We consider the existence and stability of Weyl almost periodic solutions for a class of quaternion-valued shunting inhibitory cellular neural networks with time-varying delays. In order to overcome the incompleteness of the space composed of Weyl almost periodic functions, we first obtain the existence of a bounded continuous solution of the system under consideration by using the fixed point theorem, and then prove that the bounded solution is Weyl almost periodic by using a variant of Gronwall inequality. Then we study the global exponential stability of the Weyl almost periodic solution by using the inequality technique. Even when the system we consider degenerates into a real-valued one, our results are new. A numerical example is given to illustrate the feasibility of our results.
Citation: Yongkun Li, Xiaoli Huang, Xiaohui Wang. Weyl almost periodic solutions for quaternion-valued shunting inhibitory cellular neural networks with time-varying delays[J]. AIMS Mathematics, 2022, 7(4): 4861-4886. doi: 10.3934/math.2022271
We consider the existence and stability of Weyl almost periodic solutions for a class of quaternion-valued shunting inhibitory cellular neural networks with time-varying delays. In order to overcome the incompleteness of the space composed of Weyl almost periodic functions, we first obtain the existence of a bounded continuous solution of the system under consideration by using the fixed point theorem, and then prove that the bounded solution is Weyl almost periodic by using a variant of Gronwall inequality. Then we study the global exponential stability of the Weyl almost periodic solution by using the inequality technique. Even when the system we consider degenerates into a real-valued one, our results are new. A numerical example is given to illustrate the feasibility of our results.
[1] | A. Bouzerdoum, R. B. Pinter, Shunting inhibitory cellular neural networks: derivation and stability analysis, IEEE Trans. Circuits Syst., 40 (1993), 215–221. https://doi.org/10.1109/81.222804 doi: 10.1109/81.222804 |
[2] | X. Huang, J. Cao, Almost periodic solution of shunting inhibitory cellular neural networks with time-varying delay, Phys. Lett. A, 314 (2003), 222–231. https://doi.org/10.1016/S0375-9601(03)00918-6 doi: 10.1016/S0375-9601(03)00918-6 |
[3] | B. Liu, Stability of shunting inhibitory cellular neural networks with unbounded time-varying delays, Appl. Math. Lett., 22 (2009), 1–5. |
[4] | C. Huang, S. Wen, L. Huang, Dynamics of anti-periodic solutions on shunting inhibitory cellular neural networks with multi-proportional delays, Neurocomputing, 357 (2019), 47–52. https://doi.org/10.1016/j.neucom.2019.05.022 doi: 10.1016/j.neucom.2019.05.022 |
[5] | Y. Li, X. Meng, Almost periodic solutions for quaternion-valued shunting inhibitory cellular neural networks of neutral type with time delays in the leakage term, Int. J. Syst. Sci., 49 (2018), 2490–2505. https://doi.org/10.1080/00207721.2018.1505006 doi: 10.1080/00207721.2018.1505006 |
[6] | N. Huo, Y. Li, Antiperiodic solutions for quaternion-valued shunting inhibitory cellular neural networks with distributed delays and impulses, Complexity, 2018 (2018), 6420256. |
[7] | A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge, 85 (1979), 199–225. https://doi.org/10.1017/S0305004100055638 doi: 10.1017/S0305004100055638 |
[8] | M. Kobayashi, Quaternionic Hopfield neural networks with twin-multistate activation function, Neurocomputing, 267 (2017), 304–310. https://doi.org/10.1016/j.neucom.2017.06.013 doi: 10.1016/j.neucom.2017.06.013 |
[9] | Y. Liu, D. Zhang, J. Lou, J. Lu, J. Cao, Stability analysis of quaternion-valued neural networks: decomposition and direct approaches, IEEE Trans. Neural Netw. Learn. Syst., 29 (2017), 4201–4211. https://doi.org/10.1109/TNNLS.2017.2755697 doi: 10.1109/TNNLS.2017.2755697 |
[10] | C. A. Popa, E. Kaslik, Multistability and multiperiodicity in impulsive hybrid quaternion-valued neural networks with mixed delays, Neural Netw., 99 (2018), 1–18. |
[11] | Y. Li, J. Qin, B. Li, Existence and global exponential stability of anti-periodic solutions for delayed quaternion-valued cellular neural networks with impulsive effects, Math. Meth. Appl. Sci., 42 (2019), 5–23. |
[12] | Z. Tu, Y. Zhao, N. Ding, Y. Feng, W. Zhang, Stability analysis of quaternion-valued neural networks with both discrete and distributed delays, Math. Meth. Appl. Sci., 343 (2019), 342–353. https://doi.org/10.1016/j.amc.2018.09.049 doi: 10.1016/j.amc.2018.09.049 |
[13] | X. Qi, H. Bao, J. Cao, Exponential input-to-state stability of quaternion-valued neural networks with time delay, Appl. Math. Comput., 358 (2019), 382–393. https://doi.org/10.1016/j.amc.2019.04.045 doi: 10.1016/j.amc.2019.04.045 |
[14] | J. Xiang, Y. Li, Pseudo almost automorphic solutions of quaternion-valued neural networks with infinitely distributed delays via a non-decomposing method, Adv. Differ. Equ., 2019 (2019), 356. https://doi.org/10.1186/s13662-019-2295-x doi: 10.1186/s13662-019-2295-x |
[15] | Y. Li, J. Xiang, Existence and global exponential stability of anti-periodic solutions for quaternion-valued cellular neural networks with time-varying delays, Adv. Differ. Equ., 2020 (2020), 47. https://doi.org/10.1186/s13662-020-2523-4 doi: 10.1186/s13662-020-2523-4 |
[16] | H. Wang, G. Wei, S. Wen, T. Huang, Impulsive disturbance on stability analysis of delayed quaternion-valued neural networks, Appl. Math. Comput., 390 (2021), 125680. https://doi.org/10.1016/j.amc.2020.125680 doi: 10.1016/j.amc.2020.125680 |
[17] | Y. Li, H. Wang, X. Meng, Almost automorphic synchronization of quaternion-valued high-order Hopfield neural networks with time-varying and distributed delays, IMA J. Math. Control Inform., 36 (2019), 983–1013. https://doi.org/10.1093/imamci/dny015 doi: 10.1093/imamci/dny015 |
[18] | Y. Li, X. Meng, Almost automorphic solutions for quaternion-valued Hopfield neural networks with mixed time-varying delays and leakage delays, J. Syst. Sci. Complexity, 33 (2020), 100–121. https://doi.org/10.1007/s11424-019-8051-1 doi: 10.1007/s11424-019-8051-1 |
[19] | A. Pratap, R. Raja, J. Alzabut, J. Cao, G. Rajchakit, C. Huang, et al. {Mittag-Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field}, Math. Methods Appl. Sci., 43 (2020), 6223–6253. https://doi.org/10.1002/mma.6367 doi: 10.1002/mma.6367 |
[20] | R. Sriraman, G. Rajchakit, C. P. Lim, P. Chanthorn, R. Samidurai, Discrete-time stochastic quaternion-valued neural networks with time delays: an asymptotic stability analysis, Symmetry, 12 (2020), 936. |
[21] | U. Humphries, G. Rajchakit, P. Kaewmesri, P. Chanthorn, R. Sriraman, R. Samidurai, et al. {Stochastic memristive quaternion-valued neural networks with time delays: an analysis on mean square exponential input-to-state stability}, Mathematics, 8 (2020), 815. |
[22] | U. Humphries, G. Rajchakit, P. Kaewmesri, P. Chanthorn, R. Sriraman, Global stability analysis of fractional-order quaternion-valued bidirectional associative memory neural networks, Mathematics, 8 (2020), 801. |
[23] | A. Pratap, R. Raja, J. Alzabut, J. Dianavinnarasi, G. Rajchakit, Finite-time Mittag-Leffler stability of fractional-order quaternion-valued memristive neural networks with impulses, Neural Process. Lett., 51 (2020), 1485–1526. https://doi.org/10.1007/s11063-019-10154-1 doi: 10.1007/s11063-019-10154-1 |
[24] | G. Rajchakit, P. Chanthorn, P. Kaewmesri, R. Sriraman, C. P. Lim, Global Mittag-Leffler stability and stabilization analysis of fractional-order quaternion-valued memristive neural networks, Mathematics, 8 (2020), 422. |
[25] | G. T. Stamov, I. M. Stamova, Almost periodic solutions for impulsive neural networks with delay, Appl. Math. Modell., 31 (2007), 1263–1270. https://doi.org/10.1016/j.apm.2006.04.008 doi: 10.1016/j.apm.2006.04.008 |
[26] | A. Arbi, Dynamics of BAM neural networks with mixed delays and leakage time-varying delays in the weighted pseudo-almost periodic on time-space scales, Math. Meth. Appl. Sci., 41 (2018), 1230–1255. https://doi.org/10.1002/mma.4661 doi: 10.1002/mma.4661 |
[27] | D. Li, Z. Zhang, X. Zhang, Periodic solutions of discrete-time quaternion-valued BAM neural networks, Chaos Solitons Fractals, 138 (2020), 110144. https://doi.org/10.1016/j.chaos.2020.110144 doi: 10.1016/j.chaos.2020.110144 |
[28] | S. Shen, Y. Li, $S^p$-almost periodic solutions of Clifford-valued fuzzy cellular neural networks with time-varying delays, Neural Process. Lett., 51 (2020), 1749–1769. https://doi.org/10.1007/s11063-019-10176-9 doi: 10.1007/s11063-019-10176-9 |
[29] | Y. Li, N. Huo, B. Li, On $\mu$-pseudo almost periodic solutions for Clifford-valued neutral type neural networks with delays in the leakage term, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 1365–1374. |
[30] | G. Stamov, I. Stamova, A. Martynyuk, T. Stamov, Almost periodic dynamics in a new class of impulsive reaction-diffusion neural networks with fractional-like derivatives, Chaos Solitons Fractals, 143 (2021), 110647. https://doi.org/10.1016/j.chaos.2020.110647 doi: 10.1016/j.chaos.2020.110647 |
[31] | S. Chen, K. Wang, J. Liu, X. Lin, Periodic solutions of Cohen-Grossberg-type Bidirectional associative memory neural networks with neutral delays and impulses, AIMS Math., 6 (2021), 2539–2558. https://doi.org/10.3934/math.2021154 doi: 10.3934/math.2021154 |
[32] | Y. Li, J. Qin, Existence and global exponential stability of periodic solutions for quaternion-valued cellular neural networks with time-varying delays, Neurocomputing, 292 (2018), 91–103. https://doi.org/10.1016/j.neucom.2018.02.077 doi: 10.1016/j.neucom.2018.02.077 |
[33] | Y. Li, J. Xiang, B. Li, Almost periodic solutions of quaternion-valued neutral type high-order Hopfield neural networks with state-dependent delays and leakage delays, Appl. Intell., 50 (2020), 2067–2078. https://doi.org/10.1007/s10489-020-01634-2 doi: 10.1007/s10489-020-01634-2 |
[34] | H. Weyl, Integralgleichungen und fastperiodische Funktionen, Math Ann., 97 (1927), 338–356. https://doi.org/10.1007/BF01447871 doi: 10.1007/BF01447871 |
[35] | F. Bedouhene, Y. Ibaouene, O. Mellah, P. R. de Fitte, Weyl almost periodic solutions to abstract linear and semilinear equations with Weyl almost periodic coefficients, Math. Meth. Appl. Sci., 41 (2018), 9546–9566. https://doi.org/10.1002/mma.5312 doi: 10.1002/mma.5312 |
[36] | M. Kostić, Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations, W. de Gruyter, Berlin, 2019. |
[37] | M. Kostić, Selected Topics in Almost Periodicity, W. de Gruyter, Berlin, 2022. |
[38] | C. Corduneanu, Almost periodic oscillations and waves, Springer, Berlin, 2009. |
[39] | A. S. Besicovitch, Almost periodic function, Dover Publications, New York, 1954. |
[40] | M. Kamenskii, O. Mellah, P. R. de Fitte, Weak averaging of semilinear stochastic differential equations with almost periodic coefficients, J. Math. Anal. Appl., 427 (2015), 336–364. https://doi.org/10.1016/j.jmaa.2015.02.036 doi: 10.1016/j.jmaa.2015.02.036 |