
In this article, we mainly discuss the local differential geometrical properties of the lightlike Killing magnetic curve γ(s) in S31 with a magnetic field V. Here, a new Frenet frame {γ,T,N,B} is established, and we obtain the local structure of γ(s). Moreover, the singular properties of the binormal lightlike surface of the γ(s) are given. Finally, an example is used to understand the main results of the paper.
Citation: Xiaoyan Jiang, Jianguo Sun. Local geometric properties of the lightlike Killing magnetic curves in de Sitter 3-space[J]. AIMS Mathematics, 2021, 6(11): 12543-12559. doi: 10.3934/math.2021723
[1] | Haiming Liu, Jiajing Miao . Geometric invariants and focal surfaces of spacelike curves in de Sitter space from a caustic viewpoint. AIMS Mathematics, 2021, 6(4): 3177-3204. doi: 10.3934/math.2021192 |
[2] | Huina Zhang, Yanping Zhao, Jianguo Sun . The geometrical properties of the Smarandache curves on 3-dimension pseudo-spheres generated by null curves. AIMS Mathematics, 2024, 9(8): 21703-21730. doi: 10.3934/math.20241056 |
[3] | Chang Sun, Kaixin Yao, Donghe Pei . Special non-lightlike ruled surfaces in Minkowski 3-space. AIMS Mathematics, 2023, 8(11): 26600-26613. doi: 10.3934/math.20231360 |
[4] | Ayman Elsharkawy, Clemente Cesarano, Abdelrhman Tawfiq, Abdul Aziz Ismail . The non-linear Schrödinger equation associated with the soliton surfaces in Minkowski 3-space. AIMS Mathematics, 2022, 7(10): 17879-17893. doi: 10.3934/math.2022985 |
[5] | Derya Sağlam . Minimal homothetical and translation lightlike graphs in Rn+2q. AIMS Mathematics, 2022, 7(9): 17198-17209. doi: 10.3934/math.2022946 |
[6] | A. A. Abdel-Salam, M. I. Elashiry, M. Khalifa Saad . On the equiform geometry of special curves in hyperbolic and de Sitter planes. AIMS Mathematics, 2023, 8(8): 18435-18454. doi: 10.3934/math.2023937 |
[7] | Nevin Gürbüz, Dae Won Yoon . Geometry of curve flows in isotropic spaces. AIMS Mathematics, 2020, 5(4): 3434-3445. doi: 10.3934/math.2020222 |
[8] | Mohammad Aamir Qayyoom, Rawan Bossly, Mobin Ahmad . On CR-lightlike submanifolds in a golden semi-Riemannian manifold. AIMS Mathematics, 2024, 9(5): 13043-13057. doi: 10.3934/math.2024636 |
[9] | Özgür Boyacıoğlu Kalkan, Süleyman Şenyurt, Mustafa Bilici, Davut Canlı . Sweeping surfaces generated by involutes of a spacelike curve with a timelike binormal in Minkowski 3-space. AIMS Mathematics, 2025, 10(1): 988-1007. doi: 10.3934/math.2025047 |
[10] | Ayşe Yavuz, Melek Erdoǧdu . Non-lightlike Bertrand W curves: A new approach by system of differential equations for position vector. AIMS Mathematics, 2020, 5(6): 5422-5438. doi: 10.3934/math.2020348 |
In this article, we mainly discuss the local differential geometrical properties of the lightlike Killing magnetic curve γ(s) in S31 with a magnetic field V. Here, a new Frenet frame {γ,T,N,B} is established, and we obtain the local structure of γ(s). Moreover, the singular properties of the binormal lightlike surface of the γ(s) are given. Finally, an example is used to understand the main results of the paper.
Since Einstein discovered the general theory of relativity in 1905, many scientists have studied Minkowski space systematically. The existence of the lightlike vector is the principal difference between Minkowski space and Euclidean space. Meanwhile, in Minkowski space, a lightlike curve has some special properties. In physic, the geometric particle model was constructed by using the lightlike curve [1]. A. Ferrandez et al. [2] considered the equations of the particles in 3-dimensional lightlike curves. The second author and D. Pei [3] studied the differential geometric properties of the lightlike curves on Λ31. Also, D. Pei etc. [3] pointed out that de Sitter 3-space was a crucial model of the physical universe in Minkowski space. Some properties of spacelike curves in S31 were studied by T. Fusho and S. Izumiya in [4]. Y. Li and Z. Wang [5] studied the geometric properties of lightlike tangent developables.
Following the action of the Lorentz force produced through the magnetic field F, the trajectory of the charged particle is called the magnetic curve. Under certain conditions, the magnetic curve is regarded as the extension of the geodesic [6]. Magnetic curves describe the movement of charged particles in several physical scenarios and form magnetic flux in the background magnetic field [7]. In recent years, many researchers have studied magnetic curves in different spaces [8,9,10,11,12]. In a Riemannian 3-space (M3,g), Z. Bozkurt [8] used a new variational method to research the magnetic flow with the Killing magnetic field. The results of classification for the Killing magnetic trajectories on the Minkowski 3-space was obtained in [9]. In 3-dimensional massive gravity, G. Clˊemen [10] considered a black hole with a lightlike Killing vector. M. I. Munteanu [6] introduced the magnetic curves in Euclidean space and used different methods to study the corresponding Killing magnetic curves.
With the deepening of theoretical research, the application of the singularity theory is more and more extensive [13,14,15,16,17,18,19,20,21,22]. Z. Wang [13,20,21] considered the singularity classifications of ruled lightlike surfaces in S31. However, very little has been researched about the differential geometric properties of the lightlike Killing magnetic curves. The second author [14,15] studied the singularity types of the Killing magnetic curves and the lightlike Killing magnetic curves in R31. Here, the classifications of the singularity of the lightlike Killing magnetic curves are considered in S31.
The content of the article is summarized as follows. Firstly, the second part defines γ(s) (in the following text, we use γ(s) to represent the lightlike Killing magnetic curve), the related concepts of the magnetic curve, and Frenet formulas of γ(s). Section 3 shows the major results of the paper (Theorem 3.1), which gives the singularity classification of γ(s)∈S31 with V. In the fourth section, the height function of γ(s) is used to obtain the singularity classification (Proposition 4.1). Section 5 introduces the unfolding of the height function and proves the Theorem 3.1. To enrich the local theory, the local structure of γ(s)∈S31 with V is given in the sixth section. In the last section, to better understand the main results of this article, an example of γ(s) with V is given.
The relevant definitions of the R41 and S31 are described in [13]. In this section, some definitions related to magnetic curves are introduced. We establish the Frenet frame {γ,T,N,B} and obtain the Frenet-Sernet formula.
We define V as a Killing vector field and FV=ιVdvg, where ι is an inner product. By
ϕ(X)=V∧X, |
we can get the Lorentz force of the FV. Thus, we obtain the Lorentz force equation defined as
▽γ′γ′=V∧γ′, |
γ(s) is called a Killing magnetic curve [6,7,8,9,10,11,12].
Definition 2.1. For a Killing magnetic curve γ(s)∈S31, if ⟨γ′(s),γ′(s)⟩=0, we call γ(s) the lightlike Killing magnetic curve.
In the following, we suppose γ(s) as a lightlike Killing curve with Killing field V.
Since γ(s)∈S31, ⟨γ(s),γ(s)⟩=1, so ⟨γ(s),γ′(s)⟩=0. We now define
T(s)=γ′(s),N(s)=V∧γ′(s)‖V∧γ′(s)‖, |
then
⟨N(s),N(s)⟩=1, |
⟨T(s),T(s)⟩=0, |
⟨T(s),N(s)⟩=⟨γ(s),T(s)⟩=⟨γ(s),N(s)⟩=0. |
There exists a lightlike transversal vector B(s), satisfying
⟨T(s),B(s)⟩=1, |
⟨γ(s),B(s)⟩=⟨N(s),B(s)⟩=⟨B(s),B(s)⟩=0. |
Therefore, we obtain the Frenet-Sernet formula of γ(s) as follows:
{γ′(s)=T(s)T′(s)=k1(s)N(s)N′(s)=−k1(s)B(s)+k2(s)T(s)B′(s)=−k2(s)N(s)−γ(s), | (2.1) |
where k1(s)=⟨T′(s),N(s)⟩=−⟨N′(s),T(s)⟩=‖V∧γ′(s)‖, k2(s)=⟨N′(s),B(s)⟩=−⟨B′(s),N(s)⟩.
Remark 2.2. If k1(s)=0, then γ(s) is a straight line, and we omit it here.
Here, we define the tangent indicatrix of γ(s) as Φ:I→S31 given by
Φ(s)=εk1(s)k′2(s)−k′1(s)k2(s)ϱ(s)γ(s)+εk1(s)k2(s)ϱ(s)T(s), |
where ε=±1,
ϱ(s)=√2k31(s)k2(s)+(k1(s)k′2(s)−k′1(s)k2(s))2. |
We define a surface
BNS:I×R→S31 |
by
BNS(s,μ)=Φ(s)+μB(s), |
we call BNS(s,μ) the binormal lightlike surface of the tangent indicatrix of γ(s).
For any v0∈S31, we call the set :
NMB(v0)={u∈S31∣⟨u−v0,V∧u′⟩=0} |
the lightlike magnetic bundle through v0.
Also, a geometric invariant σ(s) of γ(s) is given in S31 with V by
σ(s)=ε1ϱ(5k21k′22−5k1k′1k2k′2+k41+3k21k′1k2+k31k″2−k21k″1k2−3k1k′21k2). |
By definition in [13], we can get the major results.
Theorem 3.1. For a curve γ(s) in S31 with V, when ϱ(s0)≠0, giving a vector v0=BNS(s0,μ0) and the magnetic bundle NMB(v0), we have the following conclusions:
(1) As for γ(s) and NMB(v0), there are at lowest 2-point contact at s0.
(2) As for γ(s) and NMB(v0), there are at lowest 3-point contact at s0 if and only if
v=ε(k1(s0)k′2(s0)−k′1(s0)k2(s0)ϱ(s0)γ(s0)+k2(s0)k1(s0)ϱ(s0)T(s0)+k21(s0)ϱ(s0)B(s0)) |
where ε=±1 and σ(s0)≠0. With the above conclusions, the germ of image BNS(s,μ) at (s0,μ0) is locally diffeomorphic to to cuspidal edge (C×R) (see Figure 1).
(3) As for γ(s) and NMB(v0), there are at lowest 4-point contact at s0 if and only if
v=ε(k1(s0)k′2(s0)−k′1(s0)k2(s0)ϱ(s0)γ(s0)+k2(s0)k1(s0)ϱ(s0)T(s0)+k21(s0)ϱ(s0)B(s0)) |
and σ(s0)=0,σ′(s0)≠0. With the above conclusions, the germ of image BNS(s,μ) at (s0,μ0) is locally diffeomorphic to swallowtail (SW)(see Figure 2).
The cuspidal edge is defined as C×R={(x1,x2,x3)∣x1=u,x2=±v1/2,x3=v1/3}, and the swallowtail is defined as SW={(x1,x2,x3)∣x1=3u4+u2v,x2=4u3+2uv,x3=v}.
Here, we define a function on γ:I→S31, and get a geometric invariant σ(s) of the tangent indicatrix of γ(s) in S31 with V.
For γ:I→S31, we call the function
H:I×S31→R |
by
H(s,v)=⟨γ(s)−v,V∧γ′(s)⟩, |
as a height function of γ(s). Giving a vector v0∈S31, we define h(s)=Hv0(s)=H(s,v0). Then we can draw the following conclusions:
Proposition 4.1. For a lightlike Killing magnetic curve γ(s) in S31 with V, when
ϱ(s0)=√2k31(s0)k2(s0)+(k1(s0)k′2(s0)−k′1(s0)k2(s0)2≠0, |
then
(1) h(s0)=0 if and only if there exist a,b,d∈R, such that v=aγ(s0)+bT(s0)+dB(s0) and a2+2bd=1.
(2) h(s0)=∇γ′(s)h(s0)=0 if and only if
v=ε√1−2k2(s0)k1(s0)d2γ(s0)+k2(s0)k1(s0)dT(s0)+dB(s0). |
(3) h(s0)=∇γ′(s)h(s0)=∇γ′(s)∇γ′(s)h(s0)=0 if and only if d=εk21(s0)ϱ(s0), then
v=ε(k1(s0)k′2(s0)−k′1(s0)k2(s0)ϱ(s0)γ(s0)+k2(s0)k1(s0)ϱ(s0)T(s0)+k21(s0)ϱ(s0)B(s0)). |
(4) h(s0)=∇γ′(s)h(s0)=∇γ′(s)∇γ′(s)h(s0)=∇(3)γ′(s)h(s0)=0 if and only if
v=ε(k1(s0)k′2(s0)−k′1(s0)k2(s0)ϱ(s0)γ(s0)+k2(s0)k1(s0)ϱ(s0)T(s0)+k21(s0)ϱ(s0)B(s0)), |
and σ(s0)=0.
(5) h(s0)=∇γ′(s)h(s0)=∇γ′(s)∇γ′(s)h(s0)=∇(3)γ′(s)h(s0)=∇(4)γ′(s)h(s0)=0 if and only if
v=ε(k1(s0)k′2(s0)−k′1(s0)k2(s0)ϱ(s0)γ(s0)+k2(s0)k1(s0)ϱ(s0)T(s0)+k21(s0)ϱ(s0)B(s0)), |
and σ(s0)=σ′(s0)=0.
Proof. We assume that v=aγ(s)+bT(s)+cN(s)+dB(s)=1, where a,b,c,d in R. Since v∈S31, a2+2bd+c2=1. By using the Frenet formula (2.1), we have the following results:
(1) When h(s0)=0, we obtion
⟨γ−v,V∧γ′⟩=⟨γ−v,k1N⟩=−ck1=0, |
where k1(s0)≠0, then c=0, v=aγ(s0)+bT(s0)+dB(s0).
(2) When h(s0)=∇γ′h(s0)=0, we have
∇γ′h(s0)=∇γ′⟨γ−v,V∧γ′⟩=⟨γ′,V∧γ′⟩+⟨γ−v,(V∧γ′)′⟩=⟨γ′,V∧γ′⟩+⟨(1−a)γ−bT−dB,k′1N+k1N′⟩=k21b−k1k2d=0, |
then b=k2(s0)k1(s0)d, a=ε√1−2k2(s0)k1(s0)d2, and
v=ε√1−2k2(s0)k1(s0)d2γ(s0)+k2(s0)k1(s0)dT(s0)+dB(s0). |
(3) When h(s0)=∇γ′h(s0)=∇γ′∇γ′h(s0)=0, we obtion
∇γ′∇γ′h(s0)=∇γ′∇γ′⟨γ−v,V∧γ′⟩=∇γ′⟨γ−v,(k1N)′⟩=⟨γ′,(k1N)′⟩+⟨γ−v,(k1N)″⟩=−εk21√1−2k2k1d2+(k1k′2−k′1k2)d=0, |
we can obtain d=εk21(s0)ϱ(s0), where
ϱ(s0)=√2k31(s0)k2(s0)+(k1(s0)k′2(s0)−k′1(s0)k2(s0)2)≠0. |
Hence,
v=ε(k1(s0)k′2(s0)−k′1(s0)k2(s0)ϱ(s0)γ(s0)+k2(s0)k1(s0)ϱ(s0)T(s0)+k21(s0)ϱ(s0)B(s0)). |
(4) When h(s0)=∇γ′h(s0)=∇γ′∇γ′h(s0)=∇(3)γ′h(s0)=0, we have
∇(3)γ′hv(s0)=∇γ′∇γ′∇γ′⟨γ−v,V∧γ′⟩=∇γ′⟨γ′,(k1N)′⟩+⟨γ(s)−v,(k1N)″⟩=∇γ′(⟨γ′,k′1N−k21B+k1k2T⟩+⟨γ(s)−v,k21γ+(2k′1k2+k1k′2)T+(k″1+2k21k2)N−3k1k′1B⟩)=⟨k1N,k′1N−k21B+k1k2T⟩+2⟨γ′,k21γ+(2k′1k2+k1k′2)T+(k″1+2k21k2)N−3k1k′1B⟩)+⟨γ−v,5k1k′1γ+(k21+3k″1k2+3k′1k′2+k1k″2+2k21k22)T⟩+⟨γ−v,(9k1k′1k2+3k21k′2+2k‴1)N−(2k31k2+4k1k″1+3k′21)B⟩=ε[−5k1k′2k1k′2−k′1k2ϱ−1ϱ(k41+3k21k′1k2+k31k″2−k21k″1k2−3k1k′21k2)]=0, |
we can obtain
v=ε(k1(s0)k′2(s0)−k′1(s0)k2(s0)ϱ(s0)γ(s0)+k2(s0)k1(s0)ϱ(s0)T(s0)+k21(s0)ϱ(s0)B(s0)), |
σ(s0)=0 and σ′(s0)≠0.
(5) When h(s0)=∇γ′h(s0)=∇γ′∇γ′h(s0)=∇(3)γ′h(s0)=∇(4)γ′h(s0)=0,
∇(4)γ′hv(s0)=∇γ′∇γ′∇γ′∇γ′⟨γ−v,V∧γ′⟩=⟨k′1N−k21B+k1k2T,k′1N−k21B+k1k2T⟩+3⟨k1N,k21γ+(2k′1k2+k1k′2)T+(k″1+2k21k2)N−3k1k′1B⟩+3⟨γ′(s),(9k1k′1k2+3k21k′2+2k‴1)N−(2k31k2+4k1k″1+3k′21)B⟩+⟨γ−v,(8k′21+9k1k″1+2k31k2)γ(s)+(7k1k′1+5k‴1k2+6k″1k′2+4k′1k″2+k1k‴2+13k1k2k22+7k21k2k′2)T⟩+⟨γ−v,(k31+18k1k″1k2+12k1k′1k′2+4k21k″2+4k31k22+12k′21k2+2k(4)1)N⟩−⟨γ−v,(15k21k′1k2+6k1k‴1+5k31k′2+10k1k″1)B⟩=−εk1k′2−k′1k2ϱ(s0)−εk21ϱ(s0)(7k1k′1+5k‴1k2+6k″1k′2+4k′1k″2+k1k‴2+13k1k2k22+7k21k2k′2)+εk2k1ϱ(s0)(15k21k′1k2+6k1k‴1+5k31k′2+10k1k″1)=0, |
we can obtain
v=ε(k1(s0)k′2(s0)−k′1(s0)k2(s0)ϱ(s0)γ(s0)+k2(s0)k1(s0)ϱ(s0)T(s0)+k21(s0)ϱ(s0)B(s0)), |
and σ(s0)=σ′(s0)=0.
Based on the unfolding theory of the height function germ, we prove Theorem 3.1. It is described in detail in the book [17,20].
Here, a significant set concerning the unfolding is given. The discriminant setof F is the set
DF={x∈Rr| there exists s withF=∂F∂s=0at (s,x)}. |
We get the vital result [17]. This result is the singular classification theorem, which is the same as Theorem 8. By Proposition 4.1, the discriminant set of H(s,v)=⟨γ(s)−v,V∧γ′(s)⟩ is the set
DH={v=ϕ(s)+μB(s)|s,μ∈R}. |
Then, the following results are proved.
Theorem 5.1. For a curve γ(s), when ϱ(s0)≠0, H(s,v):I×S31→R be the height function of γ(s) and v∈DH. H(s,v) is a versal unfolding of hv0, when hv0 has Ak-singularity at s (k=1,2,3).
Proof. Assuming that γ(s)={γ1(s),γ2(s),γ3(s),γ4(s)},
N(s)={N1,N2,N3,N4},v(s)={v1,v2,v3,v4} in S31, where
v1=ε√v22+v23+v24−1, |
then
H(s,v)=⟨γ−v,V∧γ′⟩=⟨−v,V∧γ′⟩=−⟨v,k1N⟩=−k1(−ε√v22+v23+v24−1N1+v2N2+v3N3+v4N4). |
We have
∂H(s,v)∂vi=k1(εviv1N1−Ni), |
where i=2,3,4, thus
∂∂s(∂H(s,v)∂vi)=εviv1(k′1N1+k1N′)−k′1Ni−k1N′i, |
∂2∂s2(∂H(s,v)∂vi)=εviv1(k″1N1+2k′1N′1+k1N″1)−(k″1Ni+2k′1N′i+k1N″i), |
therefore, we have the 2-jet of ∂H(s,v)∂vi at s0 as follows:
k1(εviv1N1−Ni)+(εviv1(k′1N1+k1N′1)−k′1Ni−k1N′i)(s−s0)+12!(εviv1(k″1N1+2k′1N′1+k1N″1)−(k″1Ni+2k′1N′i+k1N″i))(s−s0)2. |
We now define
A=(a2a3a4b2b3b4c2c3c4), |
where ai=k1(εviv1N1−Ni), bi=εviv1(k′1N1+k1N′1)−k′1Ni−k1N′i, ci=εviv1(k″1N1+2k′1N′1+k1N″1)−(k″1Ni+2k′1N′i+k1N″i), i=2,3,4.
Then,
det(A)=k31|εv2v1N1−N2εv3v1N1−N3εv4v1N1−N4εv2v1N′1−N′2εv3v1N′1−N′3εv4v1N′1−N′4εv2v1N″1−N″2εv3v1N″1−N″3εv4v1N″1−N″4|=−εk31v1(v,N∧N′∧N″)=−εk31√v22+v23+v24−1(v,N∧N′∧N″). |
Since
N∧N′∧N″=(−k1k′2+k′1k2)γ(s)−k21T(s)−k2k1B(s), |
and
v=ε(k1k′2−k′1k2ϱ(s)γ(s)+k2k1ϱ(s)T(s)+k21ϱB(s)), |
where v∈DH is a singular point. Thus
det(A)=k31(−k1k′2+k′1k2)2+k41+k21k22v1ϱ=k31(−k1k′2+k′1k2)2+k41+k21k22ϱ√v22+v23+v24−1≠0, |
then, the rank of A is equal to 3. So the theorem holds.
Proof of Theorem 3.1. For the curve γ(s), when ϱ(s0)≠0. Suppose v0=BNS(s0,u0), A function H:NMB(v0)→R is defined by H(u)=⟨u−v0,V∧u⟩. Thus, we get hv0=H(γ(s)). Because 0 and H−1(0)=NMB(v0) is a regular value of H, as for γ(s) and NMB(v0), there are (k+1)-point contact at s0 (k=1,2,3) if and only if hv0 has Ak-singularity at s0. Apply the singularity theory [17], we complete the proof by the conclusion of Proposition 4.1 and Theorem 5.1.
Here, the local structure of curve γ(s) in S31 with V is considered. The Taylor's formula of γ(s0) at s=s0 is given by
γ(s0+△s)−γ(s0)=γ′(s0)△s+12!γ″(s0)(△s)2+13!γ‴(s0)(△s)3+14!(γ⁗(s0)+ε)(△s)4, |
where lim
Since
\mathit{\boldsymbol{\gamma }}'(s) = \boldsymbol{T}(s) , |
\mathit{\boldsymbol{\gamma }}''(s) = k_1(s)\boldsymbol{N}(s) , |
\mathit{\boldsymbol{\gamma }}'''(s) = k_1'(s)\boldsymbol{N}(s)+k_1(s)(-k_1(s)\boldsymbol{B}(s)+k_2(s)\boldsymbol{T}(s) = k_1(s)k_2(s)\boldsymbol{T}(s)+k_1'(s)\boldsymbol{N}(s)-k_1^2(s)\boldsymbol{B}(s) , |
\mathit{\boldsymbol{\gamma }}''''(s) = k_1^2(s)\mathit{\boldsymbol{\gamma }}(s)+(2k_1'(s)k_2(s)+k_1(s)k_2'(s)) \boldsymbol{T}(s)\\+(k_1''(s)+2k_1^2(s)k_2(s))\boldsymbol{N}(s)-3k_1(s)k_1'(s)\boldsymbol{B}(s). |
Then
\begin{array}{lll} &\mathit{\boldsymbol{\gamma }}(s_0+\triangle s)- \mathit{\boldsymbol{\gamma }}(s_0)\\& = \boldsymbol{T}(s_0)\triangle s+\frac{1}{2!}k_1(s_0)\boldsymbol{N}(s_0)(\triangle s)^2+\frac{1}{3!}(k_1(s_0)k_2(s_0)\boldsymbol{T}(s_0)+k_1'(s_0)\boldsymbol{N}(s_0)-k_1^2\boldsymbol{B}(s_0))(\triangle s)^3 \\&+\frac{1}{4!}(k_1^2(s_0)\mathit{\boldsymbol{\gamma }}(s_0)+(2k_1'(s_0)k_2(s_0)+k_1(s_0)k_2'(s_0)) \boldsymbol{T}(s_0)+(k_1''(s_0)+2k_1^2(s_0)k_2(s_0))\boldsymbol{N}(s_0)\\&-3k_1(s_0)k_1'(s_0)\boldsymbol{B}(s_0)+\boldsymbol{\varepsilon})(\triangle s)^4 , \end{array} |
where \boldsymbol{\varepsilon} = \varepsilon_1\mathit{\boldsymbol{\gamma }}(s_0)+\varepsilon_2\boldsymbol{T}(s_0)+\varepsilon_3\boldsymbol{N}(s_0)+\varepsilon_4\boldsymbol{B}(s_0).
Therefore, we have
\mathit{\boldsymbol{\gamma }}(s_0+\triangle s)-\mathit{\boldsymbol{\gamma }}(s_0) = \frac{1}{24}(k_1^2(s_0)+\varepsilon_1)(\triangle s)^4\mathit{\boldsymbol{\gamma }}(s_0)\\ +(\triangle s +\frac{1}{6}k_1(s_0)k_2(s_0)(\triangle s)^3+\frac{1}{24}(2k_1'(s_0)k_2(s_0)+k_1(s_0)k_2'(s_0)+\varepsilon_2)(\triangle s)^4) \\ \boldsymbol{T}(s_0)\\ +(\frac{1}{2}k_1(s_0)(\triangle s)^2+\frac{1}{6}k_1'(s_0)(\triangle s)^3+\frac{1}{24}(k_1''(s_0)+2k_1^2(s_0)k_2(s_0)+\varepsilon_3)(\triangle s)^4)\\ \boldsymbol{N}(s_0)\\ +(-\frac{1}{6}k_1^2(s_0)(\triangle s)^3+\frac{1}{24}(-3k_1(s_0)k_1'(s_0)+\varepsilon_4)(\triangle s)^4)\boldsymbol{B}(s_0) . |
When \boldsymbol{\varepsilon}\to 0 , taking the first term in each of the coefficients of \boldsymbol{T}(s_0), \boldsymbol{N}(s_0) and \boldsymbol{B}(s_0) , we obtain
\mathit{\boldsymbol{\gamma }}(s_0+\triangle s)- \mathit{\boldsymbol{\gamma }}(s_0)\\ = \frac{1}{24}k_1^2(s_0)(\triangle s)^4\mathit{\boldsymbol{\gamma }}(s_0)+\triangle s \boldsymbol{T}(s_0)+\frac{1}{2}k_1(s_0)(\triangle s)^2\boldsymbol{N}(s_0)-\frac{1}{6}k_1^2(s_0)(\triangle s)^3\boldsymbol{B}(s_0). |
We suppose \{\alpha, \xi, \zeta, \eta\} be the coordinates adjacent to \mathit{\boldsymbol{\gamma }}(s_0) , then
\begin{equation} \left\{ \begin{array}{llll} \alpha = \frac{1}{24} k_1^2s^4\\ \xi = s\\ \zeta = \frac{1}{2}k_1s^2\\ \eta = -\frac{1}{6}k_1^2s^3 , \\ \end{array}\right. \end{equation} | (6.1) |
which can be regarded as an approximate equation for the structure of the curve \mathit{\boldsymbol{\gamma }} = \mathit{\boldsymbol{\gamma }}(s) near the point \mathit{\boldsymbol{\gamma }}(s_0) . We can obtain the shape of the curve near the point s_0 is completely determined by k_1(s_0) .
We consider the local structure of curve \mathit{\boldsymbol{\gamma }}(s) at \mathit{\boldsymbol{\gamma }}(s_0) :
(1) the local structure of \mathit{\boldsymbol{\gamma }}(s) at \mathit{\boldsymbol{\gamma }}(s_0) onto the tangent space (\alpha = 0) is
(\alpha = 0), \xi = s, \zeta = \frac{1}{2}k_1s^2, \eta = -\frac{1}{6}k_1^2s^3, |
as shown in the figure (see Figure 3).
(2) the local structure of \mathit{\boldsymbol{\gamma }}(s) at \mathit{\boldsymbol{\gamma }}(s_0) onto the principal normal vector space (\xi = 0) is
(\xi = 0), \alpha = \frac{1}{24} k_1^2s^4, \zeta = \frac{1}{2}k_1s^2, \eta = -\frac{1}{6}k_1^2s^3, |
as shown in the figure (see Figure 4).
(3) the local structure of \mathit{\boldsymbol{\gamma }}(s) at \mathit{\boldsymbol{\gamma }}(s_0) onto the 1st binormal normal vector space (\zeta = 0) is
(\zeta = 0), \alpha = \frac{1}{24} k_1^2s^4, \xi = s, \eta = -\frac{1}{6}k_1^2s^3, |
as shown in the figure (see Figure 5).
(4) the local structure of \mathit{\boldsymbol{\gamma }}(s) at \mathit{\boldsymbol{\gamma }}(s_0) onto the 2nd binormal vector space (\eta = 0) is
(\eta = 0), \alpha = \frac{1}{24} k_1^2s^4, \xi = s, \zeta = \frac{1}{2}k_1s^2, |
as shown in the figure (see Figure 6).
Here, we consider an example of \mathit{\boldsymbol{\gamma }}(s) in \mathbb{S}^{3}_{1} with \boldsymbol{ V} to show the major results of the paper. The graphics of \mathit{\boldsymbol{\gamma }}(s) , the tangent indicatrix of \mathit{\boldsymbol{\gamma }}(s) , the binormal lightlike surface, and the singularities are given in the following text.
Since it's impossible to draw a graphic in four dimensions, we only show projections to the 3-dimension tangent space generated by \{\boldsymbol{T}, \boldsymbol{N}, \boldsymbol{B}\} .
Example 7.1. Let \mathit{\boldsymbol{\gamma }}:I\rightarrow \mathbb{S}^{3}_{1} be a lightlike Killing magnetic curve with \boldsymbol{ V} as follows:
\mathit{\boldsymbol{\gamma }}(s) = \{\frac{\sqrt{2}}{2}\sinh s, \frac{\sqrt{2}}{2}\sin s, \frac{\sqrt{2}}{2}\cos s , \frac{\sqrt{2}}{2}\cosh s\}, |
and
\boldsymbol{\gamma'}(s) = \{\frac{\sqrt{2}}{2}\cosh s, \frac{\sqrt{2}}{2}\cos s, -\frac{\sqrt{2}}{2}\sin s , \frac{\sqrt{2}}{2}\sinh s\}, |
\boldsymbol{\gamma''}(s) = \{\frac{\sqrt{2}}{2}\sinh s, -\frac{\sqrt{2}}{2}\sin s, -\frac{\sqrt{2}}{2}\cos s, \frac{\sqrt{2}}{2}\cosh s\}, |
\boldsymbol{ B}(s) = \{-\sqrt{2}\cosh s, \sqrt{2}\sin s, \sqrt{2}\cos s , -\sqrt{2}\sinh s\}. |
By calculation, we can get k_1 = 1, k_2 = 1 , then
\boldsymbol{T}(s) = \{\frac{\sqrt{2}}{2}\cosh s, \frac{\sqrt{2}}{2}\cos s, -\frac{\sqrt{2}}{2}\sin s , \frac{\sqrt{2}}{2}\sinh s\}, |
\boldsymbol{N}(s) = \{\frac{\sqrt{2}}{2}\sinh s, -\frac{\sqrt{2}}{2}\sin s, -\frac{\sqrt{2}}{2}\cos s, \frac{\sqrt{2}}{2}\cosh s\}. |
Hence, the tangent indicatrix of \mathit{\boldsymbol{\gamma }}(s) :
\Phi(s) = \varepsilon\frac{1}{2}\{\cosh s, \cos s, -\sin s, \sinh s\}, |
and the binormal lightlike surface :
\mathcal{BNS}(s, \mu) = \{(-\sqrt{2}\mu+\varepsilon\frac{1}{2})\cosh s, \sqrt{2}\mu\sin s+\varepsilon \frac{1}{2}\cos s, \sqrt{2}\mu\cos s-\varepsilon\frac{1}{2}\sin s , (-\sqrt{2}\mu+\varepsilon\frac{1}{2})\sinh s\}, |
then the projection of \mathit{\boldsymbol{\gamma }}(s) (see Figure 7), the tangent indicatrix of \mathit{\boldsymbol{\gamma }}(s) (see Figure 8), and the binormal lightlike surface (see Figure 9) onto the 3-dimension tangent space as follows.
The singular locus of the binormal lightlike surface onto the 3-dimension tangent space (see Figure 10) is
\varepsilon\{-\frac{1}{2}\cosh s, \sin s+\frac{1}{2}\cos s, \cos s-\frac{1}{2}\sin s, -\frac{1}{2}\sinh s\}. |
By calculation, we can obtain the geometric invariant \sigma(s) = \pm \frac{\sqrt{2}}{2} , and \sigma'(s) = 0 for all s .
In the previous paper [14,15], we had obtained the singularities of the Killing and null Killing magnetic curves in Minkowski space. In this paper, we observed the singularity properties of the lightlike Killing magnetic curves in \mathbb{S}_{1}^{3} , which were degenerate curves. By considering the lightlike tangent vector, we constructed a new Frenet equations of a lightlike Killing magnetic curve \gamma(s) using the transversality theorem. Under the view of the contact theory, we obtain some local geometric properties of the lightlike Killing magnetic curves in \mathbb{S}_{1}^{3} . We made a profound research on the contact between rectifying surface and basic sphere space by the height functions. And we rightfully obtained the geometric invariants of a lightlike Killing magnetic curve, which is used to describe the properties of lightlike Killing magnetic curve. In the following research, some other local geometrical properties of the lightlike Killing magnetic curve in nullcone will be considered.
J. G. Sun is supported by the National Natural Science Foundation of China (No.11601520).
The authors declare no conflict of interest.
[1] |
A. Nersessian, E. Ramos, Massive spinning particles and the geometry of null curves, Phys. Lett. B, 445 (1998), 123–128. doi: 10.1016/S0370-2693(98)01408-7
![]() |
[2] |
A. Ferrandez, A. Gimenez, P. Lucas, Geometrical particle models on 3D null curves, Phys. Lett. B, 543 (2002), 311–317. doi: 10.1016/S0370-2693(02)02450-4
![]() |
[3] |
J. G. Sun, D. H. Pei, Null surfaces of null curves on 3-null cone, Phys. Lett. A, 378 (2014), 1010–1016. doi: 10.1016/j.physleta.2014.02.002
![]() |
[4] |
T. Fusho, S. Izumiya, Lightlike surfaces of spacelike curves in de Sitter 3-space, J. Geom., 88 (2008), 19–29. doi: 10.1007/s00022-007-1944-5
![]() |
[5] | Y. L. Li, Z. G. Wang, Lightlike tangent developables in de Sitter 3-space, J. Geom. Phys., 164 (2021), 1–11. |
[6] |
M. I. Munteanu, Magnetic curves in a Euclidean space: one example, Several approaches, Publ. I. Math., 94 (2013), 141–150. doi: 10.2298/PIM1308141M
![]() |
[7] | G. Calvaruso, M. I. Munteanu, A. Perrone, Killing magnetic curves in three-dimensional almost paracontact manifolds, J. Math. Anal. Appl., 42 (2015), 423–439. |
[8] | Z. Bozkurt, I. ök, Y. Yayli, F. N. Ekmekcid, A new approach for magnetic curves in 3D Riemannian manifolds, J. Math. Phys., 55 (2014), 053501. |
[9] |
S. L. Druţǎ-Romaniu, M. I. Munteanu, Killing magnetic curves in a Minkowski 3-space, Nonlinear Anal. Real, 14 (2013), 383–396. doi: 10.1016/j.nonrwa.2012.07.002
![]() |
[10] |
G. Cl\acute{e}men, Black holes with a null Killing vector in three-dimensional massive gravity, Classical Quant. Grav., 26 (2009), 165002. doi: 10.1088/0264-9381/26/16/165002
![]() |
[11] | M. E. Aydin, Magnetic curves associated to Killing vector fields in a Galilean space, Math. Sci. Appl., 4 (2016), 144–150. |
[12] | Z. Erjavec, J. Inoguchi, Killing magnetic curves in sol space, Math. Phys. Anal. Geom., 4 (2018), 15–28. |
[13] |
Z. G. Wang, D. H. Pei, Singularities of ruled null surfaces of the principal normal indicatrix to a null Cartan curve in de Sitter 3-space, Phys. Lett. B, 689 (2010), 101–106. doi: 10.1016/j.physletb.2010.04.050
![]() |
[14] | J. G. Sun, Singularity properties of Killing magnetic curves in Minkowski 3-space, Int. J. Geom. Methods M., 16 (2019), 1950123. |
[15] | J. G. Sun, Singularity properties of null Killing magnetic curves in Minkowski 3-space, Int. J. Geom. Methods M., 17 (2020), 2050141. |
[16] |
H. Liu, J. Miao, Geometric invariants and focal surfaces of spacelike curves in de Sitter space from a caustic viewpoint, AIMS Mathematics, 6 (2021), 3177–3204. doi: 10.3934/math.2021192
![]() |
[17] | V. I. Arnold, S. M. Gusein-Zade, Singularities of differentiable maps, Basel: Graphische Unternehmen, 1985. |
[18] | Y. L. Li, S. Y. Liu, Z. G. Wang, Tangent developables and Darboux developables of framed curves, Topol. Appl., In press. |
[19] |
Y. L. Li, Z. G. Wang, T. H. Zhao, Slant helix of order n and sequence of Darboux developables of principal–directional curves, Math. Meth. Appl. Sci., 43 (2020), 9888–9903. doi: 10.1002/mma.6663
![]() |
[20] | J. W. Bruce, P. J. Giblin, Curves and singularities, Cambridge UK: Cambridge University Press, 1992. |
[21] | Y. L. Li, Z. G. Wang, T. H. Zhao, Geometric algebra of singular ruled surfaces, Adv. Appl. Clifford Algebras, 32 (2021), 1–19. |
[22] | Y. L. Li, Y. S. Zhu, Q. Y. Sun, Singularities and dualities of pedal curves in pseudo-hyperbolic and de Sitter space, Int. J. Geom. Methods M., 18 (2021), 1–31. |
1. | Jianguo Sun, Yanping Zhao, Xiaoyan Jiang, On the Geometrical Properties of the Lightlike Rectifying Curves and the Centrodes, 2021, 9, 2227-7390, 3103, 10.3390/math9233103 | |
2. | Özgür Kelekçi, Furkan Semih Dündar, Gülhan Ayar, Classification of Killing magnetic curves in ℍ3, 2023, 20, 0219-8878, 10.1142/S0219887824500063 | |
3. | Haiming Liu, Yuefeng Hua, Xiawei Chen, Jinli Yang, Killing vectors and magnetic curves associated to Bott connection in Heisenberg group, 2023, 20, 0219-8878, 10.1142/S0219887823501852 |