Research article

Local geometric properties of the lightlike Killing magnetic curves in de Sitter 3-space

  • Received: 22 July 2021 Accepted: 26 August 2021 Published: 31 August 2021
  • MSC : 35A53, 58C20

  • In this article, we mainly discuss the local differential geometrical properties of the lightlike Killing magnetic curve $ \mathit{\boldsymbol{\gamma }}(s) $ in $ \mathbb{S}^{3}_{1} $ with a magnetic field $ \boldsymbol{ V} $. Here, a new Frenet frame $ \{\mathit{\boldsymbol{\gamma }}, \boldsymbol{ T}, \boldsymbol{ N}, \boldsymbol{ B}\} $ is established, and we obtain the local structure of $ \mathit{\boldsymbol{\gamma }}(s) $. Moreover, the singular properties of the binormal lightlike surface of the $ \mathit{\boldsymbol{\gamma }}(s) $ are given. Finally, an example is used to understand the main results of the paper.

    Citation: Xiaoyan Jiang, Jianguo Sun. Local geometric properties of the lightlike Killing magnetic curves in de Sitter 3-space[J]. AIMS Mathematics, 2021, 6(11): 12543-12559. doi: 10.3934/math.2021723

    Related Papers:

  • In this article, we mainly discuss the local differential geometrical properties of the lightlike Killing magnetic curve $ \mathit{\boldsymbol{\gamma }}(s) $ in $ \mathbb{S}^{3}_{1} $ with a magnetic field $ \boldsymbol{ V} $. Here, a new Frenet frame $ \{\mathit{\boldsymbol{\gamma }}, \boldsymbol{ T}, \boldsymbol{ N}, \boldsymbol{ B}\} $ is established, and we obtain the local structure of $ \mathit{\boldsymbol{\gamma }}(s) $. Moreover, the singular properties of the binormal lightlike surface of the $ \mathit{\boldsymbol{\gamma }}(s) $ are given. Finally, an example is used to understand the main results of the paper.



    加载中


    [1] A. Nersessian, E. Ramos, Massive spinning particles and the geometry of null curves, Phys. Lett. B, 445 (1998), 123–128. doi: 10.1016/S0370-2693(98)01408-7
    [2] A. Ferrandez, A. Gimenez, P. Lucas, Geometrical particle models on 3D null curves, Phys. Lett. B, 543 (2002), 311–317. doi: 10.1016/S0370-2693(02)02450-4
    [3] J. G. Sun, D. H. Pei, Null surfaces of null curves on 3-null cone, Phys. Lett. A, 378 (2014), 1010–1016. doi: 10.1016/j.physleta.2014.02.002
    [4] T. Fusho, S. Izumiya, Lightlike surfaces of spacelike curves in de Sitter 3-space, J. Geom., 88 (2008), 19–29. doi: 10.1007/s00022-007-1944-5
    [5] Y. L. Li, Z. G. Wang, Lightlike tangent developables in de Sitter 3-space, J. Geom. Phys., 164 (2021), 1–11.
    [6] M. I. Munteanu, Magnetic curves in a Euclidean space: one example, Several approaches, Publ. I. Math., 94 (2013), 141–150. doi: 10.2298/PIM1308141M
    [7] G. Calvaruso, M. I. Munteanu, A. Perrone, Killing magnetic curves in three-dimensional almost paracontact manifolds, J. Math. Anal. Appl., 42 (2015), 423–439.
    [8] Z. Bozkurt, I. ök, Y. Yayli, F. N. Ekmekcid, A new approach for magnetic curves in 3D Riemannian manifolds, J. Math. Phys., 55 (2014), 053501.
    [9] S. L. Druţǎ-Romaniu, M. I. Munteanu, Killing magnetic curves in a Minkowski 3-space, Nonlinear Anal. Real, 14 (2013), 383–396. doi: 10.1016/j.nonrwa.2012.07.002
    [10] G. Cl$\acute{e}$men, Black holes with a null Killing vector in three-dimensional massive gravity, Classical Quant. Grav., 26 (2009), 165002. doi: 10.1088/0264-9381/26/16/165002
    [11] M. E. Aydin, Magnetic curves associated to Killing vector fields in a Galilean space, Math. Sci. Appl., 4 (2016), 144–150.
    [12] Z. Erjavec, J. Inoguchi, Killing magnetic curves in sol space, Math. Phys. Anal. Geom., 4 (2018), 15–28.
    [13] Z. G. Wang, D. H. Pei, Singularities of ruled null surfaces of the principal normal indicatrix to a null Cartan curve in de Sitter 3-space, Phys. Lett. B, 689 (2010), 101–106. doi: 10.1016/j.physletb.2010.04.050
    [14] J. G. Sun, Singularity properties of Killing magnetic curves in Minkowski 3-space, Int. J. Geom. Methods M., 16 (2019), 1950123.
    [15] J. G. Sun, Singularity properties of null Killing magnetic curves in Minkowski 3-space, Int. J. Geom. Methods M., 17 (2020), 2050141.
    [16] H. Liu, J. Miao, Geometric invariants and focal surfaces of spacelike curves in de Sitter space from a caustic viewpoint, AIMS Mathematics, 6 (2021), 3177–3204. doi: 10.3934/math.2021192
    [17] V. I. Arnold, S. M. Gusein-Zade, Singularities of differentiable maps, Basel: Graphische Unternehmen, 1985.
    [18] Y. L. Li, S. Y. Liu, Z. G. Wang, Tangent developables and Darboux developables of framed curves, Topol. Appl., In press.
    [19] Y. L. Li, Z. G. Wang, T. H. Zhao, Slant helix of order n and sequence of Darboux developables of principal–directional curves, Math. Meth. Appl. Sci., 43 (2020), 9888–9903. doi: 10.1002/mma.6663
    [20] J. W. Bruce, P. J. Giblin, Curves and singularities, Cambridge UK: Cambridge University Press, 1992.
    [21] Y. L. Li, Z. G. Wang, T. H. Zhao, Geometric algebra of singular ruled surfaces, Adv. Appl. Clifford Algebras, 32 (2021), 1–19.
    [22] Y. L. Li, Y. S. Zhu, Q. Y. Sun, Singularities and dualities of pedal curves in pseudo-hyperbolic and de Sitter space, Int. J. Geom. Methods M., 18 (2021), 1–31.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2267) PDF downloads(100) Cited by(1)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog