Research article

On the high-th mean of one special character sums modulo a prime

  • Received: 28 June 2023 Revised: 11 August 2023 Accepted: 17 August 2023 Published: 07 September 2023
  • MSC : 11L05, 11L40

  • Using the elementary method of the classical Gauss sums and the properties of character sums, we study a linear recurrence formula about the form $ G\left(n\right) = 1+\sum_{a = 1}^{p-1}\left(\frac{a^2+n\bar{a}^2}{p}\right) $ and about the mean value of $ G(n) $. This is a further exploration of Yuan and Zhang's research in 2022, which help us to better understand the character sums wide range application.

    Citation: Yan Ma, Di Han. On the high-th mean of one special character sums modulo a prime[J]. AIMS Mathematics, 2023, 8(11): 25804-25814. doi: 10.3934/math.20231316

    Related Papers:

  • Using the elementary method of the classical Gauss sums and the properties of character sums, we study a linear recurrence formula about the form $ G\left(n\right) = 1+\sum_{a = 1}^{p-1}\left(\frac{a^2+n\bar{a}^2}{p}\right) $ and about the mean value of $ G(n) $. This is a further exploration of Yuan and Zhang's research in 2022, which help us to better understand the character sums wide range application.



    加载中


    [1] W. Narkiewicz, Classical problems in number theory, Pastwowe Wydawnictwo Naukowe, 1986.
    [2] T. M. Apostol, Introduction to analytic number theory, Springer, 1976.
    [3] W. P. Zhang, H. L. Li, Elementary number theory, Shaanxi Normal University Press, 2013.
    [4] W. Kohnen, An elementary proof in the theory of quadratic residues, Bull. Korean Math. Soc., 45 (2008), 273–275. https://doi.org/10.4134/BKMS.2008.45.2.273 doi: 10.4134/BKMS.2008.45.2.273
    [5] D. A. Burgess, The distribution of quadratic residues and non-residues, Mathematika, 4 (1957), 106–112. https://doi.org/10.1112/S0025579300001157 doi: 10.1112/S0025579300001157
    [6] D. A. Burgess, A note on the distribution of residues and non-residues, J. London Math. Soc., 1 (1963), 253–256. https://doi.org/10.1112/jlms/s1-38.1.253 doi: 10.1112/jlms/s1-38.1.253
    [7] D. Han, A hybrid mean value involving two-term exponential sums and polynomial character sums, Czech. Math. J., 64 (2014), 53–62. https://doi.org/10.1007/s10587-014-0082-0 doi: 10.1007/s10587-014-0082-0
    [8] X. C. Du, X. X. Li, A new sum analogous to quadratic Gauss sums and its $2k$ th power mean, J. Inequal. Appl., 102 (2014), 102. https://doi.org/10.1186/1029-242X-2014-102 doi: 10.1186/1029-242X-2014-102
    [9] Z. Y. Chen, W. P. Zhang, On the fourth-order linear recurrence formula related to classical Gauss sums, Open Math., 15 (2017), 1251–1255. https://doi.org/10.1515/math-2017-0104 doi: 10.1515/math-2017-0104
    [10] J. F. Zhang, Y. Y. Meng, The mean values of character sums and their applications, Mathematics, 9 (2021), 318. https://doi.org/10.3390/math9040318 doi: 10.3390/math9040318
    [11] S. M. Shen, W. P. Zhang, On the quartic Gauss sums and their recurrence property, Adv. Differ. Equations, 2017 (2017), 43. https://doi.org/10.1186/s13662-017-1097-2 doi: 10.1186/s13662-017-1097-2
    [12] X. D. Yuan, W. P. Zhang, On the mean value of high-powers of a special character sum modulo a prime, Comput. Model. Eng. Sci., 136 (2022), 943–953. https://doi.org/10.32604/cmes.2023.024363 doi: 10.32604/cmes.2023.024363
    [13] Z. H. Sun, Consecutive numbers with the same Legendre symbol, Proc. Amer. Math. Soc., 130 (2002), 2503–2507. https://doi.org/10.1090/S0002-9939-02-06600-5 doi: 10.1090/S0002-9939-02-06600-5
    [14] M. Z. Garaev, A note on the least quadratic non-residue of the integer-sequences, Bull. Aust. Math. Soc., 68 (2003), 1–11. https://doi.org/10.1017/S0004972700037369 doi: 10.1017/S0004972700037369
    [15] A. Schinzel, Primitive roots and quadratic non-residues, Acta Arith., 149 (2011), 161–170. https://doi.org/10.4064/aa149-2-5 doi: 10.4064/aa149-2-5
    [16] S. Wright, Quadratic residues and non-residues in arithmetic progression, J. Number Theory, 133 (2013), 2398–2430. https://doi.org/10.1016/j.jnt.2013.01.004 doi: 10.1016/j.jnt.2013.01.004
    [17] F. L. Tiplea, S. Iftene, G. Teşeleanu, A. M. Nica, On the distribution of quadratic residues and non-residues modulo composite integers and applications to cryptography, Appl. Math. Comput., 372 (2020), 124993. https://doi.org/10.1016/j.amc.2019.124993 doi: 10.1016/j.amc.2019.124993
    [18] T. T. Wang, X. X. Lv, The quadratic residues and some of their new distribution properties, Symmetry, 12 (2020), 421. https://doi.org/10.3390/sym12030421 doi: 10.3390/sym12030421
    [19] W. P. Zhang, A. Samad, Z. Y. Chen, New identities dealing with Gauss sums, Symmetry, 12 (2020), 1416. https://doi.org/10.3390/sym12091416 doi: 10.3390/sym12091416
    [20] H. Bai, J. Y. Hu, On the classical Gauss sum and the recursive properties, Adv. Differ. Equations, 2018 (2018), 387. https://doi.org/10.1186/s13662-018-1804-7 doi: 10.1186/s13662-018-1804-7
    [21] C. Li, On the classical Gauss sum and the some of their properties, Symmetry, 10 (2018), 625. https://doi.org/10.3390/sym10110625 doi: 10.3390/sym10110625
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1530) PDF downloads(273) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog