Research article

Two effective inexact iteration methods for solving the generalized absolute value equations

  • Received: 23 May 2022 Revised: 03 August 2022 Accepted: 08 August 2022 Published: 22 August 2022
  • MSC : 47H10, 65H10

  • Modified Newton-type methods are efficient for addressing the generalized absolute value equations. In this paper, to further speed up the modified Newton-type methods, two new inexact modified Newton-type iteration methods are proposed. The sufficient conditions for the convergence of the two proposed inexact iteration methods are given. Moreover, to demonstrate the efficacy of the new method, several numerical examples are provided.

    Citation: Miao Guo, Qingbiao Wu. Two effective inexact iteration methods for solving the generalized absolute value equations[J]. AIMS Mathematics, 2022, 7(10): 18675-18689. doi: 10.3934/math.20221027

    Related Papers:

  • Modified Newton-type methods are efficient for addressing the generalized absolute value equations. In this paper, to further speed up the modified Newton-type methods, two new inexact modified Newton-type iteration methods are proposed. The sufficient conditions for the convergence of the two proposed inexact iteration methods are given. Moreover, to demonstrate the efficacy of the new method, several numerical examples are provided.



    加载中


    [1] J. Rohn, A theorem of the alternatives for the equation $Ax + B|x| = b$, Linear Multilinear A., 52 (2004), 421–426. https://doi.org/10.1080/0308108042000220686 doi: 10.1080/0308108042000220686
    [2] O. L. Mangasarian, Absolute value programming, Comput. Optim. Appl., 36 (2007), 43–53. https://doi.org/10.1007/s10589-006-0395-5 doi: 10.1007/s10589-006-0395-5
    [3] O. L. Mangasarian, R. R. Meyer, Absolute value equations, Linear Algebra Appl., 419 (2006), 359–367. https://doi.org/10.1016/j.laa.2006.05.004 doi: 10.1016/j.laa.2006.05.004
    [4] S. L. Wu, P. Guo, Modulus-based matrix splitting algorithms for the quasi-complementarity problems, Appl. Numer. Math., 132 (2018), 127–137. https://doi.org/10.1016/j.apnum.2018.05.017 doi: 10.1016/j.apnum.2018.05.017
    [5] R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, 1992.
    [6] N. Zheng, K. Hayami, J. F. Yin, Modulus-type inner outer iteration methods for nonnegative constrained least squares problems, SIAM J. Matrix Anal. Appl., 37 (2016), 1250–1278. https://doi.org/10.1137/141002220 doi: 10.1137/141002220
    [7] J. Rohn, On unique solvability of the absolute value equation, Optim. Lett., 3 (2009), 603–606. https://doi.org/10.1007/s11590-009-0129-6 doi: 10.1007/s11590-009-0129-6
    [8] S. L. Wu, C. X. Li, The unique solution of the absolute value equations, Appl. Math. Lett., 76 (2018), 195–200. https://doi.org/10.1016/j.aml.2017.08.012 doi: 10.1016/j.aml.2017.08.012
    [9] S. L. Wu, C. X. Li, A note on unique solvability of the absolute value equation, Optim. Lett., 14 (2020), 1957–1960. https://doi.org/10.1007/s11590-019-01478-x doi: 10.1007/s11590-019-01478-x
    [10] O. L. Mangasarian, Absolute value equation solution via concave minimization, Optim. Lett., 1 (2007), 3–8. https://doi.org/10.1007/s11590-006-0005-6 doi: 10.1007/s11590-006-0005-6
    [11] O. L. Mangasarian, Linear complementarity as absolute value equation solution, Optim. Lett., 8 (2014), 1529–1534. https://doi.org/10.1007/s11590-013-0656-z doi: 10.1007/s11590-013-0656-z
    [12] J. Rohn, An algorithm for solving the absolute value equations, ELA, 18 (2009), 589–599. https://doi.org/10.13001/1081-3810.1332 doi: 10.13001/1081-3810.1332
    [13] O. L. Mangasarian, A generalized Newton method for absolute value equations, Optim. Lett., 3 (2009), 101–108. https://doi.org/10.1007/s11590-008-0094-5 doi: 10.1007/s11590-008-0094-5
    [14] C. X. Li, A modified generalized Newton method for absolute value equations, J. Optim. Theory Appl., 170 (2016), 1055–1059. https://doi.org/10.1007/s10957-016-0956-4 doi: 10.1007/s10957-016-0956-4
    [15] J. Rohn, V. Hooshyarbakhsh, R. Farhadsefat, An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optim. Lett., 8 (2014), 35–44. https://doi.org/10.1007/s11590-012-0560-y doi: 10.1007/s11590-012-0560-y
    [16] A. Wang, Y. Cao, J. X. Chen, Modified Newton-type iteration methods for generalized absolute value equations, J. Optim. Theory Appl., 181 (2019), 216–230. https://doi.org/10.1007/s10957-018-1439-6 doi: 10.1007/s10957-018-1439-6
    [17] C. X. Li, A generalization of the AOR iteration method for solving absolute value equations, Electron. Res. Arch., 30 (2022), 1062–1074. https://doi.org/10.3934/era.2022056 doi: 10.3934/era.2022056
    [18] H. Y. Zhou, S. L. Wu, C. X. Li, Newton-based matrix splitting method for generalized absolute value equation, J. Comput. Appl. Math., 394 (2021), 113578. https://doi.org/10.1016/j.cam.2021.113578 doi: 10.1016/j.cam.2021.113578
    [19] R. Ali, I. Khan, A. Ali, A. Mohamed, Two new generalized iteration methods for solving absolute value equations using $ M $-matrix, AIMS Mathematics, 7 (2022), 8176–8187. https://doi.org/10.3934/math.2022455 doi: 10.3934/math.2022455
    [20] Y. F. Ke, The new iteration algorithm for absolute value equation, Appl. Math. Lett., 99 (2020), 105990. https://doi.org/10.1016/j.aml.2019.07.021 doi: 10.1016/j.aml.2019.07.021
    [21] C. X. Li, S. L. Wu, Block-diagonal and anti-block-diagonal splitting iteration method for absolute value equation, In: Simulation tools and techniques, Springer, Cham, 369 (2021), 572–581. https://doi.org/10.1007/978-3-030-72792-5_45
    [22] C. X. Li, L. Q. Yong, Modified BAS iteration method for absolute value equation, AIMS Mathematics, 7 (2021), 606–616. https://doi.org/10.3934/math.2022038 doi: 10.3934/math.2022038
    [23] D. K. Salkuyeh, The Picard-HSS iteration method for absolute value equations, Optim. Lett., 8 (2014), 2191–2202. https://doi.org/10.1007/s11590-014-0727-9 doi: 10.1007/s11590-014-0727-9
    [24] Z. Z. Bai, G. H. Golub, M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003): 603–626. https://doi.org/10.1137/S0895479801395458 doi: 10.1137/S0895479801395458
    [25] S. X. Miao, X. T. Xiong, J. Wen, On Picard-SHSS iteration method for absolute value equation, AIMS Mathematics, 6 (2021), 1743–1753. https://doi.org/10.3934/math.2021104 doi: 10.3934/math.2021104
    [26] C. X. Li, S. L. Wu, A single-step HSS method for non-Hermitian positive definite linear systems, Appl. Math. Lett., 44 (2015), 26–29. https://doi.org/10.1016/j.aml.2014.12.013 doi: 10.1016/j.aml.2014.12.013
    [27] O. Axelsson, Iterative solution methods, Cambridge: Cambridge University Press, 1994. https://doi.org/10.1017/CBO9780511624100
    [28] Y. Saad, Iterative methods for sparse linear systems, New York: PWS Press, 2003. https://doi.org/10.1137/1.9780898718003
    [29] J. Y. Tang, J. C. Zhou, A quadratically convergent descent method for the absolute value equation $Ax+B|x| = b$, Oper. Res. Lette., 47 (2019), 229–234. https://doi.org/10.1016/j.orl.2019.03.014 doi: 10.1016/j.orl.2019.03.014
    [30] Z. Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl., 17 (2010), 917-933. https://doi.org/10.1002/nla.680 doi: 10.1002/nla.680
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1530) PDF downloads(118) Cited by(2)

Article outline

Figures and Tables

Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog