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1. Introduction

The Sturm-Liouville problem arises within many areas of science, engineering and applied
mathematics. It has been studied for more than two decades. Many physical, biological and chemical
processes are described using models based on it (see [1–3], [8], [9] and [11]).

For the homogeneous Sturm-Liouville problem with nonlocal conditions you can see [2], [9] and
[11–15]. For the nonhomogeneous equation see [7]. In [7] the authors studied the nonhomogeneous
Sturm-Liouville boundary value problem of the differential equation

x′′(t) + m(t) = −λ2x(t), t ∈ (0, π),

with the conditions
x(0) = 0, x′(ξ) + λx(ξ) = 0, ξ ∈ (0, π].

Here, we are concerned, firstly, with the nonlocal problem of the nonlinear differential inclusion

− x′′(t) ∈ F(t, λx(t)), a.e. t ∈ (0, π), (1.1)
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with the nonlocal conditions ( η > ξ)

x′(0) − λx(0) = 0 and
∫ η

ξ

x(τ)dτ = 0, ξ ∈ [0, π), η ∈ (0, π]. (1.2)

For
h(t, λ) + λ2x(t) = f (t, λx(t)) ∈ F(t, λx(t)),

we study the existence of multiple solutions ( eignevalues and eignefunctions) of the nonhomogeneous
Sturm-Liouville problem of the differential equation

x′′(t) + h(t, λ) = −λ2x(t), t ∈ (0, π), (1.3)

with the conditions (1.2).
The special case of the nonlocal condition (1.2)

x′(0) − λx(0) = 0 and
∫ π

0
x(τ)dτ = 0, (1.4)

will be considered.

2. Existence of solutions

Consider the nonlocal boundary value problem of the nonlinear differential inclusion (1.1)-(1.2)
under the following assumptions.
(i) The set F(t, x) is nonempty, closed and convex for all (t, x) ∈ [0, 1] × R × R.
(ii) F(t, x) is measurable in t ∈ [0, 1] for every x, y ∈ R.
(iii) F(t, x) is upper semicontinuous in x and y for every t ∈ [0, 1].
(iv) There exist a bounded measurable function m : [0, 1] −→ R and a constant λ, such that

‖F(t, x)‖ = sup{| f | : f ∈ F(t, x)} ≤ |m(t)| + λ2|x|.

Remark 1. From the assumptions (i)-(iv) we can deduce that (see [1], [5] and [6]) there exists f ∈
F(t, x), such that
(v) f : I × R −→ R is measurable in t for every x, y ∈ R and continuous in x for t ∈ [0, 1] and there
exist a bounded measurable function m : [0, π]→ R and a constant λ2 such that

| f (t, x)| ≤ |m(t)| + λ2|x|,

and f satisfies the nonlinear differential equation

− x′′(t) = f (t, λx(t)), a.e. t ∈ (0, π). (2.1)

So, any solution of (2.1) is a solution of (1.1).

(vi) λ (η − ξ) , −2, λ ∈ R.
(vii)

2(1 + |λ|π)π2 + π

|A|
λ2π < 1.

For the integral representation of the solution of (2.1) and (1.2) we have the following lemma.
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Lemma 2.1. If the solution of the problem (2.1) and (1.2) exists, then it can be represented by the
integral equation

x(t) =
2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
f (s, λx(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

]
−

∫ t

0
(t − s) f (s, λx(s))ds, (2.2)

whereA = (η − ξ)[2 + λ(η − ξ)] , 0.

Proof. Integrating both sides of Eq (2.1) twice, we obtain

x(t) − x(0) − tx′(0) = −

∫ t

0
(t − s) f (s, λx(s))ds (2.3)

and using the assumption x′(0) − λx(0) = 0, we obtain

x(0) =
1
λ

x′(0). (2.4)

The assumption
∫ η

ξ
x(τ)dτ = 0 implies that

x(0)
∫ η

ξ

dτ + x′(0)
∫ η

ξ

τdτ =

∫ η

ξ

∫ τ

0
(τ − s) f (s, λx(s))ds dτ,

(η − ξ)x(0) +
(η − ξ)2

2
λx(0) =

∫ ξ

0

∫ η

ξ

(τ − s)dτ f (s, λx(s))ds

+

∫ η

ξ

∫ η

s
(τ − s)dτ f (s, λx(s))ds,

(η − ξ)[2 + λ(η − ξ)]
2

x(0) =

∫ ξ

0

[ (η − s)2

2
−

(ξ − s)2

2

]
f (s, λx(s))ds

+

∫ η

ξ

(η − s)2

2
f (s, λx(s))ds

=

∫ η

0

(η − s)2

2
f (s, λx(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

and we can get

x(0) =
2

(η − ξ)[2 + λ(η − ξ)]

[ ∫ η

0

(η − s)2

2
f (s, λx(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

]
=

2
A

[ ∫ η

0

(η − s)2

2
f (s, λx(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

]
. (2.5)

Substituting (2.5) into (2.4), we obtain

x′(0) =
2λ
A

[ ∫ η

0

(η − s)2

2
f (s, λx(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

]
. (2.6)
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Now from (2.3), (2.5) and (2.6), we obtain

x(t) =
2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
f (s, λx(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

]
−

∫ t

0
(t − s) f (s, λx(s))ds.

To complete the proof, differentiate equation (2.2) twice, we obtain

x′(t) =
2λ
A

[ ∫ η

0

(η − s)2

2
f (s, λx(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

]
−

∫ t

0
f (s, λx(s))ds,

and
x′′(t) = − f (t, λx(t)), a.e.t ∈ (0,T ).

Now

x′(0) =
2λ
A

[ ∫ η

0

(η − s)2

2
f (s, λx(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

]
,

and

λx(0) =
2λ
A

[ ∫ η

0

(η − s)2

2
f (s, λx(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

]
.

From that, we get x′(0) − λx(0) = 0.
Now, to ensure that

∫ η

ξ
x(τ)dτ = 0,

we have ∫ η

ξ

2(1 + λt)
A

=
2(η − ξ) + λ(η2 − ξ2)

A
=

(η − ξ)[2 + λ(η − ξ)]
A

= 1,

from that, we obtain as before∫ η

ξ

x(τ)dτ =

∫ η

ξ

2(1 + λτ)
A

dτ
[ ∫ η

0

(η − s)2

2
f (s, λx(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

]
−

∫ η

ξ

∫ τ

0
(τ − s) f (s, λx(s))ds dτ,

=

∫ η

0

(η − s)2

2
f (s, λx(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

−

∫ η

0

(η − s)2

2
f (s, λx(s))ds +

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds = 0.

This proves the equivalence between the integral equation (2.2) and the nonlocal boundary value
problem (1.1)-(1.2).

�

Now, for the existence of at least one continuous solution for the problem of the integral equation
(2.2), we have the following theorem.
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Theorem 2.1. Let the assumptions (v)-(vii) be satisfied, then there exists at least one solution x ∈
C[0, π] of the nonlocal boundary value problem (2.1) and (1.2). Moreover, from Remark 1, then there
exists at least one solution x ∈ C[0, π] of the nonlocal boundary value problem (1.1)-(1.2).

Proof. Define the set Qr ⊂ C[0, π] by

Qr = {x ∈ C :‖ x ‖≤ r}, r ≥
2(1 + |λ|π)π2 + π ‖m‖L1

|A| −
[
2(1 + |λ|π)π2 + π

]
λ2π

.

It is clear that the set Qr is nonempty, closed and convex.
Define the operator T associated with (2.2) by

T x(t) =
2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
f (s, λx(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

]
−

∫ t

0
(t − s) f (s, λx(s))ds.

Let x ∈ Qr, we have

|T x(t)| ≤
2(1 + |λ|t)
|A|

[ ∫ η

0

(η − s)2

2
| f (s, λx(s))|ds +

∫ ξ

0

(ξ − s)2

2
| f (s, λx(s))ds|

]
+

∫ t

0
(t − s)| f (s, λx(s))|ds,

≤
2(1 + |λ|π)π2

|A|

∫ π

0
{|m(s)| + λ2|x(s)|}ds + π

∫ π

0
{|m(s)| + λ2|x(s)|}ds,

≤

[2(1 + |λ|π)π2

|A|
+ π

]
{‖m‖L1 + λ2π‖x‖},

≤
2(1 + |λ|π)π2 + π

|A|
{‖m‖L1 + λ2πr} ≤ r,

and we have
2(1 + |λ|π)π2 + π

|A|
‖m‖L1 ≤ r

(
1 −

2(1 + |λ|π)π2 + π

|A|
λ2π

)
.

Then T : Qr → Qr and the class {T x} ⊂ Qr is uniformly bounded in Qr.
In what follows we show that the class {T x}, x ∈ Qr is equicontinuous. For t1, t2 ∈ [0, π], t1 < t2 such
that |t2 − t1| < δ, we have

T x(t2) − T x(t1) =
2(1 + λt2)
A

[ ∫ η

0

(η − s)2

2
f (s, λx(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

]
−

∫ t2

0
(t2 − s) f (s, λx(s))ds −

2(1 + λt1)
A

[ ∫ η

0

(η − s)2

2
f (s, λx(s))ds

−

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

]
−

∫ t1

0
(t2 − s) f (s, λx(s))ds,

|T x(t2) − T x(t1)| =

∣∣∣∣∣2(1 + λt2)
A

[ ∫ η

0

(η − s)2

2
f (s, λx(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

]
AIMS Mathematics Volume 7, Issue 6, 11150–11164.
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−

∫ t2

0
(t2 − s) f (s, λx(s))ds −

2(1 + λt1)
A

[ ∫ η

0

(η − s)2

2
f (s, λx(s))ds

−

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

]
+

∫ t1

0
(t1 − s) f (s, λx(s))ds

∣∣∣∣∣,
≤

2|λ|(t2 − t1)
A

[ ∫ η

0

(η − s)2

2
| f (s, λx(s))|ds +

∫ ξ

0

(ξ − s)2

2
| f (s, λx(s))|ds

]
+(t2 − t1)

∫ t1

0
| f (s, λx(s))|ds + π

∫ t2

t1
| f (s, λx(s))|ds,

≤
2|λ|(t2 − t1)π2

A

∫ π

0
| f (s, λx(s))|ds

+(t2 − t1)
∫ π

0
| f (s, λx(s))|ds + π

∫ t2

t1
| f (s, λx(s))|ds,

≤
2|λ|(t2 − t1)π2

A
{‖m‖L1 + λ2‖x‖} + (t2 − t1) {‖m‖L1 + λ2‖x‖}

+π

∫ t2

t1
{|m(s)| + λ2|x(s)|}ds.

Hence the class of function {T x}, x ∈ Qr is equicontinuous. By Arzela-Ascolis [4] Theorem, we found
that the class {T x} is relatively compact.
Now we prove that T : Qr → Qr is continuous.
Let {xn} ⊂ Qr, such that xn → x0 ∈ Qr, then

T xn(t) =
2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
f (s, λxn(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λxn(s))ds

]
−

∫ t

0
(t − s) f (s, λxn(s))ds,

and

lim
n→∞

T xn(t) = lim
n→∞

{2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
f (s, λxn(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λxn(s))ds

]
−

∫ t

0
(t − s) f (s, λxn(s))ds

}
.

Now, we have
f (s, xn(s))→ f (s, x0(s)) as n→ ∞,

and
| f (s, λxn(s))| ≤ m(s) + λ2|xn| ∈ L1[0, π],

then applying Lebesgue Dominated convergence theorem [4], we obtain

lim
n→∞

T xn(t) =
2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
lim
n→∞

f (s, λxn(s))ds −
∫ ξ

0

(ξ − s)2

2
lim
n→∞

f (s, λxn(s))ds
]
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−

∫ t

0
(t − s) lim

n→∞
f (s, λxn(s))ds,

=
2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
f (s, λx0(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λx0(s))ds

]
−

∫ t

0
(t − s) f (s, λx0(s))ds = F(x0).

Then T xn(t)→ T x0(t). Which means that the operator T is continuous.
Since all conditions of Schauder theorem [4] are hold, then T has a fixed point in Qr, then the integral
equation (2.2) has at least one solution x ∈ C[0, π].
Consequently the nonlocal boundary value problem (2.1)-(1.2) has at least one solution x ∈ C[0, π].
Moreover, from Remark 1, then there exists at least one solution x ∈ C[0, π] of the nonlocal boundary
value problem (1.1)-(1.2).
Now, we have the following corollaries

Corollary 1. Let λ2x(t) = f (t, λx(t)) ∈ F(t, λx(t)). Let the assumptions of Theorem 2.1 be satisfied.
Then there exists at lease one solution x ∈ C[0, π] of

−x′′(t) = λ2x(t), t ∈ (0,T ).

with the nonlocal condition (1.2). Moreover, from Remark 1, there exists at lease one solution x ∈
C[0, π] of the problem (1.1)-(1.2).

Corollary 2. Let the assumptions of Theorem 2.1 be satisfied. Then there exists a solution x ∈ C[0, π]
of the problem (2.1) and (1.4).

Proof. Putting ξ = 0 and η = π and applying Theorem 2.1 we get the result. �

3. Maximal and minimal solutions

Taking J = (0, π). Here, we study the existence of maximal and minimal solutions of the problem
(2.1) and (1.2) which is equivalent to the integral equation (2.2).

Definition 3.1. [10] Let q(t) be a solution x(t) of (2.2) Then q(t) is said to be a maximal solution
of (2.2) if every solution of (2.2) on J satisfies the inequality x(t) ≤ q(t), t ∈ J . A minimal solution
s(t) can be defined in a similar way by reversing the above inequality i.e. x(t) ≥ s(t), t ∈ J.

We need the following lemma to prove the existence of maximal and minimal solutions of (2.2).

Lemma 3.2. Let f (t, x) satisfies the assumptions in Theorem 2.1 and let x(t), y(t) be continuous
functions on J satisfying

x(t) ≤
2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
f (s, λx(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

]
AIMS Mathematics Volume 7, Issue 6, 11150–11164.
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−

∫ t

0
(t − s) f (s, λx(s))ds,

y(t) ≥
2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
f (s, λy(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λy(s))ds

]
−

∫ t

0
(t − s) f (s, λy(s))ds

where one of them is strict.
Suppose f (t, x) is nondecreasing function in x. Then

x(t) < y(t), t ∈ J. (3.1)

Proof. Let the conclusion (3.1) be false; then there exists t1 such that

x(t1) = y(t1), t1 > 0

and
x(t) < y(t), 0 < t < t1.

From the monotonicity of the function f in x, we get

x(t1) ≤
2(1 + λt1)
A

[ ∫ η

0

(η − s)2

2
f (s, λx(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λx(s))ds

]
−

∫ t1

0
(t − s) f (s, λx(s))ds,

<
2(1 + λt1)
A

[ ∫ η

0

(η − s)2

2
f (s, λy(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λy(s))ds

]
−

∫ t1

0
(t − s) f (s, λy(s))ds

< y(t1).

This contradicts the fact that x(t1) = y(t1); then

x(t) < y(t), t ∈ J.

�

Theorem 3.2. Let the assumptions of Theorem 2.1 be satisfied. Furthermore, if f (t, x) is
nondecreasing function in x, then there exist maximal and minimal solutions of (2.2).

Proof. Firstly, we shall prove the existence of maximal solution of (2.2). Let ε > 0 be given. Now
consider the integral equation

xε(t) =
2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
fε(s, λxε(s))ds −

∫ ξ

0

(ξ − s)2

2
fε(s, λxε(s))ds

]
AIMS Mathematics Volume 7, Issue 6, 11150–11164.
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−

∫ t

0
(t − s) fε(s, λxε(s))ds, (3.2)

where
fε(t, xε(t)) = f (t, xε(t)) + ε.

Clearly the function fε(t, xε) satisfies assumption (v) and

| fε(t, xε) | ≤ |m(t)| + λ2|x| + ε ≤ |m1(t)| + λ2|x|, |m1(t)| = |m(t)| + ε.

Therefore, Equation (3.2) has a continuous solution xε(t) according to Theorem 2.1.
Let ε1 and ε2 be such that 0 < ε2 < ε1 < ε. Then

xε1(t) =
2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
fε1(s, λxε1(s))ds −

∫ ξ

0

(ξ − s)2

2
fε1(s, λxε1(s))ds

]
−

∫ t

0
(t − s) fε1(s, λxε1(s))ds,

=
2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
( f (s, λxε1(s)) + ε1)ds −

∫ ξ

0

(ξ − s)2

2
( f (s, λxε1(s)) + ε1)ds

]
−

∫ t

0
(t − s)( f (s, λxε1(s)) + ε1)ds,

>
2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
( f (s, λxε1(s)) + ε2)ds −

∫ ξ

0

(ξ − s)2

2
( f (s, λxε1(s)) + ε2)ds

]
−

∫ t

0
(t − s)( f (s, λxε1(s)) + ε2)ds, (3.3)

xε2(t) =
2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
( f (s, λxε2(s)) + ε2)ds −

∫ ξ

0

(ξ − s)2

2
( f (s, λxε2(s)) + ε2)ds

]
−

∫ t

0
(t − s)( f (s, λxε2(s)) + ε2)ds. (3.4)

Applying Lemma 3.2, then (3.3) and (3.4) imply that

xε2(t) < xε1(t) f or t ∈ J.

As shown before in the proof of Theorem 2.1, the family of functions xε(t) defined by Eq (3.2) is
uniformly bounded and of equi-continuous functions. Hence by the Arzela-Ascoli Theorem, there
exists a decreasing sequence εn such that εn → 0 as n→ ∞, and lim

n→∞
xεn(t) exists uniformly in I.

We denote this limit by q(t). From the continuity of the function fεn in the second argument, we get

x(t) = lim
n→∞

xεn(t) =
2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
f (s, λq(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λq(s))ds

]
−

∫ t

0
(t − s) f (s, λq(s))ds,
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which proves that q(t) is a solution of (2.2).
Finally, we shall show that q(t) is maximal solution of (2.2). To do this, let x(t) be any solution of
(2.2). Then

xε(t) =
2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
fε(s, λxε(s))ds −

∫ ξ

0

(ξ − s)2

2
fε(s, λxε(s))ds

]
−

∫ t

0
(t − s) fε(s, λxε(s))ds,

=
2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
( f (s, λxε(s)) + ε)ds −

∫ ξ

0

(ξ − s)2

2
( f (s, λxε(s)) + ε)ds

]
−

∫ t

0
(t − s)( f (s, λxε(s)) + ε)ds,

>
2(1 + λt)
A

[ ∫ η

0

(η − s)2

2
f (s, λxε(s))ds −

∫ ξ

0

(ξ − s)2

2
f (s, λxε(s))ds

]
−

∫ t

0
(t − s) f (s, λxε(s))ds. (3.5)

Applying Lemma 3.2, then (2.2) and (3.5 imply that

xε(t) > x(t) f or t ∈ J.

From the uniqueness of the maximal solution (see [10]), it is clear that xε(t) tends to q(t) uniformly
in t ∈ J as ε → 0.
In a similar way we can prove that there exists a minimal solution of (2.2). �

4. The homogeneous problem

Here, we study the existence and some general properties of the eigenvalues and eigenfunctions of
the problem of the homogeneous equation

x′′(t) = −λ2x(t), t ∈ (0, π), (4.1)

with the nonlocal condition (1.2).

Lemma 4.3. The eigenfunctions of the nonlocal boundary value problem (4.1) and (1.2) are in the
form of

xn(t) = cn

(
sin

(−π + 4πn) t
2(η + ξ)

+ cos
(−π + 4πn) t

2(η + ξ)

)
, n = 1, 2, · · · . (4.2)

Proof. Firstly, we prove that the eigenvalues are

λn =
−π + 4πn
2(η + ξ)

, n = 1, 2, · · · . (4.3)

The general solution of the problem (4.1) and (1.2) is given by

x(t) = c1 sin λt + c2 cos λt. (4.4)
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Differentiating equation (4.4), we obtain

x′(t) = λc1 cos λt − λc2 sin λt.

Using the first condition, when t = 0, we obtain

c1 = c2. (4.5)

Integrating both sides of (4.4) from ξ to η, we obtain

c1

λ
cos λξ −

c1

λ
cos λη +

c2

λ
sin λη −

c2

λ
sin λξ = 0.

Substituting c1 = c2, we obtain

c1

λ
cos λξ −

c1

λ
cos λη +

c1

λ
sin λη −

c1

λ
sin λξ = 0. (4.6)

Multiplying (4.6) by λ
c1

, we obtain

cos λξ − cos λη + sin λη − sin λξ = 0,

2 sin
λ(ξ + η)

2
sin

λ(η − ξ)
2

+ 2 sin
λ(η − ξ)

2
cos

λ(η + ξ)
2

= 0,

sin
λ(ξ + η)

2
+ cos

λ(η + ξ)
2

= 0,

tan
λ(ξ + η)

2
= −1,

λ(ξ + η)
2

= −
π

4
+ nπ. (4.7)

From (4.7), we deduce that

λn =
−π + 4πn
2(η + ξ)

, n = 1, 2, .... .

Therefore, from (4.4) we can get

xn(t) = cn

(
sin

(−π + 4πn) t
2(η + ξ)

+ cos
(−π + 4πn) t

2(η + ξ)

)
, n = 1, 2, ... .

Corollary 3. The eigenfunctions of the nonlocal boundary value problem (4.1) and (1.4) are in the
form of

xn(t) = cn

(
sin

(−1 + 4n) t
2

+ cos
(−1 + 4n) t

2

)
, n = 1, 2, .... . (4.8)

Proof. Putting ξ = 0 and η = π and applying Lemma 4.3 we obtain the result. �

5. The nonhomogeneous problem

Now, we study the existence of multiple solutions of the nonhomogeneous problem (1.3) and (1.2).
Let x1, x2 be two solutions of the problem (1.3) and (1.2). Let u(t) = x1(t) − x2(t), then the function u
satisfy the Sturm-Liouville problem

u′′(t) = −λ2u(t)
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with the nonlocal conditions

u′(0) − λu(0) = 0 and
∫ η

ξ

u(τ)dτ = 0, ξ ∈ [0, π), η ∈ (0, π].

So, the values of (eigenvalues) λn for the non zero solution of (4.1) and (1.2) is the same values
(eigenvalues) of λn for the multiple solutions (eigenfunctions) of (1.3) and (1.2), i.e.

λn =
−π + 4πn
2(η + ξ)

, n = 1, 2, .... .

Theorem 5.3. The multiple solutions (eigenfunctions) xn(t) of the problem (1.3) and (1.2) are given by

xn(t) = An

(
sin

(−π + 4πn) t
2(η + ξ)

+ cos
(−π + 4πn) t

2(η + ξ)

)
−

∫ t

0

sin (−π+4πn)(t−s)
2(η+ξ)

−π+4πn
2(η+ξ)

h(s, λ)ds. (5.1)

Proof. Here we use the variation of parameter method to get the solution of (1.3) and (1.2). Assume
that the solutions of (1.3) and (1.2) are given by

xn(t) = A1 cos λt + A2 sin λt + xp(t). (5.2)

So, we have
x1(t) = cos λt, x2(t) = sin λt.

Now, we can get W(x1, x2) = λ. Hence

xp(t) = − cos λt
∫ t

0

sin λs
λ

h(s, λ)ds + sin λt
∫ t

0

cos λs
λ

h(s, λ)ds,

thus

xp(t) = −

∫ t

0

sin λ(t − s)
λ

h(s, λ)ds. (5.3)

From (5.3) and (5.2), we obtain

xn(t) = A1 sin
(−π + 4πn) t

2(η + ξ)
+ A2 cos

(−π + 4πn) t
2(η + ξ)

−

∫ t

0

sin (−π+4πn)(t−s)
2(η+ξ)

−π+4πn
2(η+ξ)

h(s, λ)ds. (5.4)

By using the first condition x′(0) − λx(0) = 0, we get

A1 = A2,

therefore the multiple solutions of the nonlocal problem (1.3) and (1.2) are given by

xn(t) = An

(
sin

(−π + 4πn) t
2(η + ξ)

+ cos
(−π + 4πn) t

2(η + ξ)

)
−

∫ t

0

sin (−π+4πn) (t−s)
2(η+ξ)

(−π+4πn)
2(η+ξ)

h(s, λ)ds, n = 1, 2, .... .

To complete the proof and to ensure that xn(t) is the solution of (1.3) and (1.2), we firstly prove that

x′′n (t) + h(t, λ) = −λ2xn(t).
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Differentiating (5.4) twice, we get

x′n(t) = An
−π + 4πn
2(η + ξ)

(
cos

(−π + 4πn) t
2(η + ξ)

− sin
(−π + 4πn) t

2(η + ξ)

)
−

∫ t

0
cos

(−π + 4πn) (t − s)
2(η + ξ)

h(s, λ)ds

and

x′′n (t) = An

(
−π + 4πn
2(η + ξ)

)2(
− sin

(−π + 4πn) t
2(η + ξ)

− cos
(−π + 4πn) t

2(η + ξ)

)
−g(t) +

−π + 4πn
2(η + ξ)

∫ t

0
sin

(−π + 4πn) (t − s)
2(η + ξ)

h(s, λ)ds

and

x′′n (t) + h(t, λ) = An

(
−π + 4πn
2(η + ξ)

)2(
− sin

(−π + 4πn) t
2(η + ξ)

− cos
(−π + 4πn) t

2(η + ξ)

)
−h(t, λ) +

−π + 4πn
2(η + ξ)

∫ t

0
sin

(−π + 4πn) (t − s)
2(η + ξ)

h(s, λ)ds + h(t, λ)

= −λ2xn(t).

Also we have x′(0) − λx(0) = 0. �

Example 1. Let h(t, λ) = λ2. Then we find that

xp(t) = −

∫ t

0

sin λ(t − s)
λ

λ2ds = cosλt − 1

and the multiple solutions of the nonlocal problem (1.3) and (1.2) are given by

xn(t) = A1 sin
(−π + 4πn) t

2(η + ξ)
+ A2 cos

(−π + 4πn) t
2(η + ξ)

+ cosλt − 1.

Now consider the Riemann integral boundary condition (1.4).

Corollary 4. The multiple solutions (eigenfunctions) xn(t) of the problem (1.3)-(1.4) are given by

xn(t) = An

(
sin

(−1 + 4n) t
2

+ cos
(−1 + 4n) t

2

)
−

∫ t

0

sin (−1+4n)(t−s)
2

−1+4n
2

h(s, λ)ds.

Proof. In this special case, we put ξ = 0 and η = π and applying Theorem 5.3 we get the result. �

Example 2. Let h(t, λ) = λ2. Then we find that

xp(t) = −

∫ t

0

sin λ(t − s)
λ

λ2ds = cosλt − 1,

and the solution xn(t) of the problem (1.3)-(1.4) are given by

xn(t) = An

(
sin

(−1 + 4n) t
2

+ cos
(−1 + 4n) t

2

)
+ cosλt − 1.
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6. Conclusions

Here, we proved the existence of solutions x ∈ C[0, π] of the nonlocal boundary value problem of
the differential inclusion (1.1) with the nonlocal condition (1.2).
The maximal and minimal solutions of the problem (1.1)-(1.2) have been proved. The eigenvalues and
eigenfunctions of the homogeneous and nonhomogeneous equations (4.1) and (1.3) with the nonlocal
condition (1.2) have been obtained. Two examples have been studied to illustrate our results.
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