Research article

Fuzzy congruences on AG-group

  • Received: 25 August 2020 Accepted: 16 November 2020 Published: 30 November 2020
  • MSC : 14A22, 16S38

  • In this paper, we establish the idea of fuzzy congruences on Abel-Grassmann's group (AG-group). We investigate different outcomes of fuzzy-congruences on AG-groups in detail and give some examples to illustrate the newly established results. We develop the relation between fuzzy congruence and fuzzy normal subgroup. In the end, we also provide some results of fuzzy homomorphism on AG-groups.

    Citation: Aman Ullah, Akram Khan, Ali Ahmadian, Norazak Senu, Faruk Karaaslan, Imtiaz Ahmad. Fuzzy congruences on AG-group[J]. AIMS Mathematics, 2021, 6(2): 1754-1768. doi: 10.3934/math.2021105

    Related Papers:

  • In this paper, we establish the idea of fuzzy congruences on Abel-Grassmann's group (AG-group). We investigate different outcomes of fuzzy-congruences on AG-groups in detail and give some examples to illustrate the newly established results. We develop the relation between fuzzy congruence and fuzzy normal subgroup. In the end, we also provide some results of fuzzy homomorphism on AG-groups.


    加载中


    [1] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X
    [2] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517. doi: 10.1016/0022-247X(71)90199-5
    [3] E. Sanchez, Resolution of composite fuzzy relation equations, Information and Control, 30 (1976), 38-48. doi: 10.1016/S0019-9958(76)90446-0
    [4] P. Bhattacharya, N. P. Mukherjee, Fuzzy relations and fuzzy groups, Information and Control, 36 (1985), 267-282.
    [5] N. P. Mukherjee, P. Bhattacharya, Fuzzy normal subgroups and fuzzy cosets, Information and Control, 34 (1984), 225-239.
    [6] W. C. Nemitz, Fuzzy relations and fuzzy functions, Fuzzy Set. Syst., 19 (1986), 177-191. doi: 10.1016/0165-0114(86)90036-9
    [7] H. Fan, J. Feng, M. Meng, B. Wanga, General decmposition of fuzzy relations: semi-tensor product appraoch, Fuzzy Set. Syst., 384 (2020), 75-90. doi: 10.1016/j.fss.2018.12.012
    [8] D. Cheng, J. Feng, H. Lv, Solving fuzzy relational equations via semitensor product, IEEE T. Fuzzy Syst., 20 (2012), 390-396. doi: 10.1109/TFUZZ.2011.2174243
    [9] V. Murali, Fuzzy equivalence relation, Fuzzy Set. Syst., 30 (1989), 155-163. doi: 10.1016/0165-0114(89)90077-8
    [10] N. Kuroki, Fuzzy congruence and fuzzy normal subgroups, Information and Control, 60 (1992), 247-259.
    [11] X. Zhou, D. Xiang, J. Zhan, A noval study fuzzy congruences on n-ray semigroups, UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 78 (2016), 19-30.
    [12] S. K. Shoar, Fuzzy normal congruences and fuzzy cosets relations on groups, International Journal of Pure and Applied Mathematics, 115 (2017), 211-224.
    [13] M. Shah, C. Gretton, V. Sorge, Enumerating AG-groups with a study of smarandache AG-groups, International Mathematical Forum, 6 (2011), 3079-3086.
    [14] M. S. Kamran, Conditions for LA-semigroups to resemble associative structures, Ph. D. Thesis, Quaid-i-Azam University, Islamabad, 1993.
    [15] Amanullah, A study of fuzzy AG-subgroups, Ph. D. Thesis, University of Malakand, Chakdara Dir L, Pakistan, 2016.
    [16] I. Ahmad, Amanullah, M. Shah, Fuzzy AG-Subgroups, Life Sci. J., 9 (2012), 3931-3936.
    [17] Amanullah, I. Ahmad, M. Shah, On the equal-height elements of fuzzy AG-subgroups, Life Science Journal, 10 (2013), 3143-3146.
    [18] Amanullah, I. Ahmad, F. Karaaslan, Cubic Abel-Grassmann's subgroups, J. Comput. Theor. Nanos., 13 (2016), 628-635. doi: 10.1166/jctn.2016.4852
    [19] F. Karaaslan, I. Ahmad, Amanullah, Bipolar soft groups, J. Intell. Fuzzy Syst., 31 (2016), 651-662. doi: 10.3233/IFS-162178
    [20] W. Khan, K. Hila, G. Chen, Sandwich sets and congruences in completely inverse AG*-groupoid, Italian Journal of Pure and Applied Mathematics, 39 (2018), 822-838.
    [21] W. Khan, G. Y. Chena, B. Davvaz, Fuzzy congruences on non-associative semigroups, J. Intell. Fuzzy Syst., 35 (2018), 3783-3796. doi: 10.3233/JIFS-18663
    [22] G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, 5th edition, Oxford University Press, New York, 1979.
    [23] F. Guterl, Suddenly, Number theory makes sense to industry, Math Horizons, 2 (1994), 6-8. doi: 10.1080/10724117.1994.11974900
    [24] C. Ding, Chinese remainder theorem: applications in computing, coding, cryptography, World Scientific Publishing Company, 1996.
    [25] S. Y. Yan, Number theory for computing, Springer, 2002.
    [26] M. Schroeder, Number theory in science and communication: with applications in cryptography, physics, digital information, computing, and self-similarity, Springer, 2008.
    [27] M. K. Chakraborty, M. Das, Reduction of fuzzy strict order relations, Fuzzy Set. Syst., 15 (1985), 33-44. doi: 10.1016/0165-0114(85)90014-4
    [28] V. Murali, Fuzzy equivalence relations, Fuzzy Set. Syst., 30 (1989), 155-163. doi: 10.1016/0165-0114(89)90077-8
    [29] M. Samhan, Fuzzy congruence on semigroups, Information Sciences, 74 (1993), 165-175. doi: 10.1016/0020-0255(93)90132-6
    [30] J. M. Howie, An introduction to semigroup theory, Academic Press, London, 1976.
    [31] J. N. Mordeson, D. S. Malik, N. Kuroki, Fuzzy Semigroups, Springer-Verlag Berlin Heidelberg, 2003.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2911) PDF downloads(220) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog