Research article

Periodic bouncing solutions for sublinear impact oscillator

  • Received: 17 February 2021 Accepted: 25 April 2021 Published: 28 April 2021
  • MSC : 34C15, 34C25, 37E40

  • The existence of periodic bouncing solutions for sublinear impact oscillator is proved by using Poincaré-Birkhoff twist theorem. The approach of this paper is based on a well defined successor map and the phase-plane analysis of the spiral properties.

    Citation: Yinyin Wu, Dingbian Qian, Shuang Wang. Periodic bouncing solutions for sublinear impact oscillator[J]. AIMS Mathematics, 2021, 6(7): 7170-7186. doi: 10.3934/math.2021420

    Related Papers:

    [1] Robert Carlson . Myopic models of population dynamics on infinite networks. Networks and Heterogeneous Media, 2014, 9(3): 477-499. doi: 10.3934/nhm.2014.9.477
    [2] Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco . A simple and bounded model of population dynamics for mutualistic networks. Networks and Heterogeneous Media, 2015, 10(1): 53-70. doi: 10.3934/nhm.2015.10.53
    [3] Riccardo Bonetto, Hildeberto Jardón Kojakhmetov . Nonlinear diffusion on networks: Perturbations and consensus dynamics. Networks and Heterogeneous Media, 2024, 19(3): 1344-1380. doi: 10.3934/nhm.2024058
    [4] Claudio Canuto, Anna Cattani . The derivation of continuum limits of neuronal networks with gap-junction couplings. Networks and Heterogeneous Media, 2014, 9(1): 111-133. doi: 10.3934/nhm.2014.9.111
    [5] Elisabeth Logak, Isabelle Passat . An epidemic model with nonlocal diffusion on networks. Networks and Heterogeneous Media, 2016, 11(4): 693-719. doi: 10.3934/nhm.2016014
    [6] Narcisa Apreutesei, Vitaly Volpert . Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8(1): 23-35. doi: 10.3934/nhm.2013.8.23
    [7] Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano . Dragging in mutualistic networks. Networks and Heterogeneous Media, 2015, 10(1): 37-52. doi: 10.3934/nhm.2015.10.37
    [8] Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond . A new model for the emergence of blood capillary networks. Networks and Heterogeneous Media, 2021, 16(1): 91-138. doi: 10.3934/nhm.2021001
    [9] Mirela Domijan, Markus Kirkilionis . Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3(2): 295-322. doi: 10.3934/nhm.2008.3.295
    [10] Luca Di Persio, Giacomo Ziglio . Gaussian estimates on networks with applications to optimal control. Networks and Heterogeneous Media, 2011, 6(2): 279-296. doi: 10.3934/nhm.2011.6.279
  • The existence of periodic bouncing solutions for sublinear impact oscillator is proved by using Poincaré-Birkhoff twist theorem. The approach of this paper is based on a well defined successor map and the phase-plane analysis of the spiral properties.





    [1] V. M. Alekseev, Quasirandom dynamical systems Ⅱ, One-dimensional nonlinear oscillations in a field with periodic perturbation, Sb. Math., 6 (1968), 506–560.
    [2] V. Babitsky, Theory of vibro-impact systems, New York: Springer-Verlag, 1998.
    [3] C. Bapat, Periodic motions of an impact oscillator, J. Sound Vibration, 209 (1998), 43–60. doi: 10.1006/jsvi.1997.1230
    [4] D. Bonheure, C. Fabry, Periodic motions in impact oscillators with perfectly elastic bouncing, Nonlinearity, 15 (2002), 1281–1298. doi: 10.1088/0951-7715/15/4/314
    [5] P. Boyland, Dual billiards, Twist maps and impact oscillators, Nonlinearity, 9 (1996), 1411–1438. doi: 10.1088/0951-7715/9/6/002
    [6] C. Budd, F. Dux, Chattering and related behaviour in impact oscillators, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 347 (1994), 365–389.
    [7] C. Budd, F. Dux, Intermittency in impact oscillators close to resonance, Nonlinearity, 7 (1994), 1191–1224. doi: 10.1088/0951-7715/7/4/007
    [8] B. Clark, E. Rosa, A. Hall, T. R. Shepherd, Dynamics of an electronic impact oscillator, Phys. Lett. A, 318 (2003), 514–521. doi: 10.1016/j.physleta.2003.09.054
    [9] M. Corbera, J. Llibre, Periodic orbits of a collinear restricted three body problem, Celestial Mech. Dynam. Astronom., 86 (2003), 163–183. doi: 10.1023/A:1024183003251
    [10] T. Ding, F. Zanolin, Subharmonic solution of second order nonlinear equations: a time-map approach, Nonlinear Anal., 20 (1993), 509–532. doi: 10.1016/0362-546X(93)90036-R
    [11] L. Fernandes, F. Zanolin, Periodic solutions of a second order differential equation with one-sided growth restrictions on the restoring term, Arch. Math., 51 (1988), 151–163. doi: 10.1007/BF01206473
    [12] A. Fonda, R. Toader, Periodic solutions of radially symmetric perturbations of Newtonian systems, Proc. Amer. Math. Soc., 140 (2012), 1331–1341. doi: 10.1090/S0002-9939-2011-10992-4
    [13] J. Franks, Generalizations of the Poincaré -Birkhoff theorem, Ann. Math., 128 (1988), 139–151. doi: 10.2307/1971464
    [14] J. Hale, Ordinary differential equation, New York: Robert E. Krieger Publishing Campany Huntingto, 1980.
    [15] H. Jacobowitz, Periodic solutions of x+f(x,t)=0 via the Poincaré-Birkhoff theorem, J. Differ. Equations, 20 (1976), 2411–2412.
    [16] M. Kunze, Non-smooth Dynamical Systems, Lecture Notes in Math. 1744, Springer-Verlag, 2000.
    [17] H. Lamba, Chaotic, regular and unbounded behaviour in the elastic impact oscillator, Phys. D, 82 (1995), 117–135. doi: 10.1016/0167-2789(94)00222-C
    [18] A. Lazer, P. McKenna, Periodic bouncing for a forced linear spring with obstacle, Differ. Integral Equ., 5 (1992), 165–172.
    [19] J. Molenaar, J. de Weger, W. van de Water, Mappings of grazing-impact oscillators, Nonlinearity, 14 (2001), 301–321. doi: 10.1088/0951-7715/14/2/307
    [20] A. Nordmark, Non-periodic motion caused by grazing incidence in an impact oscillators, J. Sound Vib., 145 (1991), 279–297. doi: 10.1016/0022-460X(91)90592-8
    [21] R. Ortega, Asymmetric oscillators and twist mappings, J. London Math. Soc., 53 (1996), 325–342. doi: 10.1112/jlms/53.2.325
    [22] R. Ortega, Boundedness in a piecewise linear oscillator and a variant of the small twist theorem, Proc. London Math. Soc., 79 (1999), 381–413. doi: 10.1112/S0024611599012034
    [23] R. Ortega, Dynamics of a forced oscillator with obstacle, Variational and Topological Methods in the Study of Nonlinear Phenomena, (2001), 75–87.
    [24] E. Pavlovskaia, M. Wiercigroch, Periodic solution finder for an impact oscillator with a drift, J. Sound Vib., 267 (2003), 893–911. doi: 10.1016/S0022-460X(03)00193-7
    [25] D. Qian, Large amplitude periodic bouncing in impact oscillators with damping, Proc. Amer. Math. Soc., 133 (2005), 1797–1804.
    [26] D. Qian, P. J. Torres, Bouncing solutions of an equation with attractive singularity, Proc. Roy. Soc. Edinburgh, 134 (2004), 201–213. doi: 10.1017/S0308210500003164
    [27] D. Qian, P. J. Torres, Periodic motions of linear impact oscillators via the successor map, SIAM J. Math. Anal., 36 (2005), 1707–1725. doi: 10.1137/S003614100343771X
    [28] D. Qian, L. Chen, X. Sun, Periodic solutions of superlinear impulsive differential equations: a geometric approach, J. Differ. Equations, 258 (2015), 3088–3106. doi: 10.1016/j.jde.2015.01.003
    [29] D. Qian, P. J. Torres, P. Wang, Periodic solutions of second order equations via rotation numbers, J. Differ. Equations, 266 (2019), 4746–4768. doi: 10.1016/j.jde.2018.10.010
    [30] C. Rebelo, A note on the Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems, Nonlinear Anal., 29 (1997), 291–311. doi: 10.1016/S0362-546X(96)00065-X
    [31] J. de Weger, W. van de Water, J. Molenaar, Grazing impact oscillations, Phys. Rev. E, 62 (2000), 2030–2041. doi: 10.1103/PhysRevE.62.2030
  • This article has been cited by:

    1. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    2. Agelos Georgakopoulos, Sebastian Haeseler, Matthias Keller, Daniel Lenz, Radosław K. Wojciechowski, Graphs of finite measure, 2015, 103, 00217824, 1093, 10.1016/j.matpur.2014.10.006
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2449) PDF downloads(67) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog