The aim of this paper is to investigate completness of $ A $ that equipped with usual norm on $ p $-summable sequences space where $ A $ is subspace in $ p $-summable sequences space and $ 1\le p < \infty $. We also introduce a new inner product on $ A $ and prove completness of $ A $ using a new norm that corresponds this new inner product. Moreover, we discuss the angle between two vectors and two subspaces in $ A $. In particular, we discuss the angle between $ 1 $-dimensional subspace and $ (s-1) $-dimensional subspace where $ s\ge 2 $ of $ A $.
Citation: Muh Nur, Moch Idris, Firman. Angle in the space of $ p $-summable sequences[J]. AIMS Mathematics, 2022, 7(2): 2810-2819. doi: 10.3934/math.2022155
The aim of this paper is to investigate completness of $ A $ that equipped with usual norm on $ p $-summable sequences space where $ A $ is subspace in $ p $-summable sequences space and $ 1\le p < \infty $. We also introduce a new inner product on $ A $ and prove completness of $ A $ using a new norm that corresponds this new inner product. Moreover, we discuss the angle between two vectors and two subspaces in $ A $. In particular, we discuss the angle between $ 1 $-dimensional subspace and $ (s-1) $-dimensional subspace where $ s\ge 2 $ of $ A $.
[1] | V. Balestro, À. G. Horvàth, H. Martini, R. Teixeira, Angles in normed spaces, Aequationes Math., 91 (2017), 201–236. doi: 10.1007/s00010-016-0445-8. doi: 10.1007/s00010-016-0445-8 |
[2] | H. Gunawan, J. Lindiarni, O. Neswan, $P$-, $I$-, $g$-, and $D$-angles in normed spaces, J. Math. Fund. Sci., 40 (2008), 24–32. doi: 10.5614/itbj.sci.2008.40.1.3. doi: 10.5614/itbj.sci.2008.40.1.3 |
[3] | H. Gunawan, O. Neswan, W. Setya-Budhi, A formula for angles between two subspaces of inner product spaces, Beitr. Algebra Geom., 46 (2005), 311–320. |
[4] | S. Konca, Some notes on the space of $p$-summable sequences, Kuwait J. Sci., 45 (2018), 6–13. |
[5] | S. Konca, M. Idris, H. Gunawan, $p$-summable sequence spaces with inner products, Beu J. Sci. Techn., 5 (2015), 37–41. doi: 10.18532/caam.47117. doi: 10.18532/caam.47117 |
[6] | E. Kreyszig, Introductory functional analysis with applications, John Wiley & Sons, Inc., New York, 1978. doi: 10.1137/1021075. |
[7] | P. M. Mili$\overset{\grave{\ }}{\mathop{\text{c}}}$i$\overset{\grave{\ }}{\mathop{\text{c}}}$, On the $B$-angle and $g$-angle in normed spaces, J. Inequal. Pure Appl. Math., 8 (2007), 1–9. |
[8] | M. Nur, H. Gunawan, Three equivalent $n$-norms on the space of $p$-summable sequences, Fundam. J. Math. Appl., 2 (2019), 123–129. doi: 10.33401/fujma.635754. doi: 10.33401/fujma.635754 |
[9] | M. Nur, H. Gunawan, A new orthogonality and angle in a normed space, Aequationes Math., 93 (2019), 547–555. doi: 10.1007/s00010-018-0582-3. doi: 10.1007/s00010-018-0582-3 |
[10] | M. Nur, H. Gunawan, A note on the $g$-angle between subspaces of a normed space, Aequationes Math., 95 (2021), 309–318. doi: 10.1007/s00010-020-00742-1. doi: 10.1007/s00010-020-00742-1 |
[11] | M. Nur, H. Gunawan, O. Neswan, A formula for the $g$-angle between two subspaces of a normed space, Beitr. Algebra Geom., 59 (2018), 133–143. doi: 10.1007/s13366-017-0355-5. doi: 10.1007/s13366-017-0355-5 |
[12] | J. Srivastava, P. Singh, On some Cauchy sequences defined in $\ell^{p}$-summable sequences, J. Rajasthan Acad. Phys. Sci., 15 (2016), 107–116. |
[13] | C. Zhi-Zhi, L. Wei, L. Lü-Lin, J. You-qing, Projections, Birkhoff orthogonality and angles in normed spaces, Comm. Math. Res., 27 (2011), 378–384. doi: 10.1007/s11401-011-0630-y. doi: 10.1007/s11401-011-0630-y |