We study the behavior of solutions for the parametric equation
$ -\Delta_{p}^{a_1} u(z)-\Delta_{q}^{a_2} u(z) = \lambda |u(z)|^{q-2} u(z)+f(z,u(z)) \quad \mbox{in } \Omega,\, \lambda >0, $
under Dirichlet condition, where $ \Omega \subseteq \mathbb{R}^N $ is a bounded domain with a $ C^2 $-boundary $ \partial \Omega $, $ a_1, a_2 \in L^\infty(\Omega) $ with $ a_1(z), a_2(z) > 0 $ for a.a. $ z \in \Omega $, $ p, q \in (1, \infty) $ and $ \Delta_{p}^{a_1}, \Delta_{q}^{a_2} $ are weighted versions of $ p $-Laplacian and $ q $-Laplacian. We prove existence and nonexistence of nontrivial solutions, when $ f(z, x) $ asymptotically as $ x \to \pm \infty $ can be resonant. In the studied cases, we adopt a variational approach and use truncation and comparison techniques. When $ \lambda $ is large, we establish the existence of at least three nontrivial smooth solutions with sign information and ordered. Moreover, the critical parameter value is determined in terms of the spectrum of one of the differential operators.
Citation: Dušan D. Repovš, Calogero Vetro. The behavior of solutions of a parametric weighted $ (p, q) $-Laplacian equation[J]. AIMS Mathematics, 2022, 7(1): 499-517. doi: 10.3934/math.2022032
We study the behavior of solutions for the parametric equation
$ -\Delta_{p}^{a_1} u(z)-\Delta_{q}^{a_2} u(z) = \lambda |u(z)|^{q-2} u(z)+f(z,u(z)) \quad \mbox{in } \Omega,\, \lambda >0, $
under Dirichlet condition, where $ \Omega \subseteq \mathbb{R}^N $ is a bounded domain with a $ C^2 $-boundary $ \partial \Omega $, $ a_1, a_2 \in L^\infty(\Omega) $ with $ a_1(z), a_2(z) > 0 $ for a.a. $ z \in \Omega $, $ p, q \in (1, \infty) $ and $ \Delta_{p}^{a_1}, \Delta_{q}^{a_2} $ are weighted versions of $ p $-Laplacian and $ q $-Laplacian. We prove existence and nonexistence of nontrivial solutions, when $ f(z, x) $ asymptotically as $ x \to \pm \infty $ can be resonant. In the studied cases, we adopt a variational approach and use truncation and comparison techniques. When $ \lambda $ is large, we establish the existence of at least three nontrivial smooth solutions with sign information and ordered. Moreover, the critical parameter value is determined in terms of the spectrum of one of the differential operators.
[1] | M. Cuesta, D. de Figueiredo, J.-P. Gossez, The beginning of the Fučik spectrum for the $p$-Laplacian, J. Differ. Equations, 159 (1999), 212–238. doi: 10.1006/jdeq.1999.3645. doi: 10.1006/jdeq.1999.3645 |
[2] | J. I. Díaz, J. E. Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 521–524. |
[3] | L. Gasiński, N. S. Papageorgiou, Nonlinear Analysis, Ser. Math. Anal. Appl., vol. 9, Boca Raton: Chapman and Hall/CRC Press, 2006. |
[4] | L. Gasiński, N. S. Papageorgiou, Multiple solutions for nonlinear coercive problems with a nonhomogeneous differential operator and a nonsmooth potential, Set-Valued Var. Anal., 20 (2012), 417–443. doi: 10.1007/s11228-011-0198-4. doi: 10.1007/s11228-011-0198-4 |
[5] | L. Gasiński, N. S. Papageorgiou, Positive solutions for the Robin $p$-Laplacian problem with competing nonlinearities, Adv. Calc. Var., 12 (2019), 31–56. doi: 10.1515/acv-2016-0039. doi: 10.1515/acv-2016-0039 |
[6] | L. Gasiński, N.S. Papageorgiou, K. Winowski, Positive solutions for nonlinear Robin problems with concave terms, J. Convex Anal., 26 (2019), 1–30. |
[7] | D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Berlin: Springer-Verlag, 1998. |
[8] | S. Hu, N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Dordrecht: Kluwer Academic Publishers, The Netherlands, 1997. |
[9] | J. Jaros, $A$-harmonic Picone's identity with applications, Ann. Mat. Pura Appl., 194 (2015), 719–729. |
[10] | O. A. Ladyzhenskaya, N.N. Ural'tseva, Linear and Quasilinear Elliptic Equations, New York: Academic Press, 1968. |
[11] | G. M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Commun. Part. Diff. Eq., 16 (1991), 311–361. doi: 10.1080/03605309108820761. doi: 10.1080/03605309108820761 |
[12] | S. A. Marano, G. Marino, N. S. Papageorgiou, On a Dirichlet problem with $(p, q)$-Laplacian and parametric concave-convex nonlinearity, J. Math. Anal. Appl., 475 (2019), 1093–1107. doi: 10.1016/j.jmaa.2019.03.006. doi: 10.1016/j.jmaa.2019.03.006 |
[13] | E. Michael, Continuous selections I, Ann. of Math., 63 (1956), 361–382. |
[14] | N. S. Papageorgiou, S. Th. Kyritsi-Yiallourou, Handbook of Applied Analysis, New York: Springer-Verlag US, 2009. |
[15] | N. S. Papageorgiou, V. D. Rǎdulescu, D. D. Repovš, Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discrete Contin. Dyn. Syst., 37 (2017), 2589–2618. doi: 10.3934/dcds.2017111. doi: 10.3934/dcds.2017111 |
[16] | N. S. Papageorgiou, V. D. Rǎdulescu, D. D. Repovš, Nonlinear Analysis - Theory and Methods, Springer Monographs in Mathematics, Cham: Springer, 2019. doi: 10.1007/978-3-030-03430-6. |
[17] | N. S. Papageorgiou, V. D. Rǎdulescu, D. D. Repovš, Anisotropic equations with indefinite potential and competing nonlinearities, Nonlinear Anal., 201 (2020), 111861. doi: 10.1016/j.na.2020.111861. doi: 10.1016/j.na.2020.111861 |
[18] | N. S. Papageorgiou, D. D. Repovš, C. Vetro, Nonlinear nonhomogeneous Robin problems with almost critical and partially concave reaction, J. Geom. Anal., 30 (2020), 1774–1803. doi: 10.1007/s12220-019-00278-0. doi: 10.1007/s12220-019-00278-0 |
[19] | N. S. Papageorgiou, A. Scapellato, Constant sign and nodal solutions for parametric $(p, 2)$-equations, Adv. Nonlinear Anal., 9 (2020), 449–478. doi: 10.1515/anona-2020-0009. doi: 10.1515/anona-2020-0009 |
[20] | N. S. Papageorgiou, C. Vetro, F. Vetro, Multiple solutions for parametric double phase Dirichlet problems, Commun. Contemp. Math., 23 (2021), 2050006. doi: 10.1142/s0219199720500066. doi: 10.1142/s0219199720500066 |
[21] | N. S. Papageorgiou, P. Winkert, $(p, q)$-equations with singular and concave convex nonlinearities, Appl. Math. Optim., 84 (2021), 2601–2628. doi: 10.1007/s00245-020-09720-0. doi: 10.1007/s00245-020-09720-0 |
[22] | N. S. Papageorgiou, C. Zhang, Noncoercive resonant $(p, 2)$-equations with concave terms, Adv. Nonlinear Anal., 9 (2020), 228–249. doi: 10.1515/anona-2018-0175. doi: 10.1515/anona-2018-0175 |
[23] | N. S. Papageorgiou, Y. Zhang, Constant sign and nodal solutions for superlinear $(p, q)$-equations with indefinite potential and a concave boundary term, Adv. Nonlinear Anal., 10 (2021), 76–101. doi: 10.1515/anona-2020-0101. doi: 10.1515/anona-2020-0101 |
[24] | N. S. Papageorgiou, Y. Zhang, On the set of positive solutions for resonant Robin $(p, q)$-equations, Adv. Nonlinear Anal., 10 (2021), 1132–1153. doi: 10.1515/anona-2020-0175. doi: 10.1515/anona-2020-0175 |
[25] | P. Pucci, J. Serrin, The Maximum Principle, Basel: Birkhäuser Verlag, 2007. |
[26] | V. D. Rǎdulescu, Isotropic and anisotropic double-phase problems: old and new, Opuscula Math., 39 (2019), 259–279. doi: 10.7494/opmath.2019.39.2.259. doi: 10.7494/opmath.2019.39.2.259 |