A)ds. (5.3)
0
From (5.3) and (5.2), we obtain
s (—m+4nn)(t—s)
_ _ t sin A
x(0) = Ay sin w + Ay cos (ZL‘“T")I - f T 2D ps,dds. (54
n+%) n+%) 0 078

By using the first condition x’(0) — Ax(0) = 0, we get
Ap = Ay,

therefore the multiple solutions of the nonlocal problem (1.3) and (1.2) are given by

s (—m+4nn) (t—s)

—n+4nn)t —m+4nn)t s — e

x,(1) = A, sin( 7+ dm) + cos( 7+ dan) - Ah(s, Dds, n=1,2,....
207+ ) +8) ) Jy  CGrm

To complete the proof and to ensure that x,(¢) is the solution of (1.3) and (1.2), we firstly prove that

X/ (t) + h(t, 1) = —2x,(t).

AIMS Mathematics Volume 7, Issue 6, 11150-11164.
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Differentiating (5.4) twice, we get

X = A -+ 47Tn( co (—m+4nn)t _sin (—m + 47n) t)
T T2+ 8 207+ €) 27+ €)
! (—m+4nmn)(t—9)
fo cos 20+ &) h(s, Dds
and
v —m+4nn\?( . (—m+4dan)t (=1 +4nn) t
() = ( 2(n+g))(_ 20+8 T2+ )
—n4+4mn (" . (=n+4nn)(t—s)
TR R R B
and
., B —7T + 47n\? . (—m+4nn)t (- + 4nn) t
Xn(t)+l’l(t,/l) - An(m) (_ W — COS W)
—n4+4nn (. (=n+4an)(t-s)
—h(t, 1) + 016 sin 16 h(s, Dds + h(t, 1)
= —2x, ().
Also we have x'(0) — Ax(0) = 0. |

Example 1. Let h(t,1) = A>. Then we find that

" sin At —
xp(H) = — f mﬁzds = cosdt—1
0 A
and the multiple solutions of the nonlocal problem (1.3) and (1.2) are given by
- +4nn)t - +4nn)t
xot) = Ay sin I L o CEFIE oo,
2(n+&) 2(n +&)

Now consider the Riemann integral boundary condition (1.4).

Corollary 4. The multiple solutions (eigenfunctions) x,(t) of the problem (1.3)-(1.4) are given by

—1+4n)t —1+4n)t  gin S0
Xn(t) = An( sin % + COS %) - f #h(& /l)ds
0 2
Proof. In this special case, we put ¢ = 0 and 7 = 7 and applying Theorem 5.3 we get the result. O

Example 2. Let h(t,A) = A>. Then we find that
" sin A(t —
xp(1) = —f Mﬂzds = cosdt —1,
0 A
and the solution x,(t) of the problem (1.3)-(1.4) are given by

+ cosAt — 1.

xu(1) = An(sinL“”)’ +COSM)
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6. Conclusions

Here, we proved the existence of solutions x € C[0, ] of the nonlocal boundary value problem of
the differential inclusion (1.1) with the nonlocal condition (1.2).
The maximal and minimal solutions of the problem (1.1)-(1.2) have been proved. The eigenvalues and
eigenfunctions of the homogeneous and nonhomogeneous equations (4.1) and (1.3) with the nonlocal
condition (1.2) have been obtained. Two examples have been studied to illustrate our results.
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