Research article

On Picard-SHSS iteration method for absolute value equation

  • Received: 23 September 2020 Accepted: 22 November 2020 Published: 30 November 2020
  • MSC : 65H10, 47H10

  • Picard-type methods are efficient methods for solving the absolute value equation $ Ax-|x| = b $. To further improve the performance of Picard iteration method, a new inexact Picard iteration method, named Picard-SHSS iteration method, is proposed to solve the absolute value equation. The sufficient condition for the convergence of the proposed method for solving the absolute value equation is given. A numerical example is given to demonstrate the effectiveness of the new method.

    Citation: Shu-Xin Miao, Xiang-Tuan Xiong, Jin Wen. On Picard-SHSS iteration method for absolute value equation[J]. AIMS Mathematics, 2021, 6(2): 1743-1753. doi: 10.3934/math.2021104

    Related Papers:

  • Picard-type methods are efficient methods for solving the absolute value equation $ Ax-|x| = b $. To further improve the performance of Picard iteration method, a new inexact Picard iteration method, named Picard-SHSS iteration method, is proposed to solve the absolute value equation. The sufficient condition for the convergence of the proposed method for solving the absolute value equation is given. A numerical example is given to demonstrate the effectiveness of the new method.


    加载中


    [1] L. Abdallah, M. Haddou, T. Migot, Solving absolute value equation using complementarity and smoothing functions, J. Comput. Appl. Math., 327 (2018), 196-207. doi: 10.1016/j.cam.2017.06.019
    [2] Z. Z. Bai, G. H. Golub, M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), 603-626. doi: 10.1137/S0895479801395458
    [3] Z. Z. Bai, X. Yang, On HSS-based iteration methods for weakly nonlinear systems, Appl. Numer. Math., 59 (2009), 2923-2936. doi: 10.1016/j.apnum.2009.06.005
    [4] L. Caccetta, B. Qu, G. Zhou, A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl., 48 (2011), 45-58. doi: 10.1007/s10589-009-9242-9
    [5] J. M. Feng, S. Y. Liu, A three-step iterative method for solving absolute value equations, J. Math., 2020 (2020), 1-7.
    [6] X. M. Gu, T. Z. Huang, H. B. Li, S. F. Wang, L. Li, Two CSCS-based iteration methods for solving absolute value equations, J. Appl. Anal. Comput., 7 (2017), 1336-1356.
    [7] S. L. Hu, Z. H. Huang, A note on absolute value equations, Optim. Lett., 4 (2010), 417-424. doi: 10.1007/s11590-009-0169-y
    [8] Y. F. Ke, C. F. Ma, SOR-like iteration method for solving absolute value equations, Appl. Math. Comput., 311 (2017), 195-202.
    [9] C. X. Li, S. L. Wu, A single-step HSS method for non-Hermitian positive definite linear systems, Appl. Math. Lett., 44 (2015), 26-29. doi: 10.1016/j.aml.2014.12.013
    [10] F. Mezzadri, On the solution of general absolute value equations, Appl. Math. Lett., 107 (2020), art. 106462.
    [11] C. L. Wang, Z. Z. Bai, Sufficient conditions for the convergent splittings of non-Hermitian positive definite matrices, Linear Algebra Appl., 330 (2001), 215-218. doi: 10.1016/S0024-3795(01)00275-0
    [12] S. L. Wu, P. Guo, On the unique solvability of the absolute value equation, J. Optim. Theory Appl., 169 (2016), 705-712. doi: 10.1007/s10957-015-0845-2
    [13] S. L. Wu, C. X. Li, The unique solution of the absolute value equations, Appl. Math. Lett., 76 (2018), 195-200. doi: 10.1016/j.aml.2017.08.012
    [14] S. L. Wu, C. X. Li, A note on unique solvability of the absolute value equation, Optim. Lett., 14 (2020), 1957-1960. doi: 10.1007/s11590-019-01478-x
    [15] O. Mangasarian, A generalized Newton method for absolute value equations, Optim. Lett., 3 (2009), 101-108. doi: 10.1007/s11590-008-0094-5
    [16] O. Mangasarian, Knapsack feasibility as an absolute value equation solvable by successive linear programming, Optim. Lett., 3 (2009), 161-170. doi: 10.1007/s11590-008-0102-9
    [17] O. Mangasarian, Primal-dual bilinear programming solution of the absolute value equation, Optim. Lett., 6 (2012), 1527-1533. doi: 10.1007/s11590-011-0347-6
    [18] O. Mangasarian, R. Meyer, Absolute value equations, Linear Algebra Appl., 419 (2006), 359-367. doi: 10.1016/j.laa.2006.05.004
    [19] M. Noor, J. Iqbal, K. Noor, E. Al-Said, On an iterative method for solving absolute value equations, Optim. Lett., 6 (2012), 1027-1033. doi: 10.1007/s11590-011-0332-0
    [20] O. Prokopyev, On equivalent reformulations for absolute value equations, Comput. Optim. Appl., 44 (2009), 363-372. doi: 10.1007/s10589-007-9158-1
    [21] J. Rohn, A theorem of the alternatives for the equation ${A}x+{B}|x| = b$, Linear Multilinear Algebra, 52 (2004), 421-426. doi: 10.1080/0308108042000220686
    [22] J. Rohn, V. Hooshyarbakhsh, R. Farhadsefat, An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optim. Lett., 8 (2014), 35-44. doi: 10.1007/s11590-012-0560-y
    [23] Y. Saad, Iterative methods for sparse linear systems, 2 Eds., Society for Industrial and Applied Mathematics, Philadelphia, 2003.
    [24] D. Salkuyeh, The Picard-HSS iteration method for absolute value equations, Optim. Lett., 8 (2014), 2191-2202. doi: 10.1007/s11590-014-0727-9
    [25] C. Zhang, Q. Wei, Global and finite convergence of a generalized newton method for absolute value equations, J. Optim. Theory Appl., 143 (2009), 391-403. doi: 10.1007/s10957-009-9557-9
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2752) PDF downloads(290) Cited by(8)

Article outline

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog