In this paper, we introduce and study $ \alpha $-irresolute multifunctions, and some of their properties are studied. The properties of $ \alpha $-compactness and $ \alpha $-normality under upper $ \alpha $-irresolute multifunctions are topological properties. Also, we prove that the composition of two upper and lower $ \alpha $-irresolute multifunctions is $ \alpha $-irresolute. We apply the results of $ \alpha $-irresolute multifunctions to topological games. Upper and lower topological games are introduced. The set of places for player ONE in upper topological games may guarantee a gain is semi-closed. Finally, some optimal strategies for topological games are defined and studied.
Citation: Sewalem Ghanem, Abdelfattah A. El Atik. On irresolute multifunctions and related topological games[J]. AIMS Mathematics, 2022, 7(10): 18662-18674. doi: 10.3934/math.20221026
In this paper, we introduce and study $ \alpha $-irresolute multifunctions, and some of their properties are studied. The properties of $ \alpha $-compactness and $ \alpha $-normality under upper $ \alpha $-irresolute multifunctions are topological properties. Also, we prove that the composition of two upper and lower $ \alpha $-irresolute multifunctions is $ \alpha $-irresolute. We apply the results of $ \alpha $-irresolute multifunctions to topological games. Upper and lower topological games are introduced. The set of places for player ONE in upper topological games may guarantee a gain is semi-closed. Finally, some optimal strategies for topological games are defined and studied.
[1] | D. Andrijevic, On SPO-equivalent topologies, Suppl. Rend. Cir. Mat. Palermo, 29 (1992), 317–328. |
[2] | M. Atef, A. A. El Atik, A. Nawar, Fuzzy topological structures via fuzzy graphs and their applications, Soft Comput., 25 (2021), 6013–6027. https://doi.org/10.1007/s00500-021-05594-8 doi: 10.1007/s00500-021-05594-8 |
[3] | C. Berge, Topological games with perfect information, Contrib. Theory Games, 3 (1957), 165–178. |
[4] | J. Cao, W. Moors, I. Reilly, Topological properties defines by games and their applications, Topol. Appl., 123 (2002), 47–55. https://doi.org/10.1016/S0166-8641(01)00168-7 doi: 10.1016/S0166-8641(01)00168-7 |
[5] | S. G. Crossley, S. K. Hildebrand, Semi-closure, Texas J. Sci., 22 (1971), 99–112. |
[6] | C. Dorsett, Semi-convergence and compactness, Indian J. Mech. Math., 19 (1981), 11–17. |
[7] | A. A. El Atik, A study of some types of mappings on topological spaces, Master's Thesis, Faculty of Science, Tanta University, 1997. |
[8] | A. A. El Atik, On some types of faint continuity, Thai J. Math., 9 (2012), 83–93. |
[9] | A. A. El Atik, Point $\alpha$-open games and its equivalences, Eur. J. Sci. Res., 136 (2015), 312–319. |
[10] | A. A. El Atik, On irresolute multifunctions and games, JMEST, 2 (2015), 571–575. |
[11] | A. A. El Atik, Approximation of self similar fractals by $\alpha$ topological spaces, J. Comput. Theor. Nanos., 13 (2016), 8776–8780. https://doi.org/10.1166/jctn.2016.6041 doi: 10.1166/jctn.2016.6041 |
[12] | A. A. El Atik, Pre-$\theta$-irresolute multifunctions and its applications, South Asian J. Math., 6 (2016), 64–71. |
[13] | A. A. El Atik, New types of winning strategies via compact spaces, J. Egypt. Math. Soc., 25 (2017), 167–170. https://doi.org/10.1016/j.joems.2016.12.003 doi: 10.1016/j.joems.2016.12.003 |
[14] | A. A. El Atik, R. A. Hosny, More properties on continuous multifunctions, J. Comput. Theor. Nanos., 15 (2018), 1368–1372. https://doi.org/10.1166/jctn.2018.7218 doi: 10.1166/jctn.2018.7218 |
[15] | A. A. El Atik, A. S. Wahba, Topological approaches of graphs and their applications by neighborhood systems and rough sets, J. Intell. Fuzzy Syst., 39 (2020), 6979–6992. https://doi.org/10.3233/JIFS-200126 doi: 10.3233/JIFS-200126 |
[16] | A. A. El Atik, A. A. Nasef, Some topological structures of fractals and their related graphs, Filomat, 34 (2020), 153–165. https://doi.org/10.2298/fil2001153a doi: 10.2298/fil2001153a |
[17] | A. A. El Atik, H. Z. Hassan, Some nano topological structures via ideals and graphs, J. Egypt. Math. Soc., 28 (2020), 41. DOI: 10.1186/s42787-020-00093-5 doi: 10.1186/s42787-020-00093-5 |
[18] | A. A. El Atik, A. W. Aboutahoun, A. Elsaid, Correct proof of the main result in "The number of spanning trees of a class of self-similar fractal models" by Ma and Yao, Inform. Process. Lett., 170 (2021), 106117. https://doi.org/10.1016/j.ipl.2021.106117 doi: 10.1016/j.ipl.2021.106117 |
[19] | A. A. El Atik, A. Nawar, M. Atef, Rough approximation models via graphs based on neighborhood Systems, Granul. Comput., 6 (2021), 1025–1035. https://doi.org/10.1007/s41066-020-00245-z doi: 10.1007/s41066-020-00245-z |
[20] | A. A. El Atik, I. K. Halfa and A. Azzam, Modelling pollution of radiation via topological minimal structures, T. A Razmadze Math. In., 175 (2021), 33–41. |
[21] | J. Ewert, T. Lipski, Quasi-continuous multivalued mapping, Math. Slovaca, 33 (1983), 69–74. |
[22] | M. K. El-Bably, A. A. El Atik, Soft $\beta$-rough sets and their application to determine COVID-$19$, Turk. J. Math., 45 (2021), 1133–1148. https://doi.org/10.3906/mat-2008-93 doi: 10.3906/mat-2008-93 |
[23] | S. Garcia-Ferreira, R. A. Gonzalez-Silva, Topological games defined by ultrafilters, Topol. Appl., 137 (2004), 159–166. https://doi.org/10.1016/S0166-8641(03)00205-0 doi: 10.1016/S0166-8641(03)00205-0 |
[24] | A. M. Kozae, A. A. El Atik, S. Haroun, More results on rough sets via neighborhoods of graphs with finite path, J. Phys. Conf. Ser., 1897 (2021), 012049. |
[25] | N. Levine, Semi-open sets and semi-continuity in topological spaces, Am. Math. Mon., 70 (1963), 36–41. https://doi.org/10.1080/00029890.1963.11990039 doi: 10.1080/00029890.1963.11990039 |
[26] | A. S. Mashhour, I. A. Hasanein, S. N. El-Deeb, $\alpha$-Continuous and $\alpha$-open mappings, Acta Math. Hung., 41 (1983), 213–218. https://doi.org/10.1007/bf01961309 doi: 10.1007/bf01961309 |
[27] | K. Martin, Topological games in domian theory, Topol. Appl., 129 (2003), 177–186. https://doi.org/10.1016/S0166-8641(02)00147-5 doi: 10.1016/S0166-8641(02)00147-5 |
[28] | S. N. Maheshwari, S. S. Thakur, On $\alpha$-compact spaces, Bull. Inst. Math. Acad. Sinica, 15 (1985), 340–347. |
[29] | O. Njástad, On some classes of nearly open sets, Pac. J. Math., 15 (1965), 961–970. https://doi.org/10.2140/pjm.1965.15.961 doi: 10.2140/pjm.1965.15.961 |
[30] | T. Neubrunn, Srongly quasi-continuous multivalued mappings, In: General topology and its relations to modern analysis and algebra Ⅵ, Berlin: Heldermann Verlag, 1988,351–359. |
[31] | T. Noiri, A. A. Nasef, On upper and lower $\alpha$-irresolute multifunctions, Res. Rep. Yatsushiro Nat. Coll. Tech., 20 (1997), 105–110. |
[32] | A. R. Pears, On topological games, Math. Proc. Cambridge, 61 (1965), 165–171. https://doi.org/10.1017/S0305004100038755 doi: 10.1017/S0305004100038755 |
[33] | V. Popa, T. Noiri, Some properties of irresolute multifunctions, Mat. Vesnik, 43 (1991), 11–17. |
[34] | L. Reilly, M. K. Vamanamyrthy, Connectedness and strong semi-continuity, Časopis Pêst. Mat., 109 (1984), 261–265. |
[35] | R. Telgársky, Spaces defined by topological games, Fund. Math., 88 (1975), 193–223. |
[36] | Y. Yajima, Topological games and applications, North-Holland Math. Library, 41 (1989), 523–562. https://doi.org/10.1016/S0924-6509(08)70159-4 doi: 10.1016/S0924-6509(08)70159-4 |