This paper investigates an observability estimate for the parabolic equations with inverse square potential in a $ C^2 $ bounded domain $ \Omega\subset\mathbb{R}^d $, which contains $ 0 $. The observation region is a product set of a subset $ E\subset(0, T] $ with positive measure and a non-empty open subset $ \omega\subset\Omega $ with $ 0\notin\omega $. We build up this estimate by a delicate result in measure theory in [
Citation: Guojie Zheng, Baolin Ma. Observability estimate for the parabolic equations with inverse square potential[J]. AIMS Mathematics, 2021, 6(12): 13525-13532. doi: 10.3934/math.2021785
This paper investigates an observability estimate for the parabolic equations with inverse square potential in a $ C^2 $ bounded domain $ \Omega\subset\mathbb{R}^d $, which contains $ 0 $. The observation region is a product set of a subset $ E\subset(0, T] $ with positive measure and a non-empty open subset $ \omega\subset\Omega $ with $ 0\notin\omega $. We build up this estimate by a delicate result in measure theory in [
[1] | J. Apraiz, L. Escauriaza, G. Wang, C. Zhang, Observability inequalities and measurable sets, J. Eur. Math. Soc., 16 (2014), 2433–2475. doi: 10.4171/JEMS/490 |
[2] | P. Baras, J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc., 284 (1984), 121–139. doi: 10.1090/S0002-9947-1984-0742415-3 |
[3] | S. Ervedoza, Control and stabilization properties for a singular heat equation with an inverse square potential, Commun. Part. Diff. Eq., 33 (2008), 1996–2019. doi: 10.1080/03605300802402633 |
[4] | J. A. Goldstein, Q. S. Zhang, Linear parabolic equations with strong singular potentials, Trans. Amer. Math. Soc., 355 (2003), 197–211. |
[5] | J. L. Lions, Exact controllability, stabilization and perturbations for distributed system, SIAM Rev., 30 (1988), 1–68. doi: 10.1137/1030001 |
[6] | K. D. Phung, Carleman commutator approach in logarithmic convexity for parabolic equations, Math. Control Relat. F., 8 (2018), 899–933. doi: 10.3934/mcrf.2018040 |
[7] | K. D. Phung, G. Wang, An observability estimate for the parabolic equations from a measurable set in time and its applications, J. Eur. Math. Soc., 15 (2013), 681–703. doi: 10.4171/JEMS/371 |
[8] | K. D. Phung, L. Wang, C. Zhang, Bang-bang property for time optimal control of semilinear heat equation, Ann. I. H. Poincare-An., 31 (2014), 477–499. doi: 10.1016/j.anihpc.2013.04.005 |
[9] | A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983. |
[10] | I. Peral, J. L. Vazquez, On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term, Arch. Ration. Mech. An., 129 (1995), 201–224. doi: 10.1007/BF00383673 |
[11] | J. L. Vazquez, E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103–153. doi: 10.1006/jfan.1999.3556 |
[12] | J. Vancostenoble, E. Zuazua, Null controllability for the heat equation with singular inverse square potentials, J. Funct. Anal., 254 (2008), 1864–1902. doi: 10.1016/j.jfa.2007.12.015 |
[13] | G. Wang, $L^\infty$-null controllability for the heat equation and its consequences for the time optimal control problem, SIAM J. Control Optim., 47 (2008), 1701–1720. doi: 10.1137/060678191 |
[14] | G. Wang, L. Wang, The Carleman inequality and its application to periodic optimal control governed by semilinear parabolic differential equations, J. Optimz. Theory App., 118 (2003), 429–461. doi: 10.1023/A:1025459624398 |
[15] | C. Zhang, An observability estimate for the heat equation from a product of two measurable sets, J. Math. Anal. Appl., 396 (2012), 7–12. doi: 10.1016/j.jmaa.2012.05.082 |
[16] | G. Zheng, K. Li, Y. Zhang, Quantitative unique continuation for the heat equations with inverse square potential, J. Inequal. Appl., 1 (2018), 1–17. |