Research article

Variational problems of variable fractional order involving arbitrary kernels

  • Received: 12 July 2022 Revised: 01 August 2022 Accepted: 11 August 2022 Published: 23 August 2022
  • MSC : 26A33, 49L99

  • The aim of this work is to study several problems of the calculus of variations, where the dynamics of the state function is given by a generalized fractional derivative. This derivative combines two well-known concepts: fractional derivative with respect to another function and fractional derivative of variable order. We present the Euler–Lagrange equation, which is a necessary condition that every optimal solution of the problem must satisfy. Other problems are also studied: with integral and holonomic constraints, with higher order derivatives, and the Herglotz variational problem.

    Citation: Ricardo Almeida. Variational problems of variable fractional order involving arbitrary kernels[J]. AIMS Mathematics, 2022, 7(10): 18690-18707. doi: 10.3934/math.20221028

    Related Papers:

  • The aim of this work is to study several problems of the calculus of variations, where the dynamics of the state function is given by a generalized fractional derivative. This derivative combines two well-known concepts: fractional derivative with respect to another function and fractional derivative of variable order. We present the Euler–Lagrange equation, which is a necessary condition that every optimal solution of the problem must satisfy. Other problems are also studied: with integral and holonomic constraints, with higher order derivatives, and the Herglotz variational problem.



    加载中


    [1] O. P. Agrawal, Formulation of Euler–Lagrange equations for fractional variational problems, J. Math. Anal. Appl., 272 (2002), 368–379. https://doi.org/10.1016/S0022-247X(02)00180-4 doi: 10.1016/S0022-247X(02)00180-4
    [2] O. P. Agrawal, Generalized Euler–Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative, J. Vib. Control, 13 (2007), 1217–1237. https://doi.org/10.1177/1077546307077472 doi: 10.1177/1077546307077472
    [3] A. Akgül, S. H. A. Khoshnaw, Application of fractional derivative on non-linear biochemical reaction models, International Journal of Intelligent Networks, 1 (2020), 52–58. https://doi.org/10.1016/j.ijin.2020.05.001 doi: 10.1016/j.ijin.2020.05.001
    [4] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [5] R. Almeida, Optimality conditions for fractional variational problems with free terminal time, Discrete Cont. Dyn. Syst. S, 11 (2018), 1–19. https://doi.org/10.3934/dcdss.2018001 doi: 10.3934/dcdss.2018001
    [6] R. Almeida, Variational problems involving a Caputo-type fractional derivative, J. Optim. Theory Appl., 174 (2017), 276–294. https://doi.org/10.1007/s10957-016-0883-4 doi: 10.1007/s10957-016-0883-4
    [7] R. Almeida, N. R. O. Bastos, D. F. M. Torres, A discretization method to solve fractional variational problems with dependence on Hadamard derivatives, International Journal of Difference Equations, 9 (2014), 3–10.
    [8] R. Almeida, R. A. C. Ferreira, D. F. M. Torres, Isoperimetric problems of the calculus of variations with fractional derivatives, Acta Math. Sci., 32 (2012), 619–630. https://doi.org/10.1016/S0252-9602(12)60043-5 doi: 10.1016/S0252-9602(12)60043-5
    [9] R. Almeida, D. F. M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Commun. Nonlinear Sci. Numer. Simult., 16 (2011), 1490–1500. https://doi.org/10.1016/j.cnsns.2010.07.016 doi: 10.1016/j.cnsns.2010.07.016
    [10] T. M. Atanacković, S. Konjik, S. Pilipović, Variational problems withfractional derivatives: Euler–Lagrange equations, J. Phys. A: Math. Theor., 41 (2008), 095201. http://doi.org/10.1088/1751-8113/41/9/095201 doi: 10.1088/1751-8113/41/9/095201
    [11] D. Baleanu, Fractional constrained systems and caputo derivatives, J. Comput. Nonlinear Dynam., 3 (2008), 021102. https://doi.org/10.1115/1.2833586 doi: 10.1115/1.2833586
    [12] D. Baleanu, S. I. Muslih, E. M. Rabei, On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative, Nonlinear Dyn., 53 (2008), 67–74. https://doi.org/10.1007/s11071-007-9296-0 doi: 10.1007/s11071-007-9296-0
    [13] W. Chen, H. G. Sun, X. Li, Fractional derivative modeling in mechanics and engineering, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-16-8802-7
    [14] G. Failla, M. Zingales, Advanced materials modelling via fractional calculus: challenges and perspectives, Phil. Trans. R. Soc. A, 378 (2020), 20200050. https://doi.org/10.1098/rsta.2020.0050 doi: 10.1098/rsta.2020.0050
    [15] Y. Y. Gambo, F. Jarad, D. Baleanu, T. Abdeljawad, On Caputo modifcation of the Hadamard fractional derivatives, Adv. Differ. Equ., 2014 (2014), 10. https://doi.org/10.1186/1687-1847-2014-10 doi: 10.1186/1687-1847-2014-10
    [16] R. Garrappa, A. Giusti, F. Mainardi, Variable-order fractional calculus: A change of perspective, Commun. Nonlinear Sci. Numer. Simul., 102 (2021), 105904. https://doi.org/10.1016/j.cnsns.2021.105904 doi: 10.1016/j.cnsns.2021.105904
    [17] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    [18] C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 141–159. https://doi.org/10.1016/j.cnsns.2017.04.001 doi: 10.1016/j.cnsns.2017.04.001
    [19] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modifcation of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142
    [20] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [21] R. L. Magin, Fractional calculus in bioengineering, Part 1, Crit. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10
    [22] A. B. Malinowska, T. Odzijewicz, D. F. M. Torres, Advanced methods in the fractional calculus of variations, Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-14756-7
    [23] F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 939–945. https://doi.org/10.1016/j.cnsns.2009.05.004 doi: 10.1016/j.cnsns.2009.05.004
    [24] O. Naifar, A. B. Makhlouf, Fractional order systems—control theory and applications, Cham: Springer, 2022. https://doi.org/10.1007/978-3-030-71446-8
    [25] T. Odzijewicz, A. B. Malinowska, D. F. M. Torres, Generalized fractional calculus with applications to the calculus of variations, Comput. Math. Appl., 64 (2012), 3351–3366. https://doi.org/10.1016/j.camwa.2012.01.073 doi: 10.1016/j.camwa.2012.01.073
    [26] K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9–12. https://doi.org/10.1016/j.advengsoft.2008.12.012 doi: 10.1016/j.advengsoft.2008.12.012
    [27] T. J. Osler, The fractional derivative of a composite function, SIAM J. Math. Anal., 1 (1970), 288–293. https://doi.org/10.1137/0501026 doi: 10.1137/0501026
    [28] F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E, 3 (1996), 1890–1899. https://doi.org/10.1103/PhysRevE.53.1890 doi: 10.1103/PhysRevE.53.1890
    [29] A. Rhouma, S. Hafsi, K. Laabidi, Stabilizing and robust fractional PID controller synthesis for uncertain first-order plus time-delay systems, Math. Probl. Eng., 2021 (2021), 9940634. https://doi.org/10.1155/2021/9940634 doi: 10.1155/2021/9940634
    [30] S. G. Samko, Fractional integration and differentiation of variable order: an overview, Nonlinear Dyn., 71 (2013), 653–662. https://doi.org/10.1007/s11071-012-0485-0 doi: 10.1007/s11071-012-0485-0
    [31] S. G. Samko, B. Ross, Integration and differentiation to a variable fractional order, Integr. Transf. Spec. Funct., 1 (1993), 277–300. https://doi.org/10.1080/10652469308819027 doi: 10.1080/10652469308819027
    [32] S. Sarwar, M. A. Zahid, S. Iqbal, Mathematical study of fractional-order biological population model using optimal homotopy asymptotic method, Int. J. Biomath., 9 (2016), 1650081. https://doi.org/10.1142/S1793524516500819 doi: 10.1142/S1793524516500819
    [33] D. Tavares, R. Almeida, D. F. M. Torres, Optimality conditions for fractional variational problems with dependence on a combined Caputo derivative of variable order, Optimization, 64 (2015), 1381–1391. https://doi.org/10.1080/02331934.2015.1010088 doi: 10.1080/02331934.2015.1010088
    [34] D. Tavares, R. Almeida, D. F. M. Torres, Constrained fractional variational problems of variable order, IEEE/CAA J. Automatic, 4 (2017), 80–88. https://doi.org/10.1109/JAS.2017.7510331 doi: 10.1109/JAS.2017.7510331
    [35] D. Tavares, R. Almeida, D. F. M. Torres, Fractional Herglotz variational problem of variable order, Discrete Cont. Dyn. Syst. S, 11 (2018), 143–154. https://doi.org/10.3934/dcdss.2018009 doi: 10.3934/dcdss.2018009
    [36] A. Traore, N. Sene, Model of economic growth in the context of fractional derivative, Alex. Eng. J., 59 (2020), 4843–4850. https://doi.org/10.1016/j.aej.2020.08.047 doi: 10.1016/j.aej.2020.08.047
    [37] X. Zheng, H. Wang, A hidden-memory variable-order time-fractional optimal control model: Analysis and approximation, SIAM J. Control Optim., 59 (2021), 1851–1880. https://doi.org/10.1137/20M1344962 doi: 10.1137/20M1344962
    [38] X. Zheng, H. Wang, Discretization and analysis of an optimal control of a variable-order time-fractional diffusion equation with pointwise constraints, J. Sci. Comput., 91 (2022), 56. https://doi.org/10.1007/s10915-022-01795-x doi: 10.1007/s10915-022-01795-x
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1273) PDF downloads(78) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog