In this article, we mainly discuss the local differential geometrical properties of the lightlike Killing magnetic curve $ \mathit{\boldsymbol{\gamma }}(s) $ in $ \mathbb{S}^{3}_{1} $ with a magnetic field $ \boldsymbol{ V} $. Here, a new Frenet frame $ \{\mathit{\boldsymbol{\gamma }}, \boldsymbol{ T}, \boldsymbol{ N}, \boldsymbol{ B}\} $ is established, and we obtain the local structure of $ \mathit{\boldsymbol{\gamma }}(s) $. Moreover, the singular properties of the binormal lightlike surface of the $ \mathit{\boldsymbol{\gamma }}(s) $ are given. Finally, an example is used to understand the main results of the paper.
Citation: Xiaoyan Jiang, Jianguo Sun. Local geometric properties of the lightlike Killing magnetic curves in de Sitter 3-space[J]. AIMS Mathematics, 2021, 6(11): 12543-12559. doi: 10.3934/math.2021723
In this article, we mainly discuss the local differential geometrical properties of the lightlike Killing magnetic curve $ \mathit{\boldsymbol{\gamma }}(s) $ in $ \mathbb{S}^{3}_{1} $ with a magnetic field $ \boldsymbol{ V} $. Here, a new Frenet frame $ \{\mathit{\boldsymbol{\gamma }}, \boldsymbol{ T}, \boldsymbol{ N}, \boldsymbol{ B}\} $ is established, and we obtain the local structure of $ \mathit{\boldsymbol{\gamma }}(s) $. Moreover, the singular properties of the binormal lightlike surface of the $ \mathit{\boldsymbol{\gamma }}(s) $ are given. Finally, an example is used to understand the main results of the paper.
[1] | A. Nersessian, E. Ramos, Massive spinning particles and the geometry of null curves, Phys. Lett. B, 445 (1998), 123–128. doi: 10.1016/S0370-2693(98)01408-7 |
[2] | A. Ferrandez, A. Gimenez, P. Lucas, Geometrical particle models on 3D null curves, Phys. Lett. B, 543 (2002), 311–317. doi: 10.1016/S0370-2693(02)02450-4 |
[3] | J. G. Sun, D. H. Pei, Null surfaces of null curves on 3-null cone, Phys. Lett. A, 378 (2014), 1010–1016. doi: 10.1016/j.physleta.2014.02.002 |
[4] | T. Fusho, S. Izumiya, Lightlike surfaces of spacelike curves in de Sitter 3-space, J. Geom., 88 (2008), 19–29. doi: 10.1007/s00022-007-1944-5 |
[5] | Y. L. Li, Z. G. Wang, Lightlike tangent developables in de Sitter 3-space, J. Geom. Phys., 164 (2021), 1–11. |
[6] | M. I. Munteanu, Magnetic curves in a Euclidean space: one example, Several approaches, Publ. I. Math., 94 (2013), 141–150. doi: 10.2298/PIM1308141M |
[7] | G. Calvaruso, M. I. Munteanu, A. Perrone, Killing magnetic curves in three-dimensional almost paracontact manifolds, J. Math. Anal. Appl., 42 (2015), 423–439. |
[8] | Z. Bozkurt, I. ök, Y. Yayli, F. N. Ekmekcid, A new approach for magnetic curves in 3D Riemannian manifolds, J. Math. Phys., 55 (2014), 053501. |
[9] | S. L. Druţǎ-Romaniu, M. I. Munteanu, Killing magnetic curves in a Minkowski 3-space, Nonlinear Anal. Real, 14 (2013), 383–396. doi: 10.1016/j.nonrwa.2012.07.002 |
[10] | G. Cl$\acute{e}$men, Black holes with a null Killing vector in three-dimensional massive gravity, Classical Quant. Grav., 26 (2009), 165002. doi: 10.1088/0264-9381/26/16/165002 |
[11] | M. E. Aydin, Magnetic curves associated to Killing vector fields in a Galilean space, Math. Sci. Appl., 4 (2016), 144–150. |
[12] | Z. Erjavec, J. Inoguchi, Killing magnetic curves in sol space, Math. Phys. Anal. Geom., 4 (2018), 15–28. |
[13] | Z. G. Wang, D. H. Pei, Singularities of ruled null surfaces of the principal normal indicatrix to a null Cartan curve in de Sitter 3-space, Phys. Lett. B, 689 (2010), 101–106. doi: 10.1016/j.physletb.2010.04.050 |
[14] | J. G. Sun, Singularity properties of Killing magnetic curves in Minkowski 3-space, Int. J. Geom. Methods M., 16 (2019), 1950123. |
[15] | J. G. Sun, Singularity properties of null Killing magnetic curves in Minkowski 3-space, Int. J. Geom. Methods M., 17 (2020), 2050141. |
[16] | H. Liu, J. Miao, Geometric invariants and focal surfaces of spacelike curves in de Sitter space from a caustic viewpoint, AIMS Mathematics, 6 (2021), 3177–3204. doi: 10.3934/math.2021192 |
[17] | V. I. Arnold, S. M. Gusein-Zade, Singularities of differentiable maps, Basel: Graphische Unternehmen, 1985. |
[18] | Y. L. Li, S. Y. Liu, Z. G. Wang, Tangent developables and Darboux developables of framed curves, Topol. Appl., In press. |
[19] | Y. L. Li, Z. G. Wang, T. H. Zhao, Slant helix of order n and sequence of Darboux developables of principal–directional curves, Math. Meth. Appl. Sci., 43 (2020), 9888–9903. doi: 10.1002/mma.6663 |
[20] | J. W. Bruce, P. J. Giblin, Curves and singularities, Cambridge UK: Cambridge University Press, 1992. |
[21] | Y. L. Li, Z. G. Wang, T. H. Zhao, Geometric algebra of singular ruled surfaces, Adv. Appl. Clifford Algebras, 32 (2021), 1–19. |
[22] | Y. L. Li, Y. S. Zhu, Q. Y. Sun, Singularities and dualities of pedal curves in pseudo-hyperbolic and de Sitter space, Int. J. Geom. Methods M., 18 (2021), 1–31. |