Research article

Stability of hyper homomorphisms and hyper derivations in complex Banach algebras

  • Received: 15 January 2022 Revised: 23 March 2022 Accepted: 25 March 2022 Published: 30 March 2022
  • MSC : 17B40, 39B52, 39B62, 39B72, 47B47

  • In this paper, we introduce the concept of hyper homomorphisms and hyper derivations in Banach algebras and we establish the stability of hyper homomorphisms and hyper derivations in Banach algebras for the following 3-additive functional equation:

    $ \begin{align*} g(x_1+x_2, y_1+y_2, z_1+z_2) = \sum\limits_{i, j, k = 1}^2 g(x_i, y_j, z_k). \end{align*} $

    Citation: Yamin Sayyari, Mehdi Dehghanian, Choonkil Park, Jung Rye Lee. Stability of hyper homomorphisms and hyper derivations in complex Banach algebras[J]. AIMS Mathematics, 2022, 7(6): 10700-10710. doi: 10.3934/math.2022597

    Related Papers:

  • In this paper, we introduce the concept of hyper homomorphisms and hyper derivations in Banach algebras and we establish the stability of hyper homomorphisms and hyper derivations in Banach algebras for the following 3-additive functional equation:

    $ \begin{align*} g(x_1+x_2, y_1+y_2, z_1+z_2) = \sum\limits_{i, j, k = 1}^2 g(x_i, y_j, z_k). \end{align*} $



    加载中


    [1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn., 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064 doi: 10.2969/jmsj/00210064
    [2] C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Math. Sinica, 22 (2006), 1789–1796. https://doi.org/10.1007/s10114-005-0697-z doi: 10.1007/s10114-005-0697-z
    [3] M. Dehghanian, S. M. S. Modarres, Ternary $\gamma$-homomorphisms and ternary $\gamma$-derivations on ternary semigroups, J. Inequal. Appl., 2012 (2012), 34. https://doi.org/10.1186/1029-242X-2012-34
    [4] M. Dehghanian, S. M. S. Modarres, C. Park, D. Y. Shin, $C^*$-Ternary 3-derivations on $C^*$-ternary algebras, J. Inequal. Appl., 2013 (2013), 124. https://doi.org/10.1186/1029-242X-2013-124 doi: 10.1186/1029-242X-2013-124
    [5] M. Dehghanian, C. Park, $C^*$-Ternary 3-homomorphisms on $C^*$-ternary algebras, Results Math., 66 (2014), 87–98. https://doi.org/10.1007/s00025-014-0365-7 doi: 10.1007/s00025-014-0365-7
    [6] Z. Gajda, On stability of additive mappings, Internet. J. Math. Math. Sci., 14 (1991), 431–434.
    [7] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436. https://doi.org/10.1006/jmaa.1994.1211 doi: 10.1006/jmaa.1994.1211
    [8] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [9] D. H. Hyers, G. Isac, T. M. Rassias, Stability of functional equations in several variables, New York: Springer Science & Business Media, 1998.
    [10] G. Isac, T. M. Rassias, On the Hyers-Ulam stability of $\psi$-additive mappings, J. Approx. Theory, 72 (1993), 131–137. https://doi.org/10.1006/jath.1993.1010 doi: 10.1006/jath.1993.1010
    [11] M. Israr, G. Lu, Y. Jin, C. Park, A general additive functional inequality and derivation in Banach algebras, J. Math. Inequal., 15 (2021), 305–321. https://dx.doi.org/10.7153/jmi-2021-15-23 doi: 10.7153/jmi-2021-15-23
    [12] A. Najati, A. Ranjbari, On homomorphisms between $C^*$-ternary algebras, J. Math. Inequal., 1 (2007), 387–407. https://dx.doi.org/10.7153/jmi-01-33 doi: 10.7153/jmi-01-33
    [13] A. Najati, A. Ranjbari, Stability of homomorphisms for $3D$ Cauchy-Jensen type functional equation on $C^*$-ternary algebras, J. Math. Anal. Appl., 341 (2008), 62–79. https://doi.org/10.1016/j.jmaa.2007.09.025 doi: 10.1016/j.jmaa.2007.09.025
    [14] D. P. Nguyen, L. Nguyen, D. L. Le, Modified quasi boundary value method for inverse source biparabolic, Adv. Theory Nonlinear Anal. Appl., 4 (2020), 132–142. https://doi.org/10.31197/atnaa.752335 doi: 10.31197/atnaa.752335
    [15] D. P. Nguyen, V. C. H. Luu, E. Karapinar, J. Singh, H. D. Binh, H. C. Nguyen, Fractional order continuity of a time semi-linear fractional diffusion-wave system, Alex. Eng. J., 59 (2020), 4959–4968. https://doi.org/10.1016/j.aej.2020.08.054 doi: 10.1016/j.aej.2020.08.054
    [16] C. Park, Homomorphisms between Poisson $JC^*$-algebras, Bull. Braz. Math. Soc., 36 (2005), 79–97. https://doi.org/10.1007/s00574-005-0029-z doi: 10.1007/s00574-005-0029-z
    [17] C. Park, The stability of an additive $(\rho_1, \rho_2)$-functional inequality in Banach spaces, J. Math. Inequal., 13 (2019), 95–104. https://dx.doi.org/10.7153/jmi-2019-13-07 doi: 10.7153/jmi-2019-13-07
    [18] C. Park, Derivation-homomorphism functional inequality, J. Math. Inequal., 15 (2021), 95–105. https://dx.doi.org/10.7153/jmi-2021-15-09 doi: 10.7153/jmi-2021-15-09
    [19] C. Park, J. M. Rassias, A. Bodaghi, S. Kim, Approximate homomorphisms from ternary semigroups to modular spaces, RACSAM, 113 (2019), 2175–2188. https://doi.org/10.1007/s13398-018-0608-7 doi: 10.1007/s13398-018-0608-7
    [20] C. Park, M. T. Rassias, Additive functional equations and partial multipliers in $C^*$-algebras, RACSAM, 113 (2019), 2261–2275. https://doi.org/10.1007/s13398-018-0612-y doi: 10.1007/s13398-018-0612-y
    [21] J. M. Rassias, H. Kim, Approximate homomorphisms and derivations between $C^*$-ternary algebras, J. Math. Phys., 49 (2008), 063507. https://doi.org/10.1063/1.2942415 doi: 10.1063/1.2942415
    [22] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1 doi: 10.1090/S0002-9939-1978-0507327-1
    [23] T. M. Rassias, P. Šemrl, On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., 114 (1992), 989–993. https://doi.org/10.2307/2159617 doi: 10.2307/2159617
    [24] M. Sarfraz, Y. Li, Minimum functional equation and some Pexider-type functional equation on any group, AIMS Math., 6 (2021), 11305–11317. https://doi.org/10.3934/math.2021656 doi: 10.3934/math.2021656
    [25] G. G. Svetlin, Z. Khaled, New results on IBVP for class of nonlinear parabolic equations, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 202–216. https://doi.org/10.31197/atnaa.417824 doi: 10.31197/atnaa.417824
    [26] S. M. Ulam, Problems in modern mathematics, New York: John Wiley & Sons, 1964.
    [27] Z. Wang, Approximate mixed type quadratic-cubic functional equation, AIMS Math., 6 (2021), 3546–3561. https://doi.org/10.3934/math.2021211 doi: 10.3934/math.2021211
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1462) PDF downloads(67) Cited by(10)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog