Research article

Stability of hyper homomorphisms and hyper derivations in complex Banach algebras

  • Received: 15 January 2022 Revised: 23 March 2022 Accepted: 25 March 2022 Published: 30 March 2022
  • MSC : 17B40, 39B52, 39B62, 39B72, 47B47

  • In this paper, we introduce the concept of hyper homomorphisms and hyper derivations in Banach algebras and we establish the stability of hyper homomorphisms and hyper derivations in Banach algebras for the following 3-additive functional equation:

    g(x1+x2,y1+y2,z1+z2)=2i,j,k=1g(xi,yj,zk).

    Citation: Yamin Sayyari, Mehdi Dehghanian, Choonkil Park, Jung Rye Lee. Stability of hyper homomorphisms and hyper derivations in complex Banach algebras[J]. AIMS Mathematics, 2022, 7(6): 10700-10710. doi: 10.3934/math.2022597

    Related Papers:

    [1] Bin Zhou, Xiujuan Ma, Fuxiang Ma, Shujie Gao . Robustness analysis of random hyper-networks based on the internal structure of hyper-edges. AIMS Mathematics, 2023, 8(2): 4814-4829. doi: 10.3934/math.2023239
    [2] Narjes Alabkary . Hyper-instability of Banach algebras. AIMS Mathematics, 2024, 9(6): 14012-14025. doi: 10.3934/math.2024681
    [3] Hashem Bordbar, Sanja Jančič-Rašovič, Irina Cristea . Regular local hyperrings and hyperdomains. AIMS Mathematics, 2022, 7(12): 20767-20780. doi: 10.3934/math.20221138
    [4] Abdelaziz Alsubie, Anas Al-Masarwah . MBJ-neutrosophic hyper $ BCK $-ideals in hyper $ BCK $-algebras. AIMS Mathematics, 2021, 6(6): 6107-6121. doi: 10.3934/math.2021358
    [5] Qi Xiao, Jin Zhong . Characterizations and properties of hyper-dual Moore-Penrose generalized inverse. AIMS Mathematics, 2024, 9(12): 35125-35150. doi: 10.3934/math.20241670
    [6] Shahbaz Ali, Muhammad Khalid Mahmmod, Raúl M. Falcón . A paradigmatic approach to investigate restricted hyper totient graphs. AIMS Mathematics, 2021, 6(4): 3761-3771. doi: 10.3934/math.2021223
    [7] Faik Babadağ, Ali Atasoy . On hyper-dual vectors and angles with Pell, Pell-Lucas numbers. AIMS Mathematics, 2024, 9(11): 30655-30666. doi: 10.3934/math.20241480
    [8] K. Tamilvanan, Jung Rye Lee, Choonkil Park . Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces. AIMS Mathematics, 2020, 5(6): 5993-6005. doi: 10.3934/math.2020383
    [9] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for $ \psi $-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [10] Ehsan Movahednia, Young Cho, Choonkil Park, Siriluk Paokanta . On approximate solution of lattice functional equations in Banach f-algebras. AIMS Mathematics, 2020, 5(6): 5458-5469. doi: 10.3934/math.2020350
  • In this paper, we introduce the concept of hyper homomorphisms and hyper derivations in Banach algebras and we establish the stability of hyper homomorphisms and hyper derivations in Banach algebras for the following 3-additive functional equation:

    g(x1+x2,y1+y2,z1+z2)=2i,j,k=1g(xi,yj,zk).



    The stability problem of functional equations originated from a question of Ulam [26] concerning the stability of group homomorphisms in 1940. Hyers [8] gave the first partial solution to {Ulam's question} for the case of approximate additive mappings in Banach spaces. Aoki [1] generalized Hyers' theorem for approximately additive mappings. In 1978, Rassias [22] generalized the theorem of Hyers by considering the stability problem with unbounded Cauchy differences. Rassias' influential paper [22] played a key role in the development of what we call {Hyers-Ulam stability} or {Hyers-Ulam-Rassias stability} of functional equations.

    Theorem 1.1. [22] Let f:EE bea mapping from a normed vector space E into a Banach space Esubject to the inequality

    f(a+b)f(a)f(b)ϵ(ap+bp), (1.1)

    for all a,bE, where ϵ>0 and p<1 are constants. Then, there exists a unique additivemapping T:EE such that

    f(a)T(a)2ϵ22pap, (1.2)

    for all aE. If p<0, then (1.1) holds for alla,b0, and (1.2) holds for a0. Also, if thefunction tf(ta) from R into E iscontinuous for each fixed aX, then T is R-linear.

    Note that if ϵ(ap+bp) is replaced by ϵ in (1.1), the resulting conclusion is Hyers' theorem.

    In 1991, Gajda [6], following the same approach as that by Rassias [22], gave an affirmative solution to the stability question for p>1. It was shown by Gajda [6] as well as by Rassias and Šemrl [23], that one cannot prove a Rassias-type theorem when p=1. Gǎvruta [7] obtained a generalized result of the Rassias theorem which allows the Cauchy difference to be controlled by a general unbounded function.

    The method provided by Hyers [8] which produces the additive function will be called a direct method. This method is the most important and useful tool to study the stability of different functional equations. The stability problems for several functional equations or inequalities have been extensively investigated by a number of authors and there are many interesting results, containing ternary homomorphisms and ternary derivations, concerning this problem (see [3, 4, 5, 9, 10, 11, 12, 17, 18, 19, 20, 21]). In this paper, we introduce hyper homomorphisms and hyperderivations in Banach algebras and we prove the Hyers-Ulam stability of hyper homomorphisms and hyper derivations in Banach algebras.

    The theory of stability of homomorphisms and derivations in Banach algebras is an important part of functional equations theory. It has several applications in dynamical systems, physics and connections with other parts of mathematics. With an increasing amount of theory and applications concerning Banach algebras, it is becoming necessary to ascertain which tools are applicable for handling them.

    Moreover, in modern industry, various analytical approaches for solving mathematical equations are widely applied in analysis of problems in packaging engineering, and so mathematical modeling and computation methods by using mathematical equations play an important role in application of packaging engineering. From now, we wish to note that mathematical equations for stability properties in this paper can have applications to engineering.

    During the last two decades, a number of articles and research monographs have been published on various generalizations and applications of the Hyers-Ulam stability to a number of functional equations and mappings, for example, Cauchy-Jensen mappings, k-additive mappings, invariant means, multiplicative mappings, bounded nth differences, convex functions, generalized orthogonality mappings, Euler-Lagrange functional equations, differential equations, and Navier-Stokes equations (see [2, 13, 14, 15, 24, 25, 27]).

    Let X be a complex Banach algebra. A mapping g:X×X×XX is 3-additive if

    g(x1+x2,y1+y2,z1+z2)=2i,j,k=1g(xi,yj,zk), (1.3)

    for all x1,y1,z1,x2,y2,z2X. A mapping g:X×X×XX is called 3-linear if g is 3-additive and C-linear for each variable. For an example, let g(x,y,z)=ax+by+cz for constants a,b,c and for all x,y,zX. Then g:X×X×XX is clearly 3-additive and 3-linear.

    Assume that X is a complex Banach algebra and that s and t are fixed complex numbers with 0<s<1 and 0<t<1 in the whole paper.

    In this section, we introduce the concept of hyper homomorphisms in Banach algebras and we establish the stability of hyper homomorphisms in Banach algebras by using the direct method.

    Definition 2.1. Let X be a complex Banach algebra. A mapping h:X×X×XX is called a hyper quadratic mapping if h satisfies

    8h(x1,y1,z1)=2i,j,k=1h(x1+(1)ix2,y1+(1)jy2,z1+(1)kz2), (2.1)

    for all x1,y1,z1,x2,y2,z2X.

    Definition 2.2. Let X be a complex Banach algebra. A 3-linear mapping h:X×X×XX is called a hyper homomorphism if h satisfies

    h(x1x2x3,y1y2y3,z1z2z3)=h(x1,x2,x3)h(y1,y2,y3)h(z1,z2,z3),

    for all x1,y1,z1,x2,y2,z2,x3,y3,z3X.

    Example 2.3. Let X be a complex Banach algebra and h1,h2,h3:XX be homomorphisms. Let h(x1x2x3,y1y2y3,z1z2z3)=h1(x1y1z1)h2(x2y2z2)h3(x3,y3,z3) for all x1,x2,x3,y1,y2,y3,z1,z2,z3X. Then h:X3X is a hyper homomorphism in case that X is commutative, but it may not be a hyper homomorphism in case that X is not commutative.

    Lemma 2.4. Let h:X×X×XX be a hyper quadratic mapping and h(2x,2y,2z)=8h(x,y,z) for all x,y,zX3, then h is 3-additive.

    Proof. Let x1,x2,y1,y2,z1 and z2 be arbitrary members in X. Define

    u1:=x1+x22,u2:=x1x22,v1:=y1+y22,v2:=y1y22,w1:=z1+z22andw2:=z1z22.

    By the use of (2.1) we have

    h(x1+x2,y1+y2,z1+z2)=h(2u1,2v1,2w1)=8h(u1,v1,w1)=2i,j,k=1h(u1+(1)iu2,v1+(1)jv2,w1+(1)kw2)=2i,j,k=1h(xi,yj,zk),

    which completes the proof.

    Theorem 2.5. If a mapping h:X3X satisfies

    h(0,a,b)=h(a,0,b)=h(a,b,0)=0,

    for all a,bX and

    8h(x1,y1,z1)2i,j,k=1h(x1+(1)ix2,y1+(1)jy2,z1+(1)kz2)8t(2i,j,k=1h(x1+(1)ix22,y1+(1)jy22,z1+(1)kz22)h(x1,y1,z1)), (2.2)

    for all (x1,y1,z1),(x2,y2,z2)X3, then the mapping h:X3X is hyper quadratic.

    Proof. Letting x1=x2:=x, y1=y2:=y and z1=z2:=z in (2.2), we get

    h(2x,2y,2z)8h(x,y,z)0,

    for all x,y,zX. So h(2x,2y,2z)=8h(x,y,z) for all x,y,zX. It follows from (2.2) that

    8h(x1,y1,z1)2i,j,k=1h(x1+(1)ix2,y1+(1)jy2,z1+(1)kz2)t(8h(x1,y1,z1)2i,j,k=1h(x1+(1)ix2,y1+(1)jy2,z1+(1)kz2)),

    for all (x1,y1,z1),(x2,y2,z2)X3. Thus

    8h(x1,y1,z1)=2i,j,k=1h(x1+(1)ix2,y1+(1)jy2,z1+(1)kz2),

    for all (x1,y1,z1),(x2,y2,z2)X3, since 0<t<1. So the mapping h is hyper quadratic.

    Theorem 2.6. Let ϕ:X6[0,) be a function such that

    j=183jϕ(x8j,y8j,z8j,x8j,y8j,z8j)<, (2.3)

    for all x,y,zX. Let h:X3X be a mapping satisfying

    h(0,a,b)=h(a,0,b)=h(a,b,0)=0,

    for all a,bX and

    8λh(x1,y1,z1)2i,j,k=1h(λx1+(1)iλx2,λy1+(1)jλy2,λz1+(1)kλz2)8t(λh(x1,y1,z1)2i,j,k=1h(λx1+(1)ix22,λy1+(1)jy22,λz1+(1)kz22))+ϕ(x1,y1,z1,x2,y2,z2), (2.4)

    for all λT1:={ξC:|ξ|=1} and all (x1,y1,z1),(x2,y2,z2)X3. If the mapping h:X3X satisfies

    h(x1x2x3,y1y2y3,z1z2z3)h(x1,x2,x3)h(y1,y2,y3)h(z1,z2,z3)ϕ(x1x2x3,y1y2y3,z1z2z3,x1x2x3,y1y2y3,z1z2z3), (2.5)

    for all x1,y1,z1,x2,y2,z2,x3,y3,z3X, then there exists a unique hyper homomorphism H:X×X×XX such that

    h(x,y,z)H(x,y,z)j=08jϕ(x2j+1,y2j+1,z2j+1,x2j+1,y2j+1,z2j+1). (2.6)

    for all x,y,zX.

    Proof. Letting λ=1, x1=x2:=x, y1=y2:=y and z1=z2:=z in (2.4), we get

    h(2x,2y,2z)8h(x,y,z)ϕ(x,y,z,x,y,z),

    and so

    h(x,y,z)8h(x2,y2,z2)ϕ(x2,y2,z2,x2,y2,z2),

    for all x,y,zX. Hence

    2lh(x2l,y2l,z2l)2l+3mh(x2l+m,y2l+m,z2l+m)m1j=02l+3jh(x2l+j,y2l+j,z2l+j)2l+3(j+1)h(x2l+j+1,y2l+j+1,z2l+j+1)=m1j=02l+3jh(x2l+j,y2l+j,z2l+j)8h(x2l+j+1,y2l+j+1,z2l+j+1)m1j=02l+3jϕ(x2l+j+1,y2l+j+1,z2l+j+1,x2l+j+1,y2l+j+1,z2l+j+1), (2.7)

    for all positive integers l,m and x,y,zX. It follows from (2.7) that the sequence {2l+3kh(x2l+k,y2l+k,z2l+k)} is Cauchy for all natural number l and for all (x,y,z)X3. Since X is a Banach space, the sequence {2l+3kh(x2l+k,y2l+k,z2l+k)} converges. So one can define the mapping H:X3X by

    H(x,y,z):=limn23kh(x2k,y2k,z2k),

    for all (x,y,z)X3. Moreover, letting l=0 and passing to the limit m in (2.7), we get (2.6). It folllows from (2.4) that

    8λH(x1,y1,z1)2i,j,k=1H(λx1+(1)iλx2,λy1+(1)jλy2,λz1+(1)kλz2)=limn8n8λh(x12n,y12n,z12n)2i,j,k=1h(λx1+(1)iλx22n,λy1+(1)jλy22n,λz1+(1)kλz22n)limn8n8t(λh(x12n,y12n,z12n)2i,j,k=1h(λx1+(1)iλx22n+1,λy1+(1)jλy22n+1,λz1+(1)kλz22n+1))+limn8nϕ(x12n,y12n,z12n,x22n,y22n,z22n)=t(8λH(x1,y1,z1)2i,j,k=1H(λx1+(1)iλx2,λy1+(1)jλy2,λz1+(1)kλz2)),

    for all (x1,y1,z1),(x2,y2,z2)X3 and λT1. Thus

    8λH(x1,y1,z1)2i,j,k=1H(λx1+(1)iλx2,λy1+(1)jλy2,λz1+(1)kλz2)t(8λH(x1,y1,z1)2i,j,k=1H(λx1+(1)iλx2,λy1+(1)jλy2,λz1+(1)kλz2)), (2.8)

    for all (x1,y1,z1),(x2,y2,z2)X3 and λT1. Let λ=1 in (2.8). By Theorem 2.5, the mapping H:X3X is 3-additive. Since 0<t<1,

    8λH(x1,y1,z1)=2i,j,k=1H(λx1+(1)iλx2,λy1+(1)jλy2,λz1+(1)kλz2),

    and H(λ(x1,y1,z1))=λH(x1,y1,z1) for all (x1,y1,z1)X3 and λT1. Since H is 3-additive, H:X3X is 3-linear (see [16]). It follows from (2.5) and the 3-additivity of H that

    H(x1x2x3,y1y2y3,z1z2z3)H(x1,x2,x3)H(y1,y2,y3)H(z1,z2,z3)=83kh(x1x2x38k,y1y2y38k,z1z2z38k)h(x12k,x22k,x32k)h(y12k,y22k,y32k)h(z12k,z22k,z32k)83kϕ(x1x2x38k,y1y2y38k,z1z2z38k,x1x2x38k,y1y2y38k,z1z2z38k),

    which tends to zero as k, by (2.3). So

    H(x1x2x3,y1y2y3,z1z2z3)=H(x1,x2,x3)H(y1,y2,y3)H(z1,z2,z3),

    for all x1,y1,z1,x2,y2,z2,x3,y3,z3X. This completes the proof.

    In this section, we introduce the concept of hyper derivation on Banach algebras and we establish the stability of hyper derivation on Banach algebras by using the direct method.

    Definition 3.1. Let X be a complex Banach algebra. A 3-linear mapping g:X×X×XX is called a hyper derivation if g satisfies

    g(x1x2,y1y2,z1z2)=x1y1z1g(x2,y2,z2)+g(x1,y1,z1)x2y2z2,

    for all x1,y1,z1,x2,y2,z2X.

    Lemma 3.2. If a mapping g:X3X satisfies

    g(x1+x2,y1+y2,z1+z2)2i,j,k=1g(xi,yj,zk)s(8g(x1+x22,y1+y22,z1+z22)2i,j,k=1g(xi,yj,zk)), (3.1)

    for all (x1,y1,z1),(x2,y2,z2)X3, then the mapping g:X3X is 3-additive.

    Proof. Letting x1=x2:=x, y1=y2:=y and z1=z2:=z in (3.1), we get

    g(2x,2y,2z)8g(x,y,z)0,

    for all x,y,zX. So g(2x,2y,2z)=8g(x,y,z) for all x,y,zX. It follows from (3.1) that

    g(x1+x2,y1+y2,z1+z2)2i,j,k=1g(xi,yj,zk)s(g(x1+x2,y1+y2,z1+z2)2i,j,k=1g(xi,yj,zk)),

    for all (x1,y1,z1),(x2,y2,z2)X3. Thus

    g(x1+x2,y1+y2,z1+z2)=2i,j,k=1g(xi,yj,zk),

    for all (x1,y1,z1),(x2,y2,z2)X3, since 0<s<1. So the mapping g:X3X is 3-additive.

    Theorem 3.3. Let ϕ:X6[0,) be a function such that

    j=164jϕ(x2j,y2j,z2j,x2j,y2j,z2j)<, (3.2)

    for all x,y,zX. Let g:X3X be a mapping satisfying

    g(λ(x1+x2,y1+y2,z1+z2))λ2i,j,k=1g(xi,yj,zk)s(8g(λ(x1+x22,y1+y22,z1+z22))λ2i,j,k=1g(xi,yj,zk))+ϕ(x1,y1,z1,x2,y2,z2), (3.3)

    for all λT1 and all (x1,y1,z1),(x2,y2,z2)X3. Here g(λ(x,y,z)):=g(λx,λy,λz). If the mapping g:X3X satisfies

    g(x1x2,y1y2,z1z2)x1y1z1g(x2,y2,z2)g(x1,y1,z1)x2y2z2ϕ(x1,x2,y1,y2,z1,z2), (3.4)

    for all (x1,y1,z1),(x2,y2,z2)X3, then there exists a unique hyper derivation D:X×X×XX such that

    g(x,y,z)D(x,y,z)j=08jϕ(x2j+1,y2j+1,z2j+1,x2j+1,y2j+1,z2j+1), (3.5)

    for all x,y,zX.

    Proof. Letting λ=1, x1=x2:=x, y1=y2:=y and z1=z2:=z in (3.3), we get

    g(2x,2y,2z)8g(x,y,z)ϕ(x,y,z,x,y,z),

    and so

    g(x,y,z)8g(x2,y2,z2)ϕ(x2,y2,z2,x2,y2,z2),

    for all x,y,zX. Hence

    8lg(x2l,y2l,z2l)8mg(x2m,y2m,z2m)m1j=l8jg(x2j,y2j,z2j)8j+1g(x2j+1,y2j+1,z2j+1)m1j=l8jϕ(x2j+1,y2j+1,z2j+1,x2j+1,y2j+1,z2j+1), (3.6)

    for all natural numbers l,m(m>l) and x,y,zX. It follows from (3.6) that the sequence {8kg(x2k,y2k,z2k)} is Cauchy for all (x,y,z)X3. Since X is a Banach space, the sequence {8kg(x2k,y2k,z2k)} converges. So one can define the mapping D:X3X by

    D(x,y,z):=limn8kg(x2k,y2k,z2k),

    for all (x,y,z)X3. Moreover, letting l=0 and passing to the limit m in (2.7), we get (3.5).

    It folllows from (3.3) that

    D(λ(x1+x2,y1+y2,z1+z2))λ2i,j,k=1D(xi,yj,zk)=limn8ng(λ(x1+x22n,y1+y22n,z1+z22n))λ2i,j,k=1g(xi2n,yj2n,zk2n)limn8ns(8g(λ(x1+x22n+1,y1+y22n+1,z1+z22n+1))λ2i,j,k=1g(xi2n,yj2n,zk2n))+limn8nϕ(x12n,y12n,z12n,x22n,y22n,z22n)=s(8D(λ(x1+x22,y1+y22,z1+z22))λ2i,j,k=1D(xi,yj,zk)),

    for all (x1,y1,z1),(x2,y2,z2)X3 and λT1. Thus

    D(λ(x1+x2,y1+y2,z1+z2))λ2i,j,k=1D(xi,yj,zk)s(8D(λ(x1+x22,y1+y22,z1+z22))λ2i,j,k=1D(xi,yj,zk)), (3.7)

    for all (x1,y1,z1),(x2,y2,z2)X3 and λT1. Let λ=1 in (3.7). By Theorem 3.2, the mapping D:X3X is 3-additive. It follows from (3.7) and the 3-additivity of D that

    D(λ(x1+x2,y1+y2,z1+z2))λ2i,j,k=1D(xi,yj,zk)s(D(λ(x1+x2,y1+y2,z1+z2))λ2i,j,k=1D(xi,yj,zk)),

    for all λT1, (x1,y1,z1) and (x2,y2,z2)X3. Since 0<s<1,

    D(λ(x1+x2,y1+y2,z1+z2))λ2i,j,k=1D(xi,yj,zk)=0,

    and D(λ(x1,y1,z1))=λD(x1,y1,z1) for all (x1,y1,z1),(x2,y2,z2)X3 and λT1. Since D is 3-additive, D:X3X is 3-linear (see [16]). It follows from (3.4) and the 3-additivity of D that

    D(x1x2,y1y2,z1z2)x1y1z1D(x2,y2,z2)D(x1,y1,z1)x2y2z2=64kg(x1x24k,y1y24k,z1z24k)x12ky12kz12kg(x22k,y22k,z22k)g(x12k,y12k,z12k)x22ky22kz22k64kϕ(x2k,y2k,z2k,x2k,y2k,z2k),

    which tends to zero as n, by (3.2). So

    D(x1x2,y1y2,z1z2)=x1y1z1D(x2,y2,z2)+D(x1,y1,z1)x2y2z2,

    for all x1,y1,z1,x2,y2,z2X. This completes the proof.

    We have introduced the concept of hyper homomorphisms and hyper derivations in Banach algebras and we have established the Hyers-Ulam stability of hyper homomorphisms and hyper derivations in Banach algebras for the 3-additive functional Eq (1.3).

    The authors declare that they have no competing interests.



    [1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn., 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064 doi: 10.2969/jmsj/00210064
    [2] C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Math. Sinica, 22 (2006), 1789–1796. https://doi.org/10.1007/s10114-005-0697-z doi: 10.1007/s10114-005-0697-z
    [3] M. Dehghanian, S. M. S. Modarres, Ternary γ-homomorphisms and ternary γ-derivations on ternary semigroups, J. Inequal. Appl., 2012 (2012), 34. https://doi.org/10.1186/1029-242X-2012-34
    [4] M. Dehghanian, S. M. S. Modarres, C. Park, D. Y. Shin, C-Ternary 3-derivations on C-ternary algebras, J. Inequal. Appl., 2013 (2013), 124. https://doi.org/10.1186/1029-242X-2013-124 doi: 10.1186/1029-242X-2013-124
    [5] M. Dehghanian, C. Park, C-Ternary 3-homomorphisms on C-ternary algebras, Results Math., 66 (2014), 87–98. https://doi.org/10.1007/s00025-014-0365-7 doi: 10.1007/s00025-014-0365-7
    [6] Z. Gajda, On stability of additive mappings, Internet. J. Math. Math. Sci., 14 (1991), 431–434.
    [7] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436. https://doi.org/10.1006/jmaa.1994.1211 doi: 10.1006/jmaa.1994.1211
    [8] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [9] D. H. Hyers, G. Isac, T. M. Rassias, Stability of functional equations in several variables, New York: Springer Science & Business Media, 1998.
    [10] G. Isac, T. M. Rassias, On the Hyers-Ulam stability of ψ-additive mappings, J. Approx. Theory, 72 (1993), 131–137. https://doi.org/10.1006/jath.1993.1010 doi: 10.1006/jath.1993.1010
    [11] M. Israr, G. Lu, Y. Jin, C. Park, A general additive functional inequality and derivation in Banach algebras, J. Math. Inequal., 15 (2021), 305–321. https://dx.doi.org/10.7153/jmi-2021-15-23 doi: 10.7153/jmi-2021-15-23
    [12] A. Najati, A. Ranjbari, On homomorphisms between C-ternary algebras, J. Math. Inequal., 1 (2007), 387–407. https://dx.doi.org/10.7153/jmi-01-33 doi: 10.7153/jmi-01-33
    [13] A. Najati, A. Ranjbari, Stability of homomorphisms for 3D Cauchy-Jensen type functional equation on C-ternary algebras, J. Math. Anal. Appl., 341 (2008), 62–79. https://doi.org/10.1016/j.jmaa.2007.09.025 doi: 10.1016/j.jmaa.2007.09.025
    [14] D. P. Nguyen, L. Nguyen, D. L. Le, Modified quasi boundary value method for inverse source biparabolic, Adv. Theory Nonlinear Anal. Appl., 4 (2020), 132–142. https://doi.org/10.31197/atnaa.752335 doi: 10.31197/atnaa.752335
    [15] D. P. Nguyen, V. C. H. Luu, E. Karapinar, J. Singh, H. D. Binh, H. C. Nguyen, Fractional order continuity of a time semi-linear fractional diffusion-wave system, Alex. Eng. J., 59 (2020), 4959–4968. https://doi.org/10.1016/j.aej.2020.08.054 doi: 10.1016/j.aej.2020.08.054
    [16] C. Park, Homomorphisms between Poisson JC-algebras, Bull. Braz. Math. Soc., 36 (2005), 79–97. https://doi.org/10.1007/s00574-005-0029-z doi: 10.1007/s00574-005-0029-z
    [17] C. Park, The stability of an additive (ρ1,ρ2)-functional inequality in Banach spaces, J. Math. Inequal., 13 (2019), 95–104. https://dx.doi.org/10.7153/jmi-2019-13-07 doi: 10.7153/jmi-2019-13-07
    [18] C. Park, Derivation-homomorphism functional inequality, J. Math. Inequal., 15 (2021), 95–105. https://dx.doi.org/10.7153/jmi-2021-15-09 doi: 10.7153/jmi-2021-15-09
    [19] C. Park, J. M. Rassias, A. Bodaghi, S. Kim, Approximate homomorphisms from ternary semigroups to modular spaces, RACSAM, 113 (2019), 2175–2188. https://doi.org/10.1007/s13398-018-0608-7 doi: 10.1007/s13398-018-0608-7
    [20] C. Park, M. T. Rassias, Additive functional equations and partial multipliers in C-algebras, RACSAM, 113 (2019), 2261–2275. https://doi.org/10.1007/s13398-018-0612-y doi: 10.1007/s13398-018-0612-y
    [21] J. M. Rassias, H. Kim, Approximate homomorphisms and derivations between C-ternary algebras, J. Math. Phys., 49 (2008), 063507. https://doi.org/10.1063/1.2942415 doi: 10.1063/1.2942415
    [22] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1 doi: 10.1090/S0002-9939-1978-0507327-1
    [23] T. M. Rassias, P. Šemrl, On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., 114 (1992), 989–993. https://doi.org/10.2307/2159617 doi: 10.2307/2159617
    [24] M. Sarfraz, Y. Li, Minimum functional equation and some Pexider-type functional equation on any group, AIMS Math., 6 (2021), 11305–11317. https://doi.org/10.3934/math.2021656 doi: 10.3934/math.2021656
    [25] G. G. Svetlin, Z. Khaled, New results on IBVP for class of nonlinear parabolic equations, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 202–216. https://doi.org/10.31197/atnaa.417824 doi: 10.31197/atnaa.417824
    [26] S. M. Ulam, Problems in modern mathematics, New York: John Wiley & Sons, 1964.
    [27] Z. Wang, Approximate mixed type quadratic-cubic functional equation, AIMS Math., 6 (2021), 3546–3561. https://doi.org/10.3934/math.2021211 doi: 10.3934/math.2021211
  • This article has been cited by:

    1. Yamin Sayyari, Mehdi Dehghanian, Choonkil Park, A system of biadditive functional equations in Banach algebras, 2023, 31, 2769-0911, 10.1080/27690911.2023.2176851
    2. Safoura Rezaei Aderyani, Reza Saadati, Donal O'Regan, Fehaid Salem Alshammari, Multi-super-stability of antiderivations in Banach algebras, 2022, 7, 2473-6988, 20143, 10.3934/math.20221102
    3. Siriluk Paokanta, Mehdi Dehghanian, Choonkil Park, Yamin Sayyari, A system of additive functional equations in complex Banach algebras, 2023, 56, 2391-4661, 10.1515/dema-2022-0165
    4. Mehdi Dehghanian, Choonkil Park, Yamin Sayyari, Ternary hom-ders in ternary Banach algebras, 2023, 0009-725X, 10.1007/s12215-023-00949-6
    5. Siriluk Donganont, Choonkil Park, Combined system of additive functional equations in Banach algebras, 2024, 22, 2391-5455, 10.1515/math-2023-0177
    6. Mehdi Dehghanian, Choonkil Park, Yamin Sayyari, Stability and nonstability of the radical Drygas type functional equation, 2024, 1972-6724, 10.1007/s40574-024-00436-5
    7. Yamin Sayyari, Mehdi Dehghanian, Choonkil Park, Pexider system of bi-additive and bi-quadratic functional equations, 2024, 32, 0971-3611, 2671, 10.1007/s41478-024-00762-z
    8. Mehdi Dehghanian, Yamin Sayyari, Siriluk Donganont, Choonkil Park, A Pexider system of additive functional equations in Banach algebras, 2024, 2024, 1029-242X, 10.1186/s13660-024-03104-6
    9. Safoura Rezaei Aderyani, Reza Saadati, Chenkuan Li, Tofigh Allahviranloo, 2024, Chapter 11, 978-3-031-55563-3, 275, 10.1007/978-3-031-55564-0_11
    10. Mehdi Dehghanian, Choonkil Park, Yamin Sayyari, Stability of a generalized Drygas functional equation via Brzdȩk’s fixed point method, 2025, 36, 1012-9405, 10.1007/s13370-025-01246-4
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1802) PDF downloads(67) Cited by(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog