Research article Special Issues

Some identities involving Gauss sums

  • We calculate several identities involving some Gauss sums of the 2k-order character modulo an odd prime p by using the elementary and analytic methods, and finally give several exact and interesting formulae for them. The properties of the classical Gauss sums play an important role in the proof of this paper.

    Citation: Xi Liu. Some identities involving Gauss sums[J]. AIMS Mathematics, 2022, 7(2): 3250-3257. doi: 10.3934/math.2022180

    Related Papers:

    [1] Wenpeng Zhang, Xiaodan Yuan . On the classical Gauss sums and their some new identities. AIMS Mathematics, 2022, 7(4): 5860-5870. doi: 10.3934/math.2022325
    [2] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo $ p $. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [3] Xiaoxue Li, Wenpeng Zhang . A note on the hybrid power mean involving the cubic Gauss sums and Kloosterman sums. AIMS Mathematics, 2022, 7(9): 16102-16111. doi: 10.3934/math.2022881
    [4] Jianghua Li, Xi Zhang . On the character sums analogous to high dimensional Kloosterman sums. AIMS Mathematics, 2022, 7(1): 294-305. doi: 10.3934/math.2022020
    [5] Hu Jiayuan, Chen Zhuoyu . On distribution properties of cubic residues. AIMS Mathematics, 2020, 5(6): 6051-6060. doi: 10.3934/math.2020388
    [6] Xue Han, Tingting Wang . The hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums. AIMS Mathematics, 2024, 9(2): 3722-3739. doi: 10.3934/math.2024183
    [7] Wenjia Guo, Yuankui Ma, Tianping Zhang . New identities involving Hardy sums $S_3(h, k)$ and general Kloosterman sums. AIMS Mathematics, 2021, 6(2): 1596-1606. doi: 10.3934/math.2021095
    [8] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [9] Wenjia Guo, Xiaoge Liu, Tianping Zhang . Dirichlet characters of the rational polynomials. AIMS Mathematics, 2022, 7(3): 3494-3508. doi: 10.3934/math.2022194
    [10] Yan Ma, Di Han . On the high-th mean of one special character sums modulo a prime. AIMS Mathematics, 2023, 8(11): 25804-25814. doi: 10.3934/math.20231316
  • We calculate several identities involving some Gauss sums of the 2k-order character modulo an odd prime p by using the elementary and analytic methods, and finally give several exact and interesting formulae for them. The properties of the classical Gauss sums play an important role in the proof of this paper.



    Let q>1 be an integer and let χ be Dirichlet character modulo q. The Gauss sums G(m,χ;q) is defined as

    G(m,χ;q)=qa=1χ(a)e(maq),

    where m is integer and e(y)=e2πiy.

    Gauss sums is very important in the analytic number theory and related research filed. Many scholars studied its properties and obtained a series of interesting results (see [1-4,6,7,9-14,17,18]). For example, let χ be the primitive character modulo q, we have

    G(m,χ;q)=¯χ(m)G(1,χ;q)¯χ(m)τ(χ)  and  |τ(χ)|=q,

    where τ(χ)=qb=1χ(b)e(bq) and ¯χ is the complex conjugate of χ.

    Berndt and Evans [3] studied the properties of cubic Gauss sums. Zhang and Hu [15] studied the number of the solutions of the diagonal cubic congruence equation mod p, they obtained the following results: Let p be a prime with p1mod3. Then for any third-order character λ modulo p, one has the identity

    τ3(λ)+τ3(¯λ)=dp, (1.1)

    where d is uniquely determined by 4p=d2+27b2 and d1mod3.

    In addition, Chen and Zhang [8] studied the case of the fourth-order character modulo p, and obtained an identity (see the Lemma 1). Chen [5] studied the properties of the Gauss sums of the sixth-order character modulo p. It is not hard to see from [5,8,15], the number of these characters is 2. What about the number of the characters >2? Motivated by that, Zhang et al. [16] studied the eight-order and twelve-order characters.

    In this article, we shall further study the generalization. That is, the number of the characters is ϕ(2k)=2k14. We prove several identities involving the Gauss sums of the 2k-order character modulo an odd prime p with p1mod2k(k3). We give several exact and interesting formulae for them.

    Theorem 1. Let p be an odd prime with p1mod16. If χ16 denotes asixteen-order character modulo p, then we have the identity

    |τ4(χ716)τ4(χ16)+τ4(χ516)τ4(χ316)|=|τ4(χ916)τ4(χ1516)+τ4(χ1116)τ4(χ1316)|=2|α|p,

    where α=12p1a=1(a+ˉap), ˉa denotes the multiplicative inverse of a modulo p, and (p) denotes the Legendre's symbol modulo p.

    Theorem 2. Let p be an odd prime with p1mod32. If χ32 denotes a 32-order character modulo p, then we have the identity

    |τ4(χ732)τ4(χ1532)τ4(χ32)τ4(χ932)+τ4(χ532)τ4(χ1332)τ4(χ332)τ4(χ1132)|=2|α|p.

    More generally, for any positive integer k, we have the following theorem.

    Theorem 3. Let k5 be an integer. For any prime p with p1mod2k, if χ2k=ψ denotes a 2k-order character modulo p, then we have the identity

    |2k11j=1j1mod8τ4(ψj)2k11h=1h1mod8τ4(ψh)+2k11j=1j3mod8τ4(ψj)2k11h=1h3mod8τ4(ψh)|=2|α|p.

    In this section, we will give several lemmas by using the relevant properties of character sums.

    Lemma 1. Let p be a prime with p1mod4, then for any fourth-order character χ4 modulo p, we have

    τ2(χ4)+τ2(¯χ4)=2pα,

    where α=12p1a=1(a+ˉap), and (p)=χ2 denotes the Legendre's symbol modulo p.

    Proof. See Lemma 3 in [7].

    Lemma 2. Let p be a prime with p1mod4. Then for any non-principal character ψmodp, we have the identity

    τ(¯ψ2)=¯ψ(4)pτ(¯ψχ2)τ(ψ).

    Proof. From the properties of the classical Gauss sums we have

    p1a=0ψ(a21)=p1a=0ψ((a+1)21)=p1a=1ψ(a2+2a)=p1a=1ψ(a)ψ(a+2)=1τ(¯ψ)p1a=1ψ(a)p1b=1¯ψ(b)e(b(a+2)p)=1τ(¯ψ)p1b=1¯ψ(b)p1a=1ψ(a)e(b(a+2)p)=τ(ψ)τ(¯ψ)p1b=1¯ψ(b)¯ψ(b)e(2bp)=τ(ψ)τ(¯ψ)p1b=1¯ψ2(b)e(2bp)=ψ(4)τ(¯ψ2)τ(ψ)τ(¯ψ). (2.1)

    On the other hand, for any integer b with (b,p)=1, we have the identity

    p1a=0e(ba2p)=1+p1a=1(1+χ2(a))e(bap)=p1a=1χ2(a)e(bap)=χ2(b)p,

    so note that χ2(1)=1 we also have the identity

    p1a=0ψ(a21)=1τ(¯ψ)p1a=0p1b=1¯ψ(b)e(b(a21)p)=1τ(¯ψ)p1b=1¯ψ(b)e(bp)p1a=0e(ba2p)=τ(χ2)τ(¯ψ)p1b=1¯ψ(b)χ2(b)e(bp)=pτ(¯ψ)p1b=1¯ψχ2(b)e(bp)=¯ψ(1)pτ(¯ψχ2)τ(¯ψ). (2.2)

    Combining (2.1) and (2.2) we have the identity

    τ(¯ψ2)=¯ψ(4)pτ(¯ψχ2)τ(ψ).

    This proves Lemma 2.

    Lemma 3. Let p be an odd prime with p1mod8. If χ8 is an 8-order character modulo p, then we have

    |τ4(χ8)+τ4(χ38)|=2p32|α|.

    Proof. Taking ψ=χ8, then ψ2=χ4 is a four-order character modulo p. Note that ψ2(4)=1, from Lemmas 1 and 2 we have

    2pα=τ2(¯ψ2)+τ2(ψ2)=pτ2(¯ψχ2)τ2(ψ)+pτ2(ψχ2)τ2(¯ψ)

    or

    τ2(¯ψχ2)τ2(ψ)+τ2(ψχ2)τ2(¯ψ)=2αp. (2.3)

    Note that ¯ψχ2=ψ3, ¯ψ=ψ7 and τ2(χ58)τ2(χ78)=τ2(χ8)τ2(χ38), from (2.3) we have the identity

    τ4(χ8)+τ4(χ38)=2αpτ2(χ8)τ2(χ38). (2.4)

    Now Lemma 3 follows from (2.4).

    In this section, we shall give the proof of all results by using the properties of the classical Gauss sums, the elementary and analytic methods. For Theorem 1, Let p be an odd prime with p1mod16, and χ16 is a sixteen-order character modulo p, then from Lemma 2 we have

    τ4(¯χ8)=¯χ416(4)p2τ4(χ716)τ4(χ16)=p2τ4(χ716)τ4(χ16) (3.1)

    and

    τ4(¯χ38)=¯χ1216(4)p2τ4(χ2116)τ4(χ316)=p2τ4(χ516)τ4(χ316). (3.2)

    Applying (3.1), (3.2) and Lemma 3 we have

    2p32|α|=|τ4(χ8)+τ4(χ38)|=|τ4(¯χ8)+τ4(¯χ38)|=p2|τ4(χ716)τ4(χ16)+τ4(χ516)τ4(χ316)|

    or identity

    |τ4(χ716)τ4(χ16)+τ4(χ516)τ4(χ316)|=2|α|p.

    This proves Theorem 1.

    Now we prove the Theorem 2. Let p be an odd prime with p1mod32, and χ32 is a 32-order character modulo p, then from Lemma 2 we have

    τ4(¯χ16)=¯χ432(4)p2τ4(χ1532)τ4(χ32)=¯χ4(2)p2τ4(χ1532)τ4(χ32) (3.3)

    and

    τ4(¯χ716)=¯χ2832(4)p2τ4(χ10532)τ4(χ732)=χ4(2)p2τ4(χ932)τ4(χ732). (3.4)

    Since χ24(2)=χ2(2)=1, from (3.3) and (3.4) we get

    τ4(¯χ716)τ4(¯χ16)=τ4(χ32)τ4(χ932)τ4(χ732)τ4(χ1532) (3.5)

    and

    τ4(¯χ516)τ4(¯χ316)=τ4(χ332)τ4(χ1132)τ4(χ532)τ4(χ1332). (3.6)

    Noting that

    |τ4(¯χ32)τ4(¯χ932)τ4(¯χ732)τ4(¯χ1532)+τ4(¯χ332)τ4(¯χ1132)τ4(¯χ532)τ4(¯χ1332)|=|τ4(χ732)τ4(χ1532)τ4(χ32)τ4(χ932)+τ4(χ532)τ4(χ1332)τ4(χ332)τ4(χ1132)|. (3.7)

    Combining (3.5)–(3.7) and Theorem 1 we immediately have the identity

    |τ4(χ732)τ4(χ1532)τ4(χ32)τ4(χ932)+τ4(χ532)τ4(χ1332)τ4(χ332)τ4(χ1132)|=|τ4(¯χ32)τ4(¯χ932)τ4(¯χ732)τ4(¯χ1532)+τ4(¯χ332)τ4(¯χ1132)τ4(¯χ532)τ4(¯χ1332)|=|τ4(χ32)τ4(χ932)τ4(χ732)τ4(χ1532)+τ4(χ332)τ4(χ1132)τ4(χ532)τ4(χ1332)|=|τ4(¯χ716)τ4(¯χ16)+τ4(¯χ516)τ4(¯χ316)|=|τ4(χ716)τ4(χ16)+τ4(χ516)τ4(χ316)|=2|α|p.

    This proves Theorem 2.

    From Theorems 1 and 2 we know that Theorem 3 is true for k=4 and 5. Assuming that Theorem 3 holds true for k=n5. That is,

    |2n11j=1j1mod8τ4(ψj)2n11h=1h1mod8τ4(ψh)+2n11j=1j3mod8τ4(ψj)2n11h=1h3mod8τ4(ψh)|=2|α|p, (3.8)

    where ψ=χ2n is a 2n-order character modulo p.

    So the conjugate of (3.8) is

    |2n11j=1j1mod8τ4(¯ψj)2n11h=1h1mod8τ4(¯ψh)+2n11j=1j3mod8τ4(¯ψj)2n11h=1h3mod8τ4(¯ψh)|=2|α|p. (3.9)

    Then for k=n+1 and j with j1mod8, from Lemma 2 we have

    τ4(¯χ7j2n)τ4(¯χj2n)=¯χ3j2n1(24)τ4(χj2n+1)τ4(χj(2n23+1)2n+1)τ4(χ7j2n+1)τ4(χj(2n1)2n+1). (3.10)

    Note that the identity

    2n31s=0¯χ3(8s+1)2n(24)=¯χ2n3+2n1(2n11)2n(212)=1.

    From (3.9) and (3.10) we may immediately deduce the identity

    |2n1j=1j1mod8τ4(¯χj2n+1)2n1h=1h1mod8τ4(¯χh2n+1)+2n1j=1j3mod8τ4(¯χj2n+1)2n1h=1h3mod8τ4(¯χh2n+1)|=2|α|p. (3.11)

    Taking the conjugate for (3.11), this implies that Theorem 3 is complete for k=n+1.

    This proves Theorem 3 by mathematical induction.

    The main result of this paper is to prove a new identity for the classical Gauss sums. That is, if p is a prime with p1mod2k, k4, then for any 2k-order character ψ modulo p, we have the identity

    |2k11j=1j1mod8τ4(ψj)2k11h=1h1mod8τ4(ψh)+2k11j=1j3mod8τ4(ψj)2k11h=1h3mod8τ4(ψh)|=2|α|p.

    These results give the exact values of some special Gauss sums and reveal the values distribution of classical Gauss sums. This not only promotes the research of some well-known sums, such as Kloosterman sums, which plays an important role in the study of the Diophantine equation, but also makes new contributions to the research of other related fields.

    The author would like to express her gratitude to the referees and coordinating editor for their valuable and detailed comments. This work was supported by the National Natural Science Foundation of China under Grant No.11771351.

    The author declares that there are no conflicts of interest regarding the publication of this paper.



    [1] T. M. Apostol, Introduction to analytic number theory, New York: Springer-Verlag, 1976.
    [2] D. A. Burgess, On Dirichlet characters of polynomials, Proc. London Math. Soc., 13 (1963), 537–548. doi: 10.1112/plms/s3-13.1.537. doi: 10.1112/plms/s3-13.1.537
    [3] B. C. Berndt, R. J. Evans, The determination of Gauss sums, Bull. Am. Math Soc., 5 (1981), 107–129. doi: 10.1090/S0273-0979-1981-14930-2. doi: 10.1090/S0273-0979-1981-14930-2
    [4] J. Bourgain, M. Z. Garaev, S. V. Konyagin, I. E. Shparlinski, On the hidden shifted power problem, SIAM J. Comput., 41 (2012), 1524–1557. doi: 10.1137/110850414. doi: 10.1137/110850414
    [5] L. Chen, On classical Gauss sums and some of their properties, Symmetry, 10 (2018), 625. doi: 10.3390/sym10110625. doi: 10.3390/sym10110625
    [6] S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. doi: 10.1016/0022-314X(77)90010-5. doi: 10.1016/0022-314X(77)90010-5
    [7] L. Chen, J. Y. Hu, A linear recurrence formula involving cubic Gauss sums and Kloosterman sums, Acta Math. Sin. (Chin. Ser.), 61 (2018), 67–72.
    [8] Z. Y. Chen, W. P. Zhang, On the fourth-order linear recurrence formula related to classical Gauss sums, Open Math., 15 (2017), 1251–1255. doi: 10.1515/math-2017-0104. doi: 10.1515/math-2017-0104
    [9] A. Granville, K. Soundararajan, Large character sums: Pretentious characters and the Pólya-Vinogradov theorem, J. Amer. Math. Soc., 20 (2007), 357–384. doi: 10.1090/S0894-0347-06-00536-4. doi: 10.1090/S0894-0347-06-00536-4
    [10] D. Han, A Hybrid mean value involving two-term exponential sums and polynomial character sums, Czech. Math. J., 64 (2014), 53–62. doi: 10.1007/s10587-014-0082-0. doi: 10.1007/s10587-014-0082-0
    [11] K. Ireland, M. Rosen, A classical introduction to modern number theory, New York: Springer-Verlag, 1990. doi: 10.1007/978-1-4757-2103-4.
    [12] X. Y. Liu, W. P. Zhang, On the high-power mean of the generalized Gauss sums and Kloosterman sums, Mathematics, 7 (2019), 907. doi: 10.3390/math7100907. doi: 10.3390/math7100907
    [13] C. D. Pan, C. B. Pan, Goldbach conjecture, Beijing: Science Press, 1992.
    [14] A. Weil, On some exponential sums, Proc. Natl. Acad. Sci. USA, 34 (1948), 204–207. doi: 10.1073/pnas.34.5.204. doi: 10.1073/pnas.34.5.204
    [15] W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation modp, Math. Rep., 20 (2018), 73–80.
    [16] W. P. Zhang, A. Samad, Z. Y. Chen, New identities dealing with Gauss sums, Symmetry, 12 (2020), 1416. doi: 10.3390/sym12091416. doi: 10.3390/sym12091416
    [17] W. P. Zhang, Y. Yi, On Dirichlet characters of polynomials, Bull. London Math. Soc., 34 (2002), 469–473. doi: 10.1112/S0024609302001030. doi: 10.1112/S0024609302001030
    [18] W. P. Zhang, W. L Yao, A note on the Dirichlet characters of polynomials, Acta Arith., 115 (2004), 225–229. doi: 10.4064/aa115-3-3. doi: 10.4064/aa115-3-3
  • This article has been cited by:

    1. Wenxu Ge, Weiping Li, Tianze Wang, A remark for Gauss sums of order 3 and some applications for cubic congruence equations, 2022, 7, 2473-6988, 10671, 10.3934/math.2022595
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1844) PDF downloads(97) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog