In this paper, we give some relations between Gauss sums of order 3. As application, we give the number of solutions of some cubic diagonal equations. These generalize the earlier results obtained by Hong-Zhu and solve the sign problem raised by Zhang-Zhang.
Citation: Wenxu Ge, Weiping Li, Tianze Wang. A remark for Gauss sums of order 3 and some applications for cubic congruence equations[J]. AIMS Mathematics, 2022, 7(6): 10671-10680. doi: 10.3934/math.2022595
In this paper, we give some relations between Gauss sums of order 3. As application, we give the number of solutions of some cubic diagonal equations. These generalize the earlier results obtained by Hong-Zhu and solve the sign problem raised by Zhang-Zhang.
[1] | B. Berndt, R. Evans, K. Williams, Gauss and Jacobi sums, Math. Gaz., 83 (1999), 349–351. https://doi.org/10.2307/3619097 doi: 10.2307/3619097 |
[2] | S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. https://doi.org/10.1016/0022-314X(77)90010-5 doi: 10.1016/0022-314X(77)90010-5 |
[3] | S. Chowla, J. Cowles, M. Cowles, The number of zeroes of $x^3 + y^3 + cz^3$ in certain finite fields, J. Reine Angew. Math., 299 (1978), 406–410. https://doi.org/10.1515/crll.1978.299-300.406 doi: 10.1515/crll.1978.299-300.406 |
[4] | C. F. Gauss, Disquisitiones arithmeticae, New Haven: Yale UnYale University Press, 1966. |
[5] | H. Ito, An application of a product formula for the cubic Gauss sum, J. Number Theory, 135 (2014), 139–150. https://doi.org/10.1016/j.jnt.2013.08.005 doi: 10.1016/j.jnt.2013.08.005 |
[6] | H. Ito, A note on a product formula for the cubic Gauss sum, Acta Arith., 152 (2012), 11–21. https://doi.org/10.4064/aa152-1-2 doi: 10.4064/aa152-1-2 |
[7] | S. F. Hong, C. X. Zhu, On the number of zeros of diagonal cubic forms over finite fields, Forum Math., 33 (2021), 697–708. https://doi.org/10.1515/forum-2020-0354 doi: 10.1515/forum-2020-0354 |
[8] | X. Liu, Some identities involving Gauss sums, AIMS Math., 7 (2022), 3250–3257. https://doi.org/10.3934/math.2022180 doi: 10.3934/math.2022180 |
[9] | X. X. Lv, W. P. Zhang, The generalized quadratic Gauss sums and its sixth power mean, AIMS Math., 6 (2021), 11275–11285. https://doi.org/10.3934/math.2021654 doi: 10.3934/math.2021654 |
[10] | K. Momihara, Pure Gauss sums and skew Hadamard difference sets, Finite Fields Th. App., 77 (2022), 101932. https://doi.org/10.1016/j.ffa.2021.101932 doi: 10.1016/j.ffa.2021.101932 |
[11] | Y. Zhao, W. P. Zhang, X. X. Lv, A certain new Gauss sum and its fourth power mean, AIMS Math., 5 (2020), 5004–5011. https://doi.org/10.3934/math.2020321 doi: 10.3934/math.2020321 |
[12] | W. P. Zhang, J. Y. Hu, The number of solutons of the diagonal cubic congruence equation mod $p$, Math. Rep., 20 (2018), 73–80. |
[13] | W. P. Zhang, X. D. Yuan, On the classical Gauss sums and their some new identities, AIMS Math., 7 (2022), 5860–5870. https://doi.org/10.3934/math.2022325 doi: 10.3934/math.2022325 |
[14] | H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 19 (2017), 75–83. |