Research article

On weakly bounded well-filtered spaces

  • Received: 31 March 2022 Revised: 05 June 2022 Accepted: 12 June 2022 Published: 19 July 2022
  • MSC : 06B35, 06F30, 18B30, 54D35

  • In [16], using Rudin sets, Miao, Li and Zhao introduced a new concept of weakly well-filtered spaces—$ k $-bounded well-filtered spaces. Now, also using Rudin sets, we introduce another type of $ T_0 $ spaces—weakly bounded well-filtered spaces, which are strictly stronger than $ k $-bounded well-filtered spaces. Some basic properties of $ k $-bounded well-filtered spaces and weakly bounded well-filtered spaces are investigated and the relationships among some kinds of weakly sober spaces and weakly well-filtered spaces are posed. It is proved that the category $ {\bf KBWF} $ is not reflective in the category $ {\bf Top}_{0} $.

    Citation: Xiaoyuan Zhang, Meng Bao, Xinpeng Wen, Xiaoquan Xu. On weakly bounded well-filtered spaces[J]. AIMS Mathematics, 2022, 7(9): 17026-17044. doi: 10.3934/math.2022936

    Related Papers:

  • In [16], using Rudin sets, Miao, Li and Zhao introduced a new concept of weakly well-filtered spaces—$ k $-bounded well-filtered spaces. Now, also using Rudin sets, we introduce another type of $ T_0 $ spaces—weakly bounded well-filtered spaces, which are strictly stronger than $ k $-bounded well-filtered spaces. Some basic properties of $ k $-bounded well-filtered spaces and weakly bounded well-filtered spaces are investigated and the relationships among some kinds of weakly sober spaces and weakly well-filtered spaces are posed. It is proved that the category $ {\bf KBWF} $ is not reflective in the category $ {\bf Top}_{0} $.



    加载中


    [1] D. Drake, W. Thron, On the representation of an abstract lattice as the family of closed sets of a topological space, Trans. Amer. Math. Soc., 120 (1965), 57–71. http://doi.org/10.2307/1994167 doi: 10.2307/1994167
    [2] R. Engelking, General topology, Warzawa: Polish Scientific Publishers, 1989.
    [3] M. Erné, The strength of prime separation, sobriety, and compactness theorems, Topol. Appl., 241 (2018), 263–290. http://doi.org/10.1016/j.topol.2018.04.002 doi: 10.1016/j.topol.2018.04.002
    [4] M. Erné, Categories of locally hypercompact spaces and quasicontinuous posets, Appl. Categor. Struct., 26 (2018), 823–854. http://doi.org/10.1007/s10485-018-9536-0 doi: 10.1007/s10485-018-9536-0
    [5] G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. Scott, Continuous lattices and domains, Cambridge: Cambridge University Press, 2003. http://doi.org/10.1017/CBO9780511542725
    [6] J. Goubault-Larrecq, Non-Hausdorff topology and domain theory: Selected topics in point-set topology, Cambridge: Cambridge University Press, 2013. http://doi.org/10.1017/CBO9781139524438
    [7] R. Heckmann, An upper power domain construction in terms of strongly compact sets, In: Mathematical foundations of programming semantics, Berlin, Heidelberg: Springer, 1992, 272–293.
    [8] R. Heckmann, K. Keimel, Quasicontinuous domains and the Smyth powerdomain, Electron. Notes Theor. Comput. Sci., 298 (2013), 215–232. http://doi.org/10.1016/j.entcs.2013.09.015 doi: 10.1016/j.entcs.2013.09.015
    [9] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., 142 (1969), 43–60. http://doi.org/10.1090/S0002-9947-1969-0251026-X doi: 10.1090/S0002-9947-1969-0251026-X
    [10] X. D. Jia, Meet-continuity and locally compact sober dcpos, PhD thesis, University of Birmingham, 2018.
    [11] P. T. Johnstone, Scott is not always sober, In: Continuous lattices, Berlin, Heidelberg: Springer, 1981, 282–283. http://doi.org/10.1007/BFb0089911
    [12] K. Keimel, J. Lawson, $D$-completion and $d$-topology, Ann. Pure Appl. Logic, 159 (2009), 292–306. https://doi.org/10.1016/j.apal.2008.06.019 doi: 10.1016/j.apal.2008.06.019
    [13] B. Liu, Q. G. Li, G. H. Wu, Well-filterifications of topological spaces, Topol. Appl., 279 (2020), 107245. http://doi.org/10.1016/j.topol.2020.107245 doi: 10.1016/j.topol.2020.107245
    [14] C. X. Lu, Q. G. Li, Weak well-filtered spaces and coherence, Topol. Appl., 230 (2017), 373–380. http://doi.org/10.1016/j.topol.2017.08.049 doi: 10.1016/j.topol.2017.08.049
    [15] S. Mac Lane, Categories for the working mathematician, 2 Eds., New York: Springer, 1997.
    [16] H. L. Miao, Q. G. Li, D. S. Zhao, On two problems about sobriety of topological spaces, Topol. Appl., 295 (2021), 107667. http://doi.org/10.1016/j.topol.2021.107667 doi: 10.1016/j.topol.2021.107667
    [17] A. Schalk, Algebras for generalized power constructions, PhD thesis, Technische Hochschule Darmstadt, 1993.
    [18] Q. D. Shan, M. Bao, X. P. Wen, X. Q. Xu, On almost sober spaces, Topol. Appl., 305 (2022), 107896. http://doi.org/10.1016/j.topol.2021.107896 doi: 10.1016/j.topol.2021.107896
    [19] C. Shen, X. Y. Xi, X. Q. Xu, D. S. Zhao, On well-filtered reflections of $T_{0}$ spaces, Topol. Appl., 267 (2019), 106869. http://doi.org/10.1016/j.topol.2019.106869 doi: 10.1016/j.topol.2019.106869
    [20] C. Shen, X. Y. Xi, D. S. Zhao, The reflectivity of some categories of $T_{0}$ spaces in domain theory, 2021, arXiv: 2110.01138.
    [21] M. B. Smyth, Powerdomains, J. Comput. Syst. Sci., 16 (1978), 23–36.
    [22] M. B. Smyth, Power domains and predicate transformers: A topological view, In: Automata, languages and programming, Berlin, Heidelberg: Springer, 1983, 662–675. http://doi.org/10.1007/BFb0036946
    [23] Y. Tang, Properties of hypersober spaces and $k$-bounded sober spaces, Master thesis, Jiangxi Normal University, 2020. http://doi.org/10.27178/d.cnki.gjxsu.2020.001512
    [24] X. P. Wen, X. Q. Xu, On some kinds of weakly sober spaces, Topol. Appl., 272 (2020), 107079. http://doi.org/10.1016/j.topol.2020.107079 doi: 10.1016/j.topol.2020.107079
    [25] G. H. Wu, X. Y. Xi, X. Q. Xu, D. S. Zhao, Existence of well-filterification of $T_0$ topological spaces, Topol. Appl., 270 (2020), 107044. https://doi.org/10.1016/j.topol.2019.107044 doi: 10.1016/j.topol.2019.107044
    [26] O. Wyler, Dedekind complete posets and scott topologies, In: Continuous lattices, Berlin, Heidelberg: Springer, 1981, 384–389. https://doi.org/10.1007/BFb0089920
    [27] X. Q. Xu, A direct approach to $K$-reflections of $T_{0}$ spaces, Topol. Appl., 272 (2020), 107076. http://doi.org/10.1016/j.topol.2020.107076 doi: 10.1016/j.topol.2020.107076
    [28] X. Q. Xu, On H-sober spaces and H-sobrifications of $T_{0}$ spaces, Topol. Appl., 289 (2021), 107548. http://doi.org/10.1016/j.topol.2020.107548 doi: 10.1016/j.topol.2020.107548
    [29] X. Q. Xu, C. Shen, X. Y. Xi, D. S. Zhao, On $T_{0}$ spaces determined by well-filtered spaces, Topol. Appl., 282 (2020), 107323. http://doi.org/10.1016/j.topol.2020.107323 doi: 10.1016/j.topol.2020.107323
    [30] X. Q. Xu, C. Shen, X. Y. Xi, D. S. Zhao, First-countability, $\omega$-Rudin spaces and well-filtered determined spaces, Topol. Appl., 300 (2021), 107775. http://doi.org/10.1016/j.topol.2021.107775 doi: 10.1016/j.topol.2021.107775
    [31] X. Q. Xu, X. P. Wen, Non-reflective categories of some kinds of weakly sober spaces, Topol. Appl., 314 (2022), 108126. http://doi.org/10.1016/j.topol.2022.108126 doi: 10.1016/j.topol.2022.108126
    [32] X. Q. Xu, X. Y. Xi, D. S. Zhao, A complete Heyting algebra whose Scott space is non-sober, Funda. Math., 252 (2021), 315–323. https://doi.org/10.4064/fm704-4-2020 doi: 10.4064/fm704-4-2020
    [33] X. Q. Xu, D. S. Zhao, On topological Rudin's lemma, well-filtered spaces and sober spaces, Topol. Appl., 272 (2020), 107080. http://doi.org/10.1016/j.topol.2020.107080 doi: 10.1016/j.topol.2020.107080
    [34] Y. Yang, M. Bao, X. Q. Xu, Retracts and Smyth power spaces of $k$-bounded sober spaces, Pure Appl. Math., 38 (2022), 13–24. http://doi.org/10.3969/j.issn.1008-5513.2022.01.002 doi: 10.3969/j.issn.1008-5513.2022.01.002
    [35] W. Ye, Some properties of bounded sober spaces and bounded well-filtered spaces, Master thesis, Jiangxi Normal University, 2021. http://doi.org/10.27178/d.cnki.gjxsu.2021.000119
    [36] B. Zhao, J. Lu, K. Y. Wang, The answer to a problem posed by Zhao and Ho, Acta. Math. Sin.-English Ser., 35 (2019), 438–444. http://doi.org/10.1007/s10114-018-7535-6 doi: 10.1007/s10114-018-7535-6
    [37] D. S. Zhao, T. H. Fan, Dcpo-completion of posets, Theor. Comput. Sci., 411 (2010), 2167–2173. http://doi.org/10.1016/j.tcs.2010.02.020 doi: 10.1016/j.tcs.2010.02.020
    [38] D. S. Zhao, W. K. Ho, On topologies defined by irreducible sets, J. Log. Algebr. Methods, 84 (2015), 185–195. http://doi.org/10.1016/j.jlamp.2014.10.003 doi: 10.1016/j.jlamp.2014.10.003
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1078) PDF downloads(58) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog