Research article

The fourth power mean value of one kind two-term exponential sums

  • Received: 28 December 2021 Revised: 30 June 2022 Accepted: 11 July 2022 Published: 20 July 2022
  • MSC : 11L03, 11L07

  • In this paper, based on the analytic method and the properties of Gauss sums, we study the computational problems of the fourth power mean value of one kind two-term exponential sums through the classification and estimation of Dirichlet characters and give it a calculation formula or asymptotic formula in different conditions.

    Citation: Jinmin Yu, Renjie Yuan, Tingting Wang. The fourth power mean value of one kind two-term exponential sums[J]. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937

    Related Papers:

  • In this paper, based on the analytic method and the properties of Gauss sums, we study the computational problems of the fourth power mean value of one kind two-term exponential sums through the classification and estimation of Dirichlet characters and give it a calculation formula or asymptotic formula in different conditions.



    加载中


    [1] T. Cochrane, Z. Y. Zheng, Bounds for certain exponential sums, Asian J. Math., 4 (2000), 757-774. https://doi.org/10.4310/AJM.2000.v4.n4.a3 doi: 10.4310/AJM.2000.v4.n4.a3
    [2] T. Cochrane, C. Pinner, Using Stepanov's method for exponential sums involving rational functions, J. Number Theory, 116 (2006), 270-292. https://doi.org/10.1016/j.jnt.2005.04.001 doi: 10.1016/j.jnt.2005.04.001
    [3] T. Cochrane, Z. Y. Zheng, Upper bounds on a two-term exponential sums, Sci. China Ser. A Math., 44 (2001), 1003-1015. https://doi.org/10.1007/BF02878976 doi: 10.1007/BF02878976
    [4] T. Cochrane, J. Coffelt, C. Pinner, A further refinement of Mordell's bound on exponential sums, Act Arith., 116 (2005), 35-41. https://doi.org/10.4064/aa116-1-4 doi: 10.4064/aa116-1-4
    [5] H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Reports, 19 (2017), 75-83.
    [6] Z. Y. Chen, W. P. Zhang, On the fourth-order linear recurrence formula related to classical Gauss sums, Open Math., 15 (2017), 1251-1255. https://doi.org/10.1515/math-2017-0104 doi: 10.1515/math-2017-0104
    [7] C. Li, W. Xiao, A new fourth power mean of two-term exponential sums, Open Math., 17 (2019), 407-414. https://doi.org/10.1515/math-2019-0034 doi: 10.1515/math-2019-0034
    [8] W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403-413. https://doi.org/10.1016/j.jnt.2013.10.022 doi: 10.1016/j.jnt.2013.10.022
    [9] D. A. Burgess, On Dirichlet characters of polynomials, Proc. London Math. Soc., s3-13 (1963), 537-548. https://doi.org/10.1112/plms/s3-13.1.537 doi: 10.1112/plms/s3-13.1.537
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1372) PDF downloads(71) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog