Research article

On the number of unit solutions of cubic congruence modulo $ n $

  • Received: 31 January 2021 Accepted: 11 August 2021 Published: 22 September 2021
  • MSC : 11D79, 11L03, 11L03

  • For any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $ \mathbb{Z}_n^{\times}: = \{x\in \mathbb Z_n|\gcd(x, n) = 1\} $. In 1926, for any fixed $ c\in\mathbb Z_n $, A. Brauer studied the linear congruence $ x_1+\cdots+x_m\equiv c\pmod n $ with $ x_1, \ldots, x_m\in\mathbb{Z}_n^{\times} $ and gave a formula of its number of incongruent solutions. Recently, Taki Eldin extended A. Brauer's result to the quadratic case. In this paper, for any positive integer $ n $, we give an explicit formula for the number of incongruent solutions of the following cubic congruence

    $ x_1^3+\cdots +x_m^3\equiv 0\pmod n\ \ \ {\rm with} \ x_1, \ldots, x_m \in \mathbb{Z}_n^{\times}. $

    Citation: Junyong Zhao. On the number of unit solutions of cubic congruence modulo $ n $[J]. AIMS Mathematics, 2021, 6(12): 13515-13524. doi: 10.3934/math.2021784

    Related Papers:

  • For any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $ \mathbb{Z}_n^{\times}: = \{x\in \mathbb Z_n|\gcd(x, n) = 1\} $. In 1926, for any fixed $ c\in\mathbb Z_n $, A. Brauer studied the linear congruence $ x_1+\cdots+x_m\equiv c\pmod n $ with $ x_1, \ldots, x_m\in\mathbb{Z}_n^{\times} $ and gave a formula of its number of incongruent solutions. Recently, Taki Eldin extended A. Brauer's result to the quadratic case. In this paper, for any positive integer $ n $, we give an explicit formula for the number of incongruent solutions of the following cubic congruence

    $ x_1^3+\cdots +x_m^3\equiv 0\pmod n\ \ \ {\rm with} \ x_1, \ldots, x_m \in \mathbb{Z}_n^{\times}. $



    加载中


    [1] T. M. Apostol, Introduction to analytic number theory, New York: Springer, 1976.
    [2] A. Brauer, Lösung der Aufgabe 30, Jahresber. Dtsch. Math.-Ver., 35 (1926), 92–94.
    [3] S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. doi: 10.1016/0022-314X(77)90010-5
    [4] S. F. Hong, C. X. Zhu, On the number of zeros of diagonal cubic forms over finite fields, Forum Math., 33 (2021), 697–708. doi: 10.1515/forum-2020-0354
    [5] K. Ireland, M. Rosen, A classical introduction to modern number theory, 2 Eds., Graduate Texts in Mathematics, New York: Springer-Verlag, 1990.
    [6] S. Li, Y. Ouyang, Counting the solutions of $ {\lambda _1}x_{11}^k + \ldots + {\lambda _t}x_{tt}^k \equiv c $ mod $n$, J. Number Theroy, 187 (2018), 41–65. doi: 10.1016/j.jnt.2017.10.017
    [7] H. Rademacher, Aufgabe 30, Jahresber. Dtsch. Math.-Ver., 34 (1925), 158.
    [8] R. F. Taki Eldin, On the number of incongruent solutions to a quadratic congruence over algebraic integers, Int. J. Number Theory, 15 (2019), 105–130. doi: 10.1142/S1793042118501762
    [9] C. Sun, Q. Yang, On the sumset of atoms in cyclic groups, Int. J. Number Theory, 10 (2014), 1355–1363. doi: 10.1142/S1793042114500328
    [10] Q. Yang, M. Tang, On the addition of squares of units and nonunits modulo $n$, J. Number Theory, 155 (2015), 1–12. doi: 10.1016/j.jnt.2015.02.019
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1841) PDF downloads(117) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog