Research article

Conditionally oscillatory linear differential equations with coefficients containing powers of natural logarithm

  • Received: 08 January 2022 Revised: 04 March 2022 Accepted: 11 March 2022 Published: 30 March 2022
  • MSC : 34C10

  • In this paper, we study linear differential equations whose coefficients consist of products of powers of natural logarithm and very general continuous functions. Recently, using the Riccati transformation, we have identified a new type of conditionally oscillatory linear differential equations together with the critical oscillation constant. The studied equations are a generalization of these equations. Applying the modified Prüfer angle, we prove that they remain conditionally oscillatory with the same critical oscillation constant.

    Citation: Petr Hasil, Michal Veselý. Conditionally oscillatory linear differential equations with coefficients containing powers of natural logarithm[J]. AIMS Mathematics, 2022, 7(6): 10681-10699. doi: 10.3934/math.2022596

    Related Papers:

  • In this paper, we study linear differential equations whose coefficients consist of products of powers of natural logarithm and very general continuous functions. Recently, using the Riccati transformation, we have identified a new type of conditionally oscillatory linear differential equations together with the critical oscillation constant. The studied equations are a generalization of these equations. Applying the modified Prüfer angle, we prove that they remain conditionally oscillatory with the same critical oscillation constant.



    加载中


    [1] H. Adiguzel, Oscillatory behavior of solutions of certain fractional difference equations, Adv. Differ. Equ., 2018 (2018), 445. http://dx.doi.org/10.1186/s13662-018-1905-3 doi: 10.1186/s13662-018-1905-3
    [2] H. Adiguzel, Oscillation theorems for nonlinear fractional difference equations, Bound. Value Probl., 2018 (2018), 178. http://dx.doi.org/10.1186/s13661-018-1098-4 doi: 10.1186/s13661-018-1098-4
    [3] R. P. Agarwal, A. R. Grace, D. O'Regan, Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations, Springer Science & Business Media, 2002.
    [4] J. Baoguo, L. Erbe, A. Peterson, A Wong-type oscillation theorem for second order linear dynamic equations on time scales, J. Differ. Equ. Appl., 16 (2010), 15–36. http://dx.doi.org/10.1080/10236190802409312 doi: 10.1080/10236190802409312
    [5] G. Bognár, O. Došlý, Conditional oscillation and principal solution of generalized half-linear differential equation, Publ. Math. Debrecen, 82 (2013), 451–459.
    [6] M. Bohner, S. R. Grace, I. Sager, E. Tunc, Oscillation of third-order nonlinear damped delay differential equations, Appl. Math. Comput., 278 (2016), 21–32. http://dx.doi.org/10.1016/j.amc.2015.12.036 doi: 10.1016/j.amc.2015.12.036
    [7] Z. Došlá, P. Hasil, S. Matucci, M. Veselý, Euler type linear and half-linear differential equations and their non-oscillation in the critical oscillation case, J. Inequal. Appl., 2019 (2019), 189. http://dx.doi.org/10.1186/s13660-019-2137-0 doi: 10.1186/s13660-019-2137-0
    [8] O. Došlý, J. Jaroš, M. Veselý, Generalized Prüfer angle and oscillation of half-linear differential equations, Appl. Math. Lett., 64 (2017), 34–41. http://dx.doi.org/10.1016/J.AML.2016.08.004 doi: 10.1016/J.AML.2016.08.004
    [9] O. Došlý, J. Řezníčková, A remark on an oscillation constant in the half-linear oscillation theory, Appl. Math. Lett., 23 (2010), 971–974. http://dx.doi.org/10.1016/j.aml.2010.04.019 doi: 10.1016/j.aml.2010.04.019
    [10] O. Došlý, M. Veselý, Oscillation and non-oscillation of Euler type half-linear differential equations, J. Math. Anal. Appl., 429 (2015), 602–621. http://dx.doi.org/10.1016/j.jmaa.2015.04.030 doi: 10.1016/j.jmaa.2015.04.030
    [11] Á. Elbert, A. Schneider, Perturbations of half-linear Euler differential equation, Results Math., 37 (2000), 56–83. http://dx.doi.org/10.1007/BF03322512 doi: 10.1007/BF03322512
    [12] L. Erbe, J. Baoguo, A. Peterson, Oscillation and nonoscillation of solutions of second order linear dynamic equations with integrable coefficients on time scales, Appl. Math. Comput., 215 (2009), 1868–1885. http://dx.doi.org/10.1016/j.amc.2009.07.060 doi: 10.1016/j.amc.2009.07.060
    [13] S. Fišnarová, Z. Pátíková, Hille-Nehari type criteria and conditionally oscillatory half-linear differential equations, Electron. J. Qual. Theo. Diff. Equ., 2019 (2019), 71. https://doi.org/10.14232/ejqtde.2019.1.71 doi: 10.14232/ejqtde.2019.1.71
    [14] S. Fišnarová, Z. Pátíková, Perturbed generalized half-linear Riemann-Weber equation-further oscillation results, Electron. J. Qual. Theo. Diff. Equ., 2017 (2017), 69. https://doi.org/10.14232/ejqtde.2017.1.69 doi: 10.14232/ejqtde.2017.1.69
    [15] K. Fujimoto, N. Yamaoka, Oscillation constants for Euler type differential equations involving the $p(t)$-Laplacian, J. Math. Anal. Appl., 470 (2019), 1238–1250. http://dx.doi.org/10.1016/j.jmaa.2018.10.063 doi: 10.1016/j.jmaa.2018.10.063
    [16] F. Gesztesy, M. Ünal, Perturbative oscillation criteria and Hardy-type inequalities, Math. Nachr., 189 (1998), 121–144. http://dx.doi.org/10.1002/mana.19981890108 doi: 10.1002/mana.19981890108
    [17] P. Hasil, Conditional oscillation of half-linear differential equations with periodic coefficients, Arch. Math. (Brno), 44 (2008), 119–131.
    [18] P. Hasil, J. Kisel'ák, M. Pospíšil, M. Veselý, Nonoscillation of half-linear dynamic equations on time scales, Math. Methods Appl. Sci., 44 (2021), 8775–8797. http://dx.doi.org/10.1002/mma.7304 doi: 10.1002/mma.7304
    [19] P. Hasil, J. Šišoláková, M. Veselý, Averaging technique and oscillation criterion for linear and half-linear equations, Appl. Math. Lett., 92 (2019), 62–69. http://dx.doi.org/10.1016/j.aml.2019.01.013 doi: 10.1016/j.aml.2019.01.013
    [20] P. Hasil, M. Veselý, Critical oscillation constant for difference equations with almost periodic coefficients, Abstract Appl. Anal., 2012 (2012), 471435. http://dx.doi.org/10.1155/2012/471435 doi: 10.1155/2012/471435
    [21] P. Hasil, M. Veselý, New conditionally oscillatory class of equations with coefficients containing slowly varying and periodic functions, J. Math. Anal. Appl., 494 (2021), 124585. http://dx.doi.org/10.1016/j.jmaa.2020.124585 doi: 10.1016/j.jmaa.2020.124585
    [22] P. Hasil, M. Veselý, Oscillation and non-oscillation criteria for linear and half-linear difference equations, J. Math. Anal. Appl., 452 (2017), 401–428. http://dx.doi.org/10.1016/j.jmaa.2017.03.012 doi: 10.1016/j.jmaa.2017.03.012
    [23] P. Hasil, M. Veselý, Oscillation and non-oscillation of half-linear differential equations with coefficients determined by functions having mean values, Open Math., 16 (2018), 507–521. http://dx.doi.org/10.1515/math-2018-0047 doi: 10.1515/math-2018-0047
    [24] P. Hasil, M. Veselý, Oscillation constant for modified Euler type half-linear equations, Electron. J. Differ. Equ., 2015 (2015), 220.
    [25] P. Hasil, M. Veselý, Oscillation result for half-linear dynamic equations on timescales and its consequences, Math. Methods Appl. Sci., 42 (2019), 1921–1940. http://dx.doi.org/10.1002/mma.5485 doi: 10.1002/mma.5485
    [26] P. Hasil, M. Veselý, Oscillatory and non-oscillatory solutions of dynamic equations with bounded coefficients, Electron. J. Differ. Equ., 2018 (2018), 24.
    [27] P. Hasil, M. Veselý, Prüfer angle and non-oscillation of linear equations with quasiperiodic data, Monatsh. Math., 189 (2019), 101–124. http://dx.doi.org/10.1007/s00605-018-1232-5 doi: 10.1007/s00605-018-1232-5
    [28] A. Hongyo, N. Yamaoka, General solutions of second-order linear difference equations of Euler type, Opuscula Math., 37 (2017), 389–402. http://dx.doi.org/10.7494/OpMath.2017.37.3.389 doi: 10.7494/OpMath.2017.37.3.389
    [29] J. Jaroš, M. Veselý, Conditional oscillation of Euler type half-linear differential equations with unbounded coefficients, Studia Sci. Math. Hung., 53 (2016), 22–41. http://dx.doi.org/10.1556/012.2015.1323 doi: 10.1556/012.2015.1323
    [30] W. G. Kelley, A. C. Peterson, The theory of differential equations: Classical and qualitative, New York: Springer, 2010.
    [31] M. R. S. Kulenović, Ć. Ljubović, Necessary and sufficient conditions for the oscillation of a second order linear differential equation, Math. Nachr., 213 (2000), 105–115. http://dx.doi.org/10.1002/(SICI)1522-2616(200005)213:1<105::AID-MANA105>3.0.CO;2-M doi: 10.1002/(SICI)1522-2616(200005)213:1<105::AID-MANA105>3.0.CO;2-M
    [32] T. Kusano, J. Manojlović, T. Tanigawa, Comparison theorems for perturbed half-linear Euler differential equations, Int. J. Appl. Math. Stat., 9 (2007), 77–94.
    [33] A. Misir, B. Mermerkaya, Critical oscillation constant for half linear differential equations which have different periodic coefficients, Gazi U. J. Sci., 29 (2016), 79–86.
    [34] Z. Opial, Sur les intégrales oscillantes de l'équation différentielle $u''+f(t)u = 0$, Ann. Polon. Math., 4 (1958), 308–313.
    [35] Z. Pátíková, Integral comparison criteria for half-linear differential equations seen as a perturbation, Mathematics, 9 (2021), 502. http://dx.doi.org/10.3390/math9050502 doi: 10.3390/math9050502
    [36] P. Řehák, A critical oscillation constant as a variable of time scales for half-linear dynamic equations, Math. Slovaca, 60 (2010), 237–256. http://dx.doi.org/10.2478/s12175-010-0009-7 doi: 10.2478/s12175-010-0009-7
    [37] K. M. Schmidt, Critical coupling constant and eigenvalue asymptotics of perturbed periodic Sturm-Liouville operators, Commun. Math. Phys., 211 (2000), 465–485. http://dx.doi.org/10.1007/s002200050822 doi: 10.1007/s002200050822
    [38] K. M. Schmidt, Oscillation of perturbed Hill equation and lower spectrum of radially periodic Schrödinger operators in the plane, Proc. Amer. Math. Soc., 127 (1999), 2367–2374. http://dx.doi.org/10.1090/S0002-9939-99-05069-8 doi: 10.1090/S0002-9939-99-05069-8
    [39] V. N. Shevelo, V. G. Štelik, Some problems in the oscillation of solutions of nonlinear, non-autonomous second-order equations, Dokl. Akad. Nauk SSSR, 149 (1963), 276–279.
    [40] J. Šišoláková, Non-oscillation of linear and half-linear differential equations with unbounded coefficients, Math. Methods Appl. Sci., 44 (2021), 1285–1297. http://dx.doi.org/10.1002/mma.6828 doi: 10.1002/mma.6828
    [41] J. Sugie, Nonoscillation criteria for second-order nonlinear differential equations with decaying coefficients, Math. Nachr., 281 (2008), 1624–1637. http://dx.doi.org/10.1002/mana.200510702 doi: 10.1002/mana.200510702
    [42] J. Sugie, M. Onitsuka, A non-oscillation theorem for nonlinear differential equations with $p$-Laplacian, P. Roy. Soc. Edinb. A, 136 (2006), 633–647. http://dx.doi.org/10.1017/S0308210500005096 doi: 10.1017/S0308210500005096
    [43] E. Tunc, S. Sahin, J. R. Graef, S. Pinelas, New oscillation criteria for third-order differential equations with bounded and unbounded neutral coefficients, Electron. J. Qual. Theo. Diff. Equ., 2021 (2021), 46. https://doi.org/10.14232/ejqtde.2021.1.46 doi: 10.14232/ejqtde.2021.1.46
    [44] M. Veselý, P. Hasil, Oscillation constants for half-linear difference equations with coefficients having mean values, Adv. Differ. Equ., 2015 (2015), 210. http://dx.doi.org/10.1186/s13662-015-0544-1 doi: 10.1186/s13662-015-0544-1
    [45] J. Vítovec, Critical oscillation constant for Euler-type dynamic equations on time scales, Appl. Math. Comput., 243 (2014), 838–848. http://dx.doi.org/10.1016/j.amc.2014.06.066 doi: 10.1016/j.amc.2014.06.066
    [46] D. Willett, Classification of second order linear differential equations with respect to oscillation, Adv. Math., 3 (1969), 594–623. http://dx.doi.org/10.1016/0001-8708(69)90011-5 doi: 10.1016/0001-8708(69)90011-5
    [47] D. Willett, On the oscillatory behavior of the solutions of second order linear differential equations, Ann. Pol. Math., 21 (1969), 175–194.
    [48] J. S. W. Wong, Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients, Trans. Amer. Math. Soc., 144 (1969), 197–215. http://dx.doi.org/10.1090/S0002-9947-1969-0251305-6 doi: 10.1090/S0002-9947-1969-0251305-6
    [49] J. S. W. Wong, Second order linear oscillation with integrable coefficients, Bull. Amer. Math. Soc., 74 (1968), 909–911. http://dx.doi.org/10.1090/S0002-9904-1968-12078-6 doi: 10.1090/S0002-9904-1968-12078-6
    [50] N. Yamaoka, Oscillation and nonoscillation criteria for second-order nonlinear difference equations of Euler type, Proc. Amer. Math. Soc., 146 (2018), 2069–2081. http://dx.doi.org/10.1090/proc/13888 doi: 10.1090/proc/13888
    [51] A. Zettl, Sturm-Liouville theory, Providence: American Mathematical Society, 2005.
    [52] Y. Zhou, B. Ahmad, A. Alsaedi, Necessary and sufficient conditions for oscillation of second-order dynamic equations on time scales, Math. Methods Appl. Sci., 42 (2019), 4488–4497. http://dx.doi.org/10.1002/mma.5672 doi: 10.1002/mma.5672
    [53] Y. Zhou, B. Ahmad, A. Alsaedi, Oscillation and nonoscillation theorems of neutral dynamic equations on time scales, Adv. Differ. Equ., 2019 (2019), 404. http://dx.doi.org/10.1186/s13662-019-2342-7 doi: 10.1186/s13662-019-2342-7
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1363) PDF downloads(70) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog