Research article

Maximal graphs with a prescribed complete bipartite graph as a star complement

  • Received: 09 March 2021 Accepted: 20 April 2021 Published: 28 April 2021
  • MSC : 05C50

  • Let $ G $ be a graph of order $ n $ and $ \mu $ be an adjacency eigenvalue of $ G $ with multiplicity $ k\geq 1 $. A star complement for $ \mu $ in $ G $ is an induced subgraph of $ G $ of order $ n-k $ with no eigenvalue $ \mu $. In this paper, we characterize the maximal graphs with the bipartite graph $ K_{2, s} $ as a star complement for eigenvalues $ \mu = -2, 1 $ and study the cases of other eigenvalues for further research.

    Citation: Xiaona Fang, Lihua You, Yufei Huang. Maximal graphs with a prescribed complete bipartite graph as a star complement[J]. AIMS Mathematics, 2021, 6(7): 7153-7169. doi: 10.3934/math.2021419

    Related Papers:

  • Let $ G $ be a graph of order $ n $ and $ \mu $ be an adjacency eigenvalue of $ G $ with multiplicity $ k\geq 1 $. A star complement for $ \mu $ in $ G $ is an induced subgraph of $ G $ of order $ n-k $ with no eigenvalue $ \mu $. In this paper, we characterize the maximal graphs with the bipartite graph $ K_{2, s} $ as a star complement for eigenvalues $ \mu = -2, 1 $ and study the cases of other eigenvalues for further research.



    加载中


    [1] L. Asgharsharghi, D. Kiani, On regular graphs with complete tripartite star complements, Ars Combin., 122 (2015), 431–437.
    [2] F. K. Bell, Characterizing line graphs by star complements, Linear Algebra Appl., 296 (1999), 15–25. doi: 10.1016/S0024-3795(99)00088-9
    [3] F. K. Bell, Line graphs of bipartite graphs with hamiltonian paths, J. Graph Theory, 43 (2003), 137–149. doi: 10.1002/jgt.10107
    [4] D. Cvetković, M. Doob, H. Sachs, Spectra of graphs: theory and application, New York: Academic Press, 1980.
    [5] D. Cvetković, P. Rowlinson, S. Simić, Eigenspaces of Graphs, Cambridge: Cambridge University Press, 1997.
    [6] D. Cvetković, P. Rowlinson, S. Simić, Some characterization of graphs by star complements, Linear Algebra Appl., 301 (1999), 81–97. doi: 10.1016/S0024-3795(99)00179-2
    [7] D. Cvetković, P. Rowlinson, S. Simić, An introduction to the theory of graph spectra, Cambridge: Cambridge University Press, 2010.
    [8] F. Ramezani, B. Tayfeh-Rezaie, Graphs with prescribed star complement for the eigenvalue 1, Ars Combin., 116 (2014), 129–145.
    [9] P. Rowlinson, On bipartite graphs with complete bipartite star complements, Linear Algebra Appl., 458 (2014), 149–160. doi: 10.1016/j.laa.2014.06.011
    [10] P. Rowlinson, An extension of the star complement technique for regular graphs, Linear Algebra Appl., 557 (2018), 496–507. doi: 10.1016/j.laa.2018.08.018
    [11] P. Rowlinson, P. S. Jackson, On graphs with complete bipartite star complements, Linear Algebra Appl., 298 (1999), 9–20. doi: 10.1016/S0024-3795(99)00135-4
    [12] P. Rowlinson, B. Tayfeh-Rezaie, Star complements in regular graphs: old and new results, Linear Algebra Appl., 432 (2010), 2230–2242. doi: 10.1016/j.laa.2009.04.022
    [13] Z. Stani$\acute{c}$, On graphs whose second largest eigenvalue equals 1 – the star complement technique, Linear Algebra Appl., 420 (2007), 700–710. doi: 10.1016/j.laa.2006.08.025
    [14] Z. Stani$\acute{c}$, S. K. Simi$\acute{c}$, On graphs with unicyclic star complement for 1 as the second largest eigenvalue, In: Proceedings of the Conference Contemporary Geometry and Related Topics, Belgrade, June 26–July 2, 2005, Faculty of Mathematics, Belgrade, 2006,475–484.
    [15] J. Wang, X. Yuan, L. Liu, Regular graphs with a prescribed complete multipartite graph as a star complement, Linear Algebra Appl., 579 (2019), 302–319. doi: 10.1016/j.laa.2019.06.004
    [16] Y. Yang, Q. Huang, J. Wang, Regular graphs with $\overline {sK_1\cup K_t} $ as a star complement, arXiv: 1912. 07594, 2019.
    [17] X. Yuan, H. Chen, L. Liu, On the characterization of graphs by star complements, Linear Algebra Appl., 533 (2017), 491–506. doi: 10.1016/j.laa.2017.08.001
    [18] X. Yuan, Q. Zhao, L. Liu, H. Chen, On graphs with prescribed star complements, Linear Algebra Appl., 559 (2018), 80–94. doi: 10.1016/j.laa.2018.09.001
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2124) PDF downloads(81) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog