The aim of this work is to study several problems of the calculus of variations, where the dynamics of the state function is given by a generalized fractional derivative. This derivative combines two well-known concepts: fractional derivative with respect to another function and fractional derivative of variable order. We present the Euler–Lagrange equation, which is a necessary condition that every optimal solution of the problem must satisfy. Other problems are also studied: with integral and holonomic constraints, with higher order derivatives, and the Herglotz variational problem.
Citation: Ricardo Almeida. Variational problems of variable fractional order involving arbitrary kernels[J]. AIMS Mathematics, 2022, 7(10): 18690-18707. doi: 10.3934/math.20221028
The aim of this work is to study several problems of the calculus of variations, where the dynamics of the state function is given by a generalized fractional derivative. This derivative combines two well-known concepts: fractional derivative with respect to another function and fractional derivative of variable order. We present the Euler–Lagrange equation, which is a necessary condition that every optimal solution of the problem must satisfy. Other problems are also studied: with integral and holonomic constraints, with higher order derivatives, and the Herglotz variational problem.
[1] | O. P. Agrawal, Formulation of Euler–Lagrange equations for fractional variational problems, J. Math. Anal. Appl., 272 (2002), 368–379. https://doi.org/10.1016/S0022-247X(02)00180-4 doi: 10.1016/S0022-247X(02)00180-4 |
[2] | O. P. Agrawal, Generalized Euler–Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative, J. Vib. Control, 13 (2007), 1217–1237. https://doi.org/10.1177/1077546307077472 doi: 10.1177/1077546307077472 |
[3] | A. Akgül, S. H. A. Khoshnaw, Application of fractional derivative on non-linear biochemical reaction models, International Journal of Intelligent Networks, 1 (2020), 52–58. https://doi.org/10.1016/j.ijin.2020.05.001 doi: 10.1016/j.ijin.2020.05.001 |
[4] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006 |
[5] | R. Almeida, Optimality conditions for fractional variational problems with free terminal time, Discrete Cont. Dyn. Syst. S, 11 (2018), 1–19. https://doi.org/10.3934/dcdss.2018001 doi: 10.3934/dcdss.2018001 |
[6] | R. Almeida, Variational problems involving a Caputo-type fractional derivative, J. Optim. Theory Appl., 174 (2017), 276–294. https://doi.org/10.1007/s10957-016-0883-4 doi: 10.1007/s10957-016-0883-4 |
[7] | R. Almeida, N. R. O. Bastos, D. F. M. Torres, A discretization method to solve fractional variational problems with dependence on Hadamard derivatives, International Journal of Difference Equations, 9 (2014), 3–10. |
[8] | R. Almeida, R. A. C. Ferreira, D. F. M. Torres, Isoperimetric problems of the calculus of variations with fractional derivatives, Acta Math. Sci., 32 (2012), 619–630. https://doi.org/10.1016/S0252-9602(12)60043-5 doi: 10.1016/S0252-9602(12)60043-5 |
[9] | R. Almeida, D. F. M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Commun. Nonlinear Sci. Numer. Simult., 16 (2011), 1490–1500. https://doi.org/10.1016/j.cnsns.2010.07.016 doi: 10.1016/j.cnsns.2010.07.016 |
[10] | T. M. Atanacković, S. Konjik, S. Pilipović, Variational problems withfractional derivatives: Euler–Lagrange equations, J. Phys. A: Math. Theor., 41 (2008), 095201. http://doi.org/10.1088/1751-8113/41/9/095201 doi: 10.1088/1751-8113/41/9/095201 |
[11] | D. Baleanu, Fractional constrained systems and caputo derivatives, J. Comput. Nonlinear Dynam., 3 (2008), 021102. https://doi.org/10.1115/1.2833586 doi: 10.1115/1.2833586 |
[12] | D. Baleanu, S. I. Muslih, E. M. Rabei, On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative, Nonlinear Dyn., 53 (2008), 67–74. https://doi.org/10.1007/s11071-007-9296-0 doi: 10.1007/s11071-007-9296-0 |
[13] | W. Chen, H. G. Sun, X. Li, Fractional derivative modeling in mechanics and engineering, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-16-8802-7 |
[14] | G. Failla, M. Zingales, Advanced materials modelling via fractional calculus: challenges and perspectives, Phil. Trans. R. Soc. A, 378 (2020), 20200050. https://doi.org/10.1098/rsta.2020.0050 doi: 10.1098/rsta.2020.0050 |
[15] | Y. Y. Gambo, F. Jarad, D. Baleanu, T. Abdeljawad, On Caputo modifcation of the Hadamard fractional derivatives, Adv. Differ. Equ., 2014 (2014), 10. https://doi.org/10.1186/1687-1847-2014-10 doi: 10.1186/1687-1847-2014-10 |
[16] | R. Garrappa, A. Giusti, F. Mainardi, Variable-order fractional calculus: A change of perspective, Commun. Nonlinear Sci. Numer. Simul., 102 (2021), 105904. https://doi.org/10.1016/j.cnsns.2021.105904 doi: 10.1016/j.cnsns.2021.105904 |
[17] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
[18] | C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 141–159. https://doi.org/10.1016/j.cnsns.2017.04.001 doi: 10.1016/j.cnsns.2017.04.001 |
[19] | F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modifcation of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142 |
[20] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[21] | R. L. Magin, Fractional calculus in bioengineering, Part 1, Crit. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10 |
[22] | A. B. Malinowska, T. Odzijewicz, D. F. M. Torres, Advanced methods in the fractional calculus of variations, Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-14756-7 |
[23] | F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 939–945. https://doi.org/10.1016/j.cnsns.2009.05.004 doi: 10.1016/j.cnsns.2009.05.004 |
[24] | O. Naifar, A. B. Makhlouf, Fractional order systems—control theory and applications, Cham: Springer, 2022. https://doi.org/10.1007/978-3-030-71446-8 |
[25] | T. Odzijewicz, A. B. Malinowska, D. F. M. Torres, Generalized fractional calculus with applications to the calculus of variations, Comput. Math. Appl., 64 (2012), 3351–3366. https://doi.org/10.1016/j.camwa.2012.01.073 doi: 10.1016/j.camwa.2012.01.073 |
[26] | K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9–12. https://doi.org/10.1016/j.advengsoft.2008.12.012 doi: 10.1016/j.advengsoft.2008.12.012 |
[27] | T. J. Osler, The fractional derivative of a composite function, SIAM J. Math. Anal., 1 (1970), 288–293. https://doi.org/10.1137/0501026 doi: 10.1137/0501026 |
[28] | F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E, 3 (1996), 1890–1899. https://doi.org/10.1103/PhysRevE.53.1890 doi: 10.1103/PhysRevE.53.1890 |
[29] | A. Rhouma, S. Hafsi, K. Laabidi, Stabilizing and robust fractional PID controller synthesis for uncertain first-order plus time-delay systems, Math. Probl. Eng., 2021 (2021), 9940634. https://doi.org/10.1155/2021/9940634 doi: 10.1155/2021/9940634 |
[30] | S. G. Samko, Fractional integration and differentiation of variable order: an overview, Nonlinear Dyn., 71 (2013), 653–662. https://doi.org/10.1007/s11071-012-0485-0 doi: 10.1007/s11071-012-0485-0 |
[31] | S. G. Samko, B. Ross, Integration and differentiation to a variable fractional order, Integr. Transf. Spec. Funct., 1 (1993), 277–300. https://doi.org/10.1080/10652469308819027 doi: 10.1080/10652469308819027 |
[32] | S. Sarwar, M. A. Zahid, S. Iqbal, Mathematical study of fractional-order biological population model using optimal homotopy asymptotic method, Int. J. Biomath., 9 (2016), 1650081. https://doi.org/10.1142/S1793524516500819 doi: 10.1142/S1793524516500819 |
[33] | D. Tavares, R. Almeida, D. F. M. Torres, Optimality conditions for fractional variational problems with dependence on a combined Caputo derivative of variable order, Optimization, 64 (2015), 1381–1391. https://doi.org/10.1080/02331934.2015.1010088 doi: 10.1080/02331934.2015.1010088 |
[34] | D. Tavares, R. Almeida, D. F. M. Torres, Constrained fractional variational problems of variable order, IEEE/CAA J. Automatic, 4 (2017), 80–88. https://doi.org/10.1109/JAS.2017.7510331 doi: 10.1109/JAS.2017.7510331 |
[35] | D. Tavares, R. Almeida, D. F. M. Torres, Fractional Herglotz variational problem of variable order, Discrete Cont. Dyn. Syst. S, 11 (2018), 143–154. https://doi.org/10.3934/dcdss.2018009 doi: 10.3934/dcdss.2018009 |
[36] | A. Traore, N. Sene, Model of economic growth in the context of fractional derivative, Alex. Eng. J., 59 (2020), 4843–4850. https://doi.org/10.1016/j.aej.2020.08.047 doi: 10.1016/j.aej.2020.08.047 |
[37] | X. Zheng, H. Wang, A hidden-memory variable-order time-fractional optimal control model: Analysis and approximation, SIAM J. Control Optim., 59 (2021), 1851–1880. https://doi.org/10.1137/20M1344962 doi: 10.1137/20M1344962 |
[38] | X. Zheng, H. Wang, Discretization and analysis of an optimal control of a variable-order time-fractional diffusion equation with pointwise constraints, J. Sci. Comput., 91 (2022), 56. https://doi.org/10.1007/s10915-022-01795-x doi: 10.1007/s10915-022-01795-x |