The existence of periodic bouncing solutions for sublinear impact oscillator is proved by using Poincaré-Birkhoff twist theorem. The approach of this paper is based on a well defined successor map and the phase-plane analysis of the spiral properties.
Citation: Yinyin Wu, Dingbian Qian, Shuang Wang. Periodic bouncing solutions for sublinear impact oscillator[J]. AIMS Mathematics, 2021, 6(7): 7170-7186. doi: 10.3934/math.2021420
The existence of periodic bouncing solutions for sublinear impact oscillator is proved by using Poincaré-Birkhoff twist theorem. The approach of this paper is based on a well defined successor map and the phase-plane analysis of the spiral properties.
[1] | V. M. Alekseev, Quasirandom dynamical systems Ⅱ, One-dimensional nonlinear oscillations in a field with periodic perturbation, Sb. Math., 6 (1968), 506–560. |
[2] | V. Babitsky, Theory of vibro-impact systems, New York: Springer-Verlag, 1998. |
[3] | C. Bapat, Periodic motions of an impact oscillator, J. Sound Vibration, 209 (1998), 43–60. doi: 10.1006/jsvi.1997.1230 |
[4] | D. Bonheure, C. Fabry, Periodic motions in impact oscillators with perfectly elastic bouncing, Nonlinearity, 15 (2002), 1281–1298. doi: 10.1088/0951-7715/15/4/314 |
[5] | P. Boyland, Dual billiards, Twist maps and impact oscillators, Nonlinearity, 9 (1996), 1411–1438. doi: 10.1088/0951-7715/9/6/002 |
[6] | C. Budd, F. Dux, Chattering and related behaviour in impact oscillators, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 347 (1994), 365–389. |
[7] | C. Budd, F. Dux, Intermittency in impact oscillators close to resonance, Nonlinearity, 7 (1994), 1191–1224. doi: 10.1088/0951-7715/7/4/007 |
[8] | B. Clark, E. Rosa, A. Hall, T. R. Shepherd, Dynamics of an electronic impact oscillator, Phys. Lett. A, 318 (2003), 514–521. doi: 10.1016/j.physleta.2003.09.054 |
[9] | M. Corbera, J. Llibre, Periodic orbits of a collinear restricted three body problem, Celestial Mech. Dynam. Astronom., 86 (2003), 163–183. doi: 10.1023/A:1024183003251 |
[10] | T. Ding, F. Zanolin, Subharmonic solution of second order nonlinear equations: a time-map approach, Nonlinear Anal., 20 (1993), 509–532. doi: 10.1016/0362-546X(93)90036-R |
[11] | L. Fernandes, F. Zanolin, Periodic solutions of a second order differential equation with one-sided growth restrictions on the restoring term, Arch. Math., 51 (1988), 151–163. doi: 10.1007/BF01206473 |
[12] | A. Fonda, R. Toader, Periodic solutions of radially symmetric perturbations of Newtonian systems, Proc. Amer. Math. Soc., 140 (2012), 1331–1341. doi: 10.1090/S0002-9939-2011-10992-4 |
[13] | J. Franks, Generalizations of the Poincaré -Birkhoff theorem, Ann. Math., 128 (1988), 139–151. doi: 10.2307/1971464 |
[14] | J. Hale, Ordinary differential equation, New York: Robert E. Krieger Publishing Campany Huntingto, 1980. |
[15] | H. Jacobowitz, Periodic solutions of $x''+f(x, t) = 0$ via the Poincaré-Birkhoff theorem, J. Differ. Equations, 20 (1976), 2411–2412. |
[16] | M. Kunze, Non-smooth Dynamical Systems, Lecture Notes in Math. 1744, Springer-Verlag, 2000. |
[17] | H. Lamba, Chaotic, regular and unbounded behaviour in the elastic impact oscillator, Phys. D, 82 (1995), 117–135. doi: 10.1016/0167-2789(94)00222-C |
[18] | A. Lazer, P. McKenna, Periodic bouncing for a forced linear spring with obstacle, Differ. Integral Equ., 5 (1992), 165–172. |
[19] | J. Molenaar, J. de Weger, W. van de Water, Mappings of grazing-impact oscillators, Nonlinearity, 14 (2001), 301–321. doi: 10.1088/0951-7715/14/2/307 |
[20] | A. Nordmark, Non-periodic motion caused by grazing incidence in an impact oscillators, J. Sound Vib., 145 (1991), 279–297. doi: 10.1016/0022-460X(91)90592-8 |
[21] | R. Ortega, Asymmetric oscillators and twist mappings, J. London Math. Soc., 53 (1996), 325–342. doi: 10.1112/jlms/53.2.325 |
[22] | R. Ortega, Boundedness in a piecewise linear oscillator and a variant of the small twist theorem, Proc. London Math. Soc., 79 (1999), 381–413. doi: 10.1112/S0024611599012034 |
[23] | R. Ortega, Dynamics of a forced oscillator with obstacle, Variational and Topological Methods in the Study of Nonlinear Phenomena, (2001), 75–87. |
[24] | E. Pavlovskaia, M. Wiercigroch, Periodic solution finder for an impact oscillator with a drift, J. Sound Vib., 267 (2003), 893–911. doi: 10.1016/S0022-460X(03)00193-7 |
[25] | D. Qian, Large amplitude periodic bouncing in impact oscillators with damping, Proc. Amer. Math. Soc., 133 (2005), 1797–1804. |
[26] | D. Qian, P. J. Torres, Bouncing solutions of an equation with attractive singularity, Proc. Roy. Soc. Edinburgh, 134 (2004), 201–213. doi: 10.1017/S0308210500003164 |
[27] | D. Qian, P. J. Torres, Periodic motions of linear impact oscillators via the successor map, SIAM J. Math. Anal., 36 (2005), 1707–1725. doi: 10.1137/S003614100343771X |
[28] | D. Qian, L. Chen, X. Sun, Periodic solutions of superlinear impulsive differential equations: a geometric approach, J. Differ. Equations, 258 (2015), 3088–3106. doi: 10.1016/j.jde.2015.01.003 |
[29] | D. Qian, P. J. Torres, P. Wang, Periodic solutions of second order equations via rotation numbers, J. Differ. Equations, 266 (2019), 4746–4768. doi: 10.1016/j.jde.2018.10.010 |
[30] | C. Rebelo, A note on the Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems, Nonlinear Anal., 29 (1997), 291–311. doi: 10.1016/S0362-546X(96)00065-X |
[31] | J. de Weger, W. van de Water, J. Molenaar, Grazing impact oscillations, Phys. Rev. E, 62 (2000), 2030–2041. doi: 10.1103/PhysRevE.62.2030 |