In this paper, we introduce and study a new subclass of normalized analytic functions, denoted by
$ \mathcal F_{\left(\beta,\gamma\right)} \bigg(\alpha,\delta,\mu,H\big(z,C_{n}^{\left(\lambda \right)} \left(t\right)\big)\bigg), $
satisfying the following subordination condition and associated with the Gegenbauer (or ultraspherical) polynomials $ C_{n}^{\left(\lambda\right)}(t) $ of order $ \lambda $ and degree $ n $ in $ t $:
$ \alpha \left(\frac{zG^{'}\left(z\right)}{G\left(z\right)} \right)^{\delta}+\left(1-\alpha\right)\left(\frac{zG^{'} \left(z\right)}{G\left(z\right)}\right)^{\mu} \left(1+\frac{zG^{''}\left(z\right)}{G^{'} \left(z\right)} \right)^{1-\mu} \prec H\big(z,C_{n}^{\left(\lambda\right)} \left(t\right)\big), $
where
$ H\big(z,C_{n}^{\left(\lambda\right)}\left(t\right)\big) = \sum\limits_{n = 0}^{\infty} C_n^{(\lambda)}(t)\;z^n = \left(1-2tz+z^2\right)^{-\lambda}, $
$ G\left(z\right) = \gamma \beta z^{2} f^{''} \left(z\right)+\left(\gamma-\beta \right)zf^{'} \left(z\right)+\left(1-\gamma+\beta\right)f\left(z\right), $
$ 0\leqq \alpha \leqq 1, $ $ 1\leqq \delta \leqq 2, $ $ 0\leqq \mu \leqq 1, $ $ 0\leqq \beta \leqq \gamma \leqq 1 $, $ \lambda \geqq 0 $ and $ t\in \left(\frac{1}{\sqrt{2}}, 1\right] $. For functions in this function class, we first derive the estimates for the initial Taylor-Maclaurin coefficients $ \left|a_{2}\right| $ and $ \left|a_{3}\right| $ and then examine the Fekete-Szegö functional. Finally, the results obtained are applied to subclasses of normalized analytic functions satisfying the subordination condition and associated with the Legendre and Chebyshev polynomials. The basic or quantum (or $ q $-) calculus and its so-called trivially inconsequential $ (p, q) $-variations have also been considered as one of the concluding remarks.
Citation: H. M. Srivastava, Muhammet Kamalı, Anarkül Urdaletova. A study of the Fekete-Szegö functional and coefficient estimates for subclasses of analytic functions satisfying a certain subordination condition and associated with the Gegenbauer polynomials[J]. AIMS Mathematics, 2022, 7(2): 2568-2584. doi: 10.3934/math.2022144
In this paper, we introduce and study a new subclass of normalized analytic functions, denoted by
$ \mathcal F_{\left(\beta,\gamma\right)} \bigg(\alpha,\delta,\mu,H\big(z,C_{n}^{\left(\lambda \right)} \left(t\right)\big)\bigg), $
satisfying the following subordination condition and associated with the Gegenbauer (or ultraspherical) polynomials $ C_{n}^{\left(\lambda\right)}(t) $ of order $ \lambda $ and degree $ n $ in $ t $:
$ \alpha \left(\frac{zG^{'}\left(z\right)}{G\left(z\right)} \right)^{\delta}+\left(1-\alpha\right)\left(\frac{zG^{'} \left(z\right)}{G\left(z\right)}\right)^{\mu} \left(1+\frac{zG^{''}\left(z\right)}{G^{'} \left(z\right)} \right)^{1-\mu} \prec H\big(z,C_{n}^{\left(\lambda\right)} \left(t\right)\big), $
where
$ H\big(z,C_{n}^{\left(\lambda\right)}\left(t\right)\big) = \sum\limits_{n = 0}^{\infty} C_n^{(\lambda)}(t)\;z^n = \left(1-2tz+z^2\right)^{-\lambda}, $
$ G\left(z\right) = \gamma \beta z^{2} f^{''} \left(z\right)+\left(\gamma-\beta \right)zf^{'} \left(z\right)+\left(1-\gamma+\beta\right)f\left(z\right), $
$ 0\leqq \alpha \leqq 1, $ $ 1\leqq \delta \leqq 2, $ $ 0\leqq \mu \leqq 1, $ $ 0\leqq \beta \leqq \gamma \leqq 1 $, $ \lambda \geqq 0 $ and $ t\in \left(\frac{1}{\sqrt{2}}, 1\right] $. For functions in this function class, we first derive the estimates for the initial Taylor-Maclaurin coefficients $ \left|a_{2}\right| $ and $ \left|a_{3}\right| $ and then examine the Fekete-Szegö functional. Finally, the results obtained are applied to subclasses of normalized analytic functions satisfying the subordination condition and associated with the Legendre and Chebyshev polynomials. The basic or quantum (or $ q $-) calculus and its so-called trivially inconsequential $ (p, q) $-variations have also been considered as one of the concluding remarks.
[1] | Ş. Altınkaya, S. Yalçin, On the Chebyshev polynomial bounds for classes of univalent functions, Khayyam J. Math., 2 (2016), 1–5. doi: 10.22034/kjm.2016.13993. doi: 10.22034/kjm.2016.13993 |
[2] | Ş. Altınkaya, S. Yalçin, On the Chebyshev coefficients for a general subclass of univalent functions, Turkish J. Math., 42 (2018), 2885–2890. doi: 10.3906/mat-1510-53. doi: 10.3906/mat-1510-53 |
[3] | S. Bulut, N. Magesh, V. K. Balaji, Certain subclasses of analytic functions associated with the Chebyshev polynomials, Honam Math. J., 40 (2018), 611–619. |
[4] | M. Çağlar, H. Orhan, M. Kamali, Fekete-Szegö problem for a subclass of analytic functions associated with Chebyshev polynomials, Bol. Soc. Paran. Mat. (BSPM), in press. |
[5] | J. Dziok, R. K. Raina, J. Sókoł, Application of Chebyshev polynomials to classes of analytic functions, C. R. Math., 353 (2015), 433–438. doi: 10.1016/j.crma.2015.02.001. doi: 10.1016/j.crma.2015.02.001 |
[6] | M. Fekete, G. Szegö, Eine Bemerkung Über ungerade schlichte Funktionen, J. London Math. Soc., s1-8 (1933), 85–89. doi: 10.1112/jlms/s1-8.2.85. doi: 10.1112/jlms/s1-8.2.85 |
[7] | M. Kamali, M. Çağlar, E. Deniz, M. Turabaev, Fekete Szegö problem for a new subclass of analytic functions satisfying subordinate condition associated with Chebyshev polynomials, Turkish J. Math., 45 (2021), 1195–1208. |
[8] | B. Kowalczyk. A. Lecko, H. M. Srivastava, A note on the Fekete-Szegö problem for close-to-convex functions with respect to convex functions, Publ. Inst. Math. (Beograd) (Nouvelle Sér.), 101 (2017), 143–149. doi: 10.2298/PIM1715143K. doi: 10.2298/PIM1715143K |
[9] | Z. Lewandowski, S. S. Miller, E. Złotkiewicz, Generating functions for some classes of univalent functions, Proc. Amer. Math. Soc., 56 (1976), 111–117. doi: 10.1090/S0002-9939-1976-0399438-7. doi: 10.1090/S0002-9939-1976-0399438-7 |
[10] | N. Magesh, S. Bulut, Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions, Afrika Mat., 29 (2018), 203–209. doi: 10.1007/s13370-017-0535-3. doi: 10.1007/s13370-017-0535-3 |
[11] | G. V. Milovanović, M. Th. Rassias, Analytic number theory, approximation theory, and special functions: In honor of Hari M. Srivastava, New York: Springer, 2014. doi: 10.1007/978-1-4939-0258-3. |
[12] | P. T. Mocanu, Une proprieté de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj), 11 (1969), 127–133. |
[13] | C. Ramachandran, K. Dhanalaksmi, Fekete-Szegö inequality for the subclasses of analytic functions bounded by Chebyshev polynomial, Global J. Pure Appl. Math., 13 (2017), 4953–4958. |
[14] | H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A$:$ Sci., 44 (2020), 327–344. doi: 10.1007/s40995-019-00815-0. doi: 10.1007/s40995-019-00815-0 |
[15] | H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., 22 (2021), 1501–1520. |
[16] | H. M. Srivastava, Ş. Altınkaya, S. Yalçin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A$:$ Sci., 43 (2019), 1873–1879. doi: 10.1007/s40995-018-0647-0. doi: 10.1007/s40995-018-0647-0 |
[17] | H. M. Srivastava, S. Hussain, A. Raziq, M. Raza, The Fekete-Szegö functional for a subclass of analytic functions associated with quasi-subordination, Carpathian J. Math., 34 (2018), 103–113. |
[18] | H. M. Srivastava, H. L. Manocha, A treatise on generating functions, Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984. |
[19] | H. M. Srivastava, A. K. Mishra, M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variables Theory Appl., 44 (2001), 145–163. doi: 10.1080/17476930108815351. doi: 10.1080/17476930108815351 |
[20] | H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. doi: 10.1016/j.aml.2010.05.009. doi: 10.1016/j.aml.2010.05.009 |
[21] | H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava, M. H. AbuJarad, Fekete-Szegö inequality for classes of $(p, q)$-starlike and $(p, q)$-convex functions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM), 113 (2019), 3563–3584. doi: 10.1007/s13398-019-00713-5. doi: 10.1007/s13398-019-00713-5 |
[22] | H. M. Srivastava, A. K. Wanas, G. Murugusundaramoorthy, Certain family of bi-univalent functions associated with Pascal distribution series based on Horadam polynomials, Surveys Math. Appl., 16 (2021), 193–205. |
[23] | H. M. Srivastava, A. K. Wanas, R. Srivastava, Applications of the $q$-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials, Symmetry, 13 (2021), 1–14. doi: 10.3390/sym13071230. doi: 10.3390/sym13071230 |
[24] | E. Szatmari, Ş. Altınkaya, Coefficient estimates and Fekete-Szegö inequality for a class of analytic functions satisfying subordinate condition associated with Chebyshev polynomials, Acta Univ. Sapientiae Math., 11 (2019), 430–436. doi: 10.2478/ausm-2019-0031. doi: 10.2478/ausm-2019-0031 |
[25] | J. Szynal, An extension of typically real functions, Ann. Univ. Mariae Curie-Skołodowska Sect. A, 48 (1994), 193–201. |