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1. Introduction

Let G be a simple graph with vertex set V(G) = {1, 2, . . . , n} and edge set E(G). The adjacency
matrix of G is an n × n matrix A(G) = (ai j), where ai j = 1 if vertex i is adjacency to vertex j, and
0 otherwise. We use the notation i ∼ j (or i j ∈ E(G)) to indicate that vertices i, j are adjacent in G.
The adjacency eigenvalues of G are just the eigenvalues of A(G). For an eigenvalue µ, let E(µ) be the
eigenspace {x ∈ Rn|A(G)x = µx }. For more details on graph spectra, see [4].

Let µ be an eigenvalue of G with multiplicity k. A star set for µ in G is a subset X of V(G) such that
|X| = k and µ is not an eigenvalue of G−X, where G−X is the subgraph of G induced by X = V(G)\X.
In this situation H = G − X is called a star complement for µ. Star sets and star complements exist
for any eigenvalue of a graph, and they need not to be unique. The basic properties of star sets are
established in Chapter 7 of [5] and Chapter 5 of [7].

There is another equivalent geometric definition for star sets and star complements. Let G be a graph
with vertex set V(G) = {1, . . . , n} and adjacency matrix A. Let {e1, . . . , en} be the standard orthonormal
basis of Rn and P be the matrix which represents the orthogonal projection of Rn onto the eigenspace
E(µ) = {x ∈ Rn : A(G)x = µx } of A with respect to {e1, . . . , en}. Since E(µ) is spanned by the vectors
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Pe j( j = 1, . . . , n), there exists X ⊆ V(G) such that the vectors Pe j( j ∈ X) form a basis for E(µ). Such a
subset X of V(G) is called a star set for µ in G. In this situation H = G − X is called a star complement
for µ ( [5, 7]).

For any graph G of order n with distinct eigenvalues λ1, . . . , λm, there exists a partition V(G) =

V1
⋃
· · ·

⋃
Vm such that Vi is a star set for eigenvalue λi (i = 1, . . . ,m). Such a partition is called a

star partition of G. For any graph G, there exists at least one star partition ( [5]). Each star partition
determines a basis for Rn consisting of eigenvectors of an adjacency matrix. It provides a strong link
between graph structure and linear algebra.

In [7], it was proved that if Y ⊂ X then X \ Y is a star set for µ in G − Y . Thus the induced
subgraph G − Y also has H as a star complement for µ. If G has H as a star complement for µ, and G
is not a proper induced subgraph of some other graph with H as a star complement for µ, then G is a
maximal graph with H as a star complement for µ, or it is an H-maximal graph for µ. Accordingly,
in determining all the graphs with H as a star complement for µ, it suffices to describe the maximal
graphs which arise.

There are a lot of literatures about using star complements to construct and characterize certain
graphs. Regular graphs with a prescribed graph such as K1,s, K2,s, K1,1,t, K1,1,1,t, sK1 ∪ Kt, Pt, Kr,r,r or
Kr,s + tK1 as a star complement are discussed in the literature ( [1, 8, 10, 12, 15–18]). Bipartite graphs
with complete bipartite Kr,s as a star complement is considered by Rowlinson in 2014 ( [9]). Maximal
graphs with a prescribed graph such as S m, Km, S m,n, K2,5, K1,1,t, Ct, Pt, L(Rt), L(Qt) or unicyclic graph
as a star complement for given eigenvalue are well studied in the literature ( [2,3,6,11,13,14,17,18]).
In this paper, we introduce some results on the theory of star complements in Section 2, characterize
the maximal graphs with the bipartite graph K2,s as a star complement for eigenvalues µ = −2, 1 in
Section 3, and study the cases of other eigenvalues for further research in Section 4.

2. Preliminaries

In this section, we introduce some results of star sets and star complements that will be required
in the sequel. The following fundamental result combines the Reconstruction Theorem ( [5, Theorem
7.4.1]) with its converse ( [5, Theorem 7.4.4]).

Theorem 2.1. ( [5]) Let X be a set of vertices in the graph G. Suppose that G has adjacency matrix(
AX BT

B C

)
,

where AX is the adjacency matrix of the subgraph induced by X. Then X is a star set for µ in G if and
only if µ is not an eigenvalue of C and

µI − AX = BT (µI −C)−1B. (2.1)

Note that if X is a star set for µ, then the corresponding star complement H(= G − X) has
adjacency matrix C, and (2.1) tells us that G is determined by µ, H and the H-neighbourhood of
vertices in X, where the H-neighbourhood of vertex u ∈ X, denoted by NH(u), is defined as
NH(u) = {v | v ∼ u, v ∈ V(H)}.

It is usually convenient to apply (2.1) in the form m(µ)(µI − AX) = BT m(µ)(µI −C)−1B, where m(x)
is the minimal polynomial of C. This is because m(µ)(µI −C)−1 is given explicitly as follows.
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Proposition 2.2. ( [6], Proposition 0.2) Let C be a square matrix with minimal polynomial

m(x) = xd+1 + cd xd + cd−1xd−1 + · · · + c1x + c0.

If µ is not an eigenvalue of C, then

m(µ)(µI −C)−1 = adCd + ad−1Cd−1 + · · · + a1C + a0I,

where ad = 1 and for 0 < i ≤ d, ad−i = µi + cdµ
i−1 + cd−1µ

i−2 + · · · + cd−i+1.

In order to find all the graphs with a prescribed star complement for µ, we need to find, for given µ
and C where µ is not an eigenvalue of C, all AX and B satisfying µI − AX = BT (µI − C)−1B. For any
x, y ∈ Rq, where q = |V(H)|, let

〈x, y〉 = xT (µI −C)−1y. (2.2)

Let bu be the column of B for any u ∈ X. By Theorem 2.1, we have

Corollary 2.3. ( [7], Corollary 5.1.8 ) Suppose that µ is not an eigenvalue of the graph H, where
|V(H)| = q. There exists a graph G with a star set X = {u1, u2, . . . , uk} for µ such that G − X = H if and
only if there exist (0, 1)-vectors bu1 , bu2 , . . . , buk in Rq such that
(1) 〈bu, bu〉 = µ for all u ∈ X, and

(2) 〈bu, bv〉 =

{
−1, u ∼ v
0, u / v

for all pairs u, v in X.

Given a graph H, a subset U of V(H) and a vertex u not in V(H), denote by H(U) the graph obtained
from H by joining u to all vertices of U. We will say that u (resp. U,H(U)) is a good vertex (resp.
good set, good extension) for µ and H, if µ is an eigenvalue of H(U) but is not an eigenvalue of H.
By Theorem 2.1, a vertex u, or a subset U, or a graph H(U) is good if and only if 〈bu,bu〉 = µ, and
two vertices u and v are good partners if and only if 〈bu,bv〉 ∈ {−1, 0}. It follows that any vertex set
X in which all vertices are good and any two vertices are good partners, gives rise to a extensional
graph, say G. In this situation, X can be viewed as a star set for µ with H as the corresponding star
complement.

In view of the two conditions in the above corollary, we have

Lemma 2.4. ( [5]) Let X be a star set for µ in G, and H = G − X.
(1) If µ , 0, then V(H) is a dominating set for G, that is, the H-neighbourhood of any vertex in X are
non-empty;
(2) If µ < {−1, 0}, then V(H) is a location-dominating set for G, that is, the H-neighbourhood of distinct
vertices in X are distinct and non-empty.

It follows from (2) of Lemma 2.4 that there are only finitely maximal graphs with a prescribed star
complement for µ < {−1, 0}.

Let H � Kt,s (s ≥ t ≥ 1), (R, S ) be the bipartition of the graph Kt,s with R = {i1, i2, . . . , it}, S =

{ j1, j2, . . . , js}. A vertex u ∈ X is said to be of type (a, b) if it has a neighbours in R and b neighbours in
S , thus (a, b) , (0, 0) and 0 ≤ a ≤ t, 0 ≤ b ≤ s. The following (2.3) and (2.4) have been given in [11],
and now we express them in the form of a necessary and sufficient condition and give a proof.
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Proposition 2.5. ( [11]) Let H � Kt,s (s ≥ t ≥ 1), R, S defined as above, and µ be not an eigenvalue of
the graph H. Then G is a graph with H as a star complement for µ if and only if the vertex set X such
that G − X = H satisfies the following two conditions:
(1) for any u ∈ X of type (a, b), we have

(µ2 − ts)(a + b) + sa2 + tb2 + 2abµ = µ2(µ2 − ts); (2.3)

(2) for any two distinct vertices u, v ∈ X of type (a, b), (c, d), respectively, ρuv = |NH(u) ∩ NH(v)|, and

auv =

{
1, u ∼ v,
0, u / v,

we have

(µ2 − ts)ρuv + acs + bdt + µ(ad + bc) = −µ(µ2 − ts)auv. (2.4)

Proof. Let C be the adjacency matrix of H. Then C =

(
Ot×t Jt×s

Js×t Os×s

)
, where Ot×t and Jt×s denote all-0

matrix of size t × t and all-1 matrix of size t × s, respectively. Thus we have C2 =

(
sJt×t Ot×s

Os×t tJs×s

)
, and

C has minimal polynomial m(x) = x(x2 − ts).
Since µ is not an eigenvalue of C, we have µ , 0 and µ2 , ts. From Proposition 2.2, we have

m(µ)(µI −C)−1 = C2 + µC + (µ2 − ts)I. (2.5)

Let bu = (bT
R ,b

T
S )T ∈ Rt+s, where bR and bS are vectors of size t × 1 and size s × 1, respectively. For

any u ∈ X of type (a, b), by 〈bu,bu〉 = µ, (2.2) and (2.5), we have

µ2(µ2 − ts) = µm(µ)
= 〈bu,bu〉m(µ)
= bT

u m(µ)(µI −C)−1bu

= bT
u (C2 + µC)bu + (µ2 − ts)bT

u bu

= (bT
R ,b

T
S )

(
sJt×t µJt×s

µJs×t tJs×s

) (
bR

bS

)
+ (µ2 − ts)(bT

R ,b
T
S )

(
bR

bS

)
= sbT

R Jt×tbR + tbT
S Js×sbS + µbT

S Js×tbR + µbT
R Jt×sbS + (µ2 − ts)(bT

RbR + bT
S bS )

= sa2 + tb2 + 2abµ + (µ2 − ts)(a + b).

Thus we obtain (2.3).
Similarly, for any two distinct vertices u, v ∈ X of type (a, b), (c, d), respectively,

ρuv = |NH(u) ∩ NH(v)|, by 〈bu,bv〉 = −auv, (2.2) and (2.5), we have

−µ(µ2 − ts)auv = −m(µ)auv

= m(µ) 〈bu,bv〉

= bT
u m(µ)(µI −C)−1bv

= bT
u (C2 + µC)bv + (µ2 − ts)bT

u bv

= acs + bdt + µ(ad + bc) + (µ2 − ts)ρuv.

Thus we obtain (2.4).
By Corollary 2.3, we complete the proof. �

AIMS Mathematics Volume 6, Issue 7, 7153–7169.



7157

The following lemma is important for us to establish the location of an eigenvalue of a graph. It is
a natural extension of Interlacing Theorem.

Lemma 2.6. ( [8]) Given a graph of order n with eigenvalue µ of multiplicity k ≥ 1, let H be a star
complement for µ in G. Let λr+1(H) < µ < λr(H) for some 0 ≤ r ≤ n − k, where λ0(H) = ∞. Then
λr+1(G) = · · · = λr+k(G) = µ.

3. Maximal graphs with K2,s as a star complement for given eigenvalues

As far as we know, researchers can use the star complement technique to construct graphs with
certain spectral properties. In fact, we are usually interested in the eigenvalues with large multiplicity
in graphs.

Maximal graphs with a prescribed graph such as S m, Km, S m,n, K2,5, K1,1,t, Ct, Pt, L(Rt) or L(Qt) as
a star complement for given eigenvalue µ is well studied in the literature( [2, 3, 6, 11, 13, 17, 18]), see
Table 1.

Table 1. The maximal graphs have been characterized for given star complement and
eigenvalue.

the star complement µ reference
Ct −2 [2]
Pt −2 [3]
L(Rt), L(Qt) 1 [6]
L(Rt), L(Qt) −2 [6]
K2,5 1 [11]
S m = K1,m−1, Km, S m,n 1 [13]
K1,1,t (t , 8, 9) 1 [17]
S m = K1,m−1 −2 [18]

In this section, we study the maximal graphs with K2,s as a star complement for µ = −2 and µ = 1.

3.1. µ = −2

Let µ = −2, H = G−X � K2,s and (R, S ) be the bipartition of the graph H � K2,s. In this subsection,
we prove that K2,1, K2,10, K2,11, K2,12, K2,18, K2,20 and K2,27 are the only graphs among K2,s which can be
star complements for µ = −2, and then we take K2,10 as an example to characterize the maximal graphs
with it as a star complement for −2.

Let µ = −2. Since −2 is not an eigenvalue of H � K2,s, we have µ2 , 2s, and then s , 2. Thus we
have the following Proposition.

Proposition 3.1. Let H � K2,s be a star complements for µ = −2. Then s , 2.

Theorem 3.2. The graphs K2,1, K2,10, K2,11, K2,12, K2,18, K2,20 and K2,27 are the only graphs among K2,s

which can be star complements for µ = −2.

Proof. Let u ∈ X be a vertex of type (a, b) which means that it has a neighbours in R and b neighbours
in S . Then (a, b) , (0, 0) and a ∈ {0, 1, 2}, 0 ≤ b ≤ s.
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Case 1: a = 0.
Then by (2.3), we have

b2 + (2 − s)b − 4(2 − s) = 0. (3.1)

Since b is an integer, then (2 − s)2 + 4 × 4(2 − s) = (s − 10)2 − 64 must be a perfect square, so
s ∈ {2, 18, 20, 27}. Thus only K2,18, K2,20 and K2,27 can be star complements for −2 by Proposition 3.1.

Case 2: a = 1.
Then by (2.3), we have

2b2 − 2sb + 7s − 12 = 0. (3.2)

Since b is an integer, then (2s)2 − 4 × 2 × (7s − 12) = (2s − 14)2 − 100 must be a perfect square, so
s ∈ {2, 12, 20}. Thus only K2,12 and K2,20 can be star complements for −2 by Proposition 3.1.

Case 3: a = 2.
Then by (2.3), we have

b2 − (2 + s)b + 4(s − 1) = 0. (3.3)

Since b is an integer, then (2 + s)2 − 4 × 4 × (s − 1) = (s − 6)2 − 16 must be a perfect square, so
s ∈ {1, 2, 10, 11}. Thus only K2,1, K2,10 and K2,11 can be star complements for −2 by Proposition 3.1.

Combining the above three cases, we complete the proof. �

Recalling the definitions of a good vertex u, a good set U and a good extension H(U) in Section 2,
we now proceed to identify all good sets U, i.e., to identify the sets U for which graph H(U) has −2 as
an eigenvalue, where H ∈

{
K2,1,K2,10,K2,11,K2,12,K2,18,K2,20,K2,27

}
. We denote the a-subset of R by Ra

and the b-subset of S by S b, where (R, S ) is the bipartition of the graph K2,s.

Lemma 3.3. For µ = −2, we have
(1) K2,1(U) is good if and only if U = R2;
(2) K2,10(U) is good if and only if U = R2 ∪ S 6;
(3) K2,11(U) is good if and only if U ∈ {R2 ∪ S 5,R2 ∪ S 8};
(4) K2,12(U) is good if and only if U = R1 ∪ S 6;
(5) K2,18(U) is good if and only if U = S 8;
(6) K2,20(U) is good if and only if U ∈ {S 6, S 12,R1 ∪ S 4,R1 ∪ S 16};
(7) K2,27(U) is good if and only if U ∈ {S 5, S 20}.

Proof. The integral solutions of (3.1), (3.2) and (3.3) are shown in Table 2.

Table 2. The integral solutions of (3.1), (3.2) and (3.3).

a (s, b)
0 (27, 5), (27, 20), (20, 6), (20, 12), (18, 8)
1 (20, 4), (20, 16), (12, 6)
2 (11, 5), (11, 8), (10, 6), (1, 0)

By the definitions of a good vertex u, a good set U and a good extension H(U) in Section 2, Theorem
2.1, Corollary 2.3 and Table 2, we complete the proof. �

Theorem 3.4. A Graph G is a maximal graph with H � K2,s as a star complement for µ = −2 if and
only if the following two conditions hold:
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(1) H ∈
{
K2,1,K2,10,K2,11,K2,12,K2,18,K2,20,K2,27

}
.

(2) The vertex set X such that G − X = H satisfies the following (i) ∼ (iii):
(i) for any u ∈ X, u is a good vertex, say, NH(u) = U satisfies Lemma 3.3;
(ii) for any two distinct vertices u, v ∈ X of type (a, b), (c, d), respectively, u, v are good partners, say,

ρuv = |NH(u) ∩ NH(v)| and auv =

{
1, u ∼ v
0, u / v

satisfy Table 3.

(iii) XU = {U = NH(u) | u ∈ X} is a maximal family, say, there is no other family X′U satisfies (i), (ii),
and XU ⊂ X′U .

Table 3. Adjacency relations of any two vertices u, v ∈ X.

H (a, b) (c, d) auv ρuv

K2,1 (2, 0) (2, 0) 1 0

K2,10 (2, 6) (2, 6)
0 4
1 6

K2,11

(2, 5) (2, 5)
0 3
1 5

(2, 8) (2, 8)
0 6
1 8

(2, 5) (2, 8)
0 4
1 6

K2,12 (1, 6) (1, 6)
0 3
1 5

K2,18 (0, 8) (0, 8)
0 4
1 6

K2,27

(0, 5) (0, 5)
0 1
1 3

(0, 20) (0, 20)
0 16
1 18

(0, 5) (0, 20) 0 4

H (a, b) (c, d) auv ρuv

K2,20

(0, 6) (0, 6)
0 2
1 4

(0, 12) (0, 12)
0 8
1 10

(1, 4) (1, 4)
0 1
1 3

(1, 16) (1, 16)
0 13
1 15

(0, 6) (0, 12)
0 4
1 6

(0, 6) (1, 4)
0 1
1 3

(0, 12) (1, 4)
0 2
1 4

(0, 12) (1, 16)
0 10
1 12

(1, 4) (1, 16)
0 3
1 5

(0, 6) (1, 16) 0 5

Proof. By Proposition 2.5, Theorem 3.2, Lemma 3.3 and the definition of maximal, we only need to
show (2.4) is equivalent to (ii).

Since the proof is similar, we only show the case of H = K2,10. We note that µ = −2, t = 2, s =

10, a = c = 2, b = d = 6, then

(2.4)⇔ 2auv − ρuv + 4 = 0⇔ ρuv =

6, if u ∼ v,

4, if u / v.

By similar way, we can complete the proof. �

Now we want to characterize all the maximal graphs with the star complements H given in Theorem
3.2 for −2. As mentioned in Reference [7], we can invoke an algorithm to find the maximal family
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by using a computer and thus find the maximal graphs. Now we’re just focusing on the cases of
H ∈ {K2,1,K2,10}.

Since K2,1 � S 3, we have the following results by Theorem 3.2 in [18].

Theorem 3.5. ( [18]) The 4-cycle C4 is the unique maximal graph with K2,1 as a star complement for
µ = −2 which is the smallest eigenvalue of C4.

Let (R, S ) be the bipartition of the graph H = K2,10 with R = {1′, 2′} and S = {1, 2, . . . , 10}. Now we
characterize the maximal graph G with the star complement K2,10 for µ = −2.

Let X = {u1, . . . , uk} be the star set for µ = −2, and XU = {U1, . . . ,Uk} be the collection of good
sets, where Ui is the corresponding good set of vertex ui. Then for each 1 ≤ i ≤ k, vertex ui is of type
(2, 6) and Ui = {1′, 2′} ∪ Vi by Theorem 3.4, where Vi is a 6-subset of S . In addition, each pair of sets
in XV = {Vi | 1 ≤ i ≤ k} are compatible, which means |Vi ∩V j| = 2 or 4 for any 1 ≤ i < j ≤ k by ρuv = 4
or 6 from Table 3.

Therefore, finding the maximal graphs with K2,10 as a star complement for µ = −2 is equivalent to
finding the maximal family of the 6-subsets of the 10-set S such that any two 6-sets in the family has 2
or 4 common elements. If there exists a bijection of elements between two families, we say these two
families are isomorphic.

Lemma 3.6. Let S = {1, 2, . . . , 10} be a 10-set. Then there exist exactly two non-isomorphic maximal
families of 6-subsets of S such that any two 6-sets in each family has 2 or 4 common elements.

Proof. Let XV = {V1,V2, . . . ,Vk | Vi ⊂ S , |Vi| = 6, 1 ≤ i ≤ k} be a maximal family such that each pair of
sets in XV are compatible, which means |Vi ∩ V j| = 2 or 4 for any 1 ≤ i < j ≤ k.

Claim 1: Let Vi,V j ∈ XV . If |Vi ∩ V j| = 4, then Vp = (Vi ∩ V j) ∪ (S \ (Vi ∪ V j)) ∈ XV .
Without loss of generality, we can assume that Vi = {1, 2, 3, 4, 5, 6} and V j = {1, 2, 3, 4, 7, 8}, then

Vp = {1, 2, 3, 4, 9, 10}. Assume to the contrary, Vp < XV . Then there exist a set Vl ∈ XV such that
|Vp ∩ Vl| = 3 or 5 since any two 6-subsets has at least 2 common elements in 10-set S and XV is
maximal.

If |Vp ∩ Vl| = 3, then Vl contains three elements in S \ Vp = {5, 6, 7, 8} and |{1, 2, 3, 4} ∩ Vl| ≥ 1,
which implies one of |Vi ∩ Vl| and |V j ∩ Vl| must be odd, it is a contradiction with |Vi ∩ Vl| = 2 or 4,
|V j ∩ Vl| = 2 or 4. If |Vp ∩ Vl| = 5, we get a contradiction in a similar way. Thus Vp ∈ XV . Claim 1
holds.

Claim 2: There are at least two sets in XV having exactly two elements in common.
Assume the contrary. Then any two sets in XV have exactly four elements in common. Without loss

of generality, we can assume V1 = {1, 2, 3, 4, 5, 6}, V2 = {1, 2, 3, 4, 7, 8} ∈ XV . Then by Claim 1, we
have V3 = {1, 2, 3, 4, 9, 10} ∈ XV .

The maximality of XV implies that there exist other sets in XV . Let V4 = {a, b, c, d, e, f } ∈ XV , where
1 ≤ a < b < c < d < e < f ≤ 10. Then a ≤ 4, otherwise V4 = {5, 6, 7, 8, 9, 10} and |V4 ∩Vi| = 2 for any
i ∈ {1, 2, 3}, it is a contradiction.

If 1 ≤ a < b < c < d ≤ 4 < e < f ≤ 10, then there exist some i ∈ {1, 2, 3} such that |V4 ∩ Vi| ≥ 5, it
is a contradiction; if 1 ≤ a < b ≤ 4 < c < d < e < f ≤ 10, then there exist some i ∈ {1, 2, 3} such that
|V4 ∩ Vi| ≤ 3, it is a contradiction; if 1 ≤ a ≤ 4 < b < c < d < e < f ≤ 10, then for any i ∈ {1, 2, 3}, we
have |V4 ∩ Vi| ≤ 3, it is a contradiction. Thus 1 ≤ a < b < c ≤ 4 < d < e < f ≤ 10.

Clearly, d ∈ {5, 6}, e ∈ {7, 8}, f ∈ {9, 10} by the fact |V4 ∩ Vi| = 4 for any i ∈ {1, 2, 3} and 1 ≤ a <

b < c ≤ 4 < d < e < f ≤ 10. Without loss of generality, we take V4 = {a, b, c, 5, 7, 9} ∈ XV . By Claim
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1, we have V5 = {a, b, c, 5, 8, 10}, V6 = {a, b, c, 6, 7, 10}, V7 = {a, b, c, 6, 8, 9} ∈ XV , and we can check
that any other set V8 = {a′, b′, c′, d′, e′, f ′} such that 1 ≤ a′ < b′ < c′ ≤ 4 < d′ < e′ < f ′ ≤ 10 cannot
have four elements in common with each of V1, . . . ,V7, so XV = {V1,V2, . . . ,V7}.

Let V9 = {a, b, g, 5, 7, 10}, g ∈ {1, 2, 3, 4} \ {a, b, c}. We can check that |V9 ∩Vi| = 4 for 1 ≤ i ≤ 6 and
|V9 ∩ V7| = 2. Therefore, XV ∪ {V9} ⊇ XV , it implies a contradiction with the maximality of XV . Thus
there exists at least two sets in XV having exactly two elements in common. Claim 2 holds.

Claim 3: Let Vi,V j ∈ XV . If Vi ∩ V j = {a, b}, then for any Vp ∈ XV , {a, b} ⊆ Vp or {a, b} ∩ Vp = φ.
Without loss of generality, we can assume V1 = {1, 2, 3, 4, 5, 6}, V2 = {1, 2, 7, 8, 9, 10} ∈ XV . If

V3 ∈ XV and |{1, 2} ∩V3| = 1, then one of |V1∩V3| and |V2∩V3|must be odd, it is a contradiction. Then
Claim 3 holds.

Now we study the structure of XV . Due to Claim 2, we can assume V1 = {1, 2, 3, 4, 5, 6}, V2 =

{1, 2, 7, 8, 9, 10} ∈ XV . By Claim 3, we consider the following two cases.
Case 1: Each set in XV contains elements 1 and 2.
In this case, every set in XV has the form {1, 2, c, d, e, f } where 3 ≤ c < d ≤ 6 and 7 ≤ e < f ≤ 10

by |Vi ∩ V j| = 2 or 4 for any Vi,V j ∈ XV , and the symmetry between {3, 4, 5, 6} and {7, 8, 9, 10}. If we
divide 3, 4, 5, and 6 into two groups of two numbers, there are three ways to divide them, say, {3, 4}
and {5, 6}, {3, 5} and {4, 6}, {3, 6} and {4, 5}. For example, we take divide 3, 4, 5, and 6 into {3, 4} and
{5, 6}, then in the sense of isomorphism, we have 2 × 2 = 4 ways to take {c, d, e, f }, say, {3, 4, 7, 8},
{3, 4, 9, 10}, {5, 6, 7, 8}, {5, 6, 9, 10}. Then |XV | ≤ 1 + 1 + 3 × 4 = 14.

Without loss of generality, we can assume that V3 = {1, 2, 3, 4, 7, 8}, V4 = {1, 2, 3, 5, 7, 9}, V5 =

{1, 2, 3, 6, 7, 10}. By Claim 1, we have V6 = {1, 2, 3, 4, 9, 10} ∈ XV , V7 = {1, 2, 5, 6, 7, 8} ∈ XV , V8 =

{1, 2, 3, 5, 8, 10} ∈ XV , V9 = {1, 2, 4, 6, 7, 9} ∈ XV , V10 = {1, 2, 3, 6, 8, 9} ∈ XV , V11 = {1, 2, 5, 6, 9, 10} ∈
XV , V12 = {1, 2, 4, 6, 8, 10} ∈ XV , V13 = {1, 2, 4, 5, 8, 9} ∈ XV , V14 = {1, 2, 4, 5, 7, 10} ∈ XV .

It is easy to check that every pair Vi,V j (1 ≤ i, j ≤ 14) are compatible. Then |XV | = 14, say, XV is a
maximal family.

Case 2: There exists a set in XV does not contain elements 1 and 2.
Let V ′3 ∈ XV be a set that does not contain elements 1 and 2. Then it must have two elements

in common with one of sets V1, V2 and four elements in common with the other. In the sense of
isomorphism, noting that the symmetry between {3, 4, 5, 6} and {7, 8, 9, 10}, {3, 4} and {5, 6}, {7, 8} and
{9, 10}, we can assume V ′3 = {3, 4, 5, 6, 7, 8}.

Subcase 2.1: V ′4 = {3, 4, 7, 8, 9, 10} ∈ XV .
Then by Claim 1, we have V ′5 = {3, 4, 5, 6, 9, 10}, V ′6 = {1, 2, 3, 4, 9, 10}, V ′7 = {5, 6, 7, 8, 9, 10},

V ′8 = {1, 2, 5, 6, 9, 10}, V ′9 = {1, 2, 5, 6, 7, 8}, V ′10 = {1, 2, 3, 4, 7, 8} ∈ XV .
It is easy to check that any two set of {V1,V2,V ′3, . . . ,V

′
10} are compatible, say, having two or four

common elements. Thus {V1,V2,V ′3, . . . ,V
′
10} ⊆ XV .

Now we show XV = {V1,V2,V ′3, . . . ,V
′
10}. Otherwise, we can assume that there exists V ′11 ∈ XV . For

the five sets W1 = {1, 2},W2 = {3, 4},W3 = {5, 6},W4 = {7, 8},W5 = {9, 10}, any 6-set formed by the
union of three 2-sets from {W1,W2,W3,W4,W5} is in {V1,V2,V ′3, . . . ,V

′
10}. Then there exist at least two

sets Wi,W j such that |Wi ∩ V ′11| = |W j ∩ V ′11| = 1 for 2 ≤ i < j ≤ 5 by Claim 3.
Without loss of generality, we assume that 3, 5 ∈ V ′11 and 4, 6 < V ′11, then one of |V ′11∩V ′6|, |V

′
11∩V ′7|

and |V ′11 ∩ V ′10| is odd, it is a contradiction because any two set of XV are compatible.
Combining the above arguments, we have XV = {V1,V2,V ′3, . . . ,V

′
10} is another maximal family.

Subcase 2.2: V ′4 = {3, 4, 7, 8, 9, 10} < XV .
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Then there exist a set Vm ∈ XV such that |Vm ∩ V ′4| = 3 or 5 since any two 6-subsets has at least 2
common elements in 10-set S .

If |Vm∩V ′4| = 3, then Vm contains three elements in S \V ′4 = {1, 2, 5, 6}. By Claim 3, {1, 2} ⊆ Vm and
thus |Vm∩{5, 6}| = 1. Since |Vm| = 6, |Vm∩V2| = 2 or 4, we have |Vm∩{7, 8, 9, 10}| = 2, |Vm∩{3, 4}| = 1.
Without loss of generality, we assume that Vm = {1, 2, 3, 5, 7, 8}. By Claim 1 and V1,V2,V ′3,Vm, we can
obtain a new maximal family X1

V .
Let ψ be a mapping from S to S such that ψ(3) = 6, ψ(6) = 3 and ψ(a) = a for any a ∈ S \{3, 6}.

Then ψ is a bijection, thus X1
V and {V1,V2,V ′3, . . . ,V

′
10} are isomorphic.

If |Vm ∩ V ′4| = 5, then Vm contains one elements in S \ V ′4 = {1, 2, 5, 6}. By Claim 3, {1, 2} * Vm and
thus |Vm∩{5, 6}| = 1. Since |Vm| = 6, |Vm∩V2| = 2 or 4, we have |Vm∩{7, 8, 9, 10}| = 4, |Vm∩{3, 4}| = 1.
Without loss of generality, we assume that Vm = {3, 5, 7, 8, 9, 10}. By Claim 1 and V1,V2,V ′3,Vm, we
can obtain another new maximal family X2

V .
Let ϕ be a mapping from S to S such that ϕ(4) = 5, ϕ(5) = 4 and ϕ(a) = a for any a ∈ S \{4, 5}.

Then ϕ is a bijection, X2
V and {V1,V2,V ′3, . . . ,V

′
10} are isomorphic.

Combining the above two subcases, we obtain another maximal family XV = {V1,V2,V ′3, . . . ,V
′
10}.

By Case 1 and Case 2, we complete the proof. �

Let (R, S ) be the bipartition of H = K2,10 with R = {1′, 2′}, S = {1, 2, . . . , 10}. We define two graphs
G1,G2 as follows:

(1) X = {u1, u2, . . . , u14}, V(G1) = V(H) ∪ X, and G1[X] = K14 − u1u2 − u3u11 − u4u12 − u5u13 −

u6u7 − u8u9 − u10u14, and NH(u1) = {1′, 2′, 1, 2, 3, 4, 5, 6} , NH(u2) = {1′, 2′, 1, 2, 7, 8, 9, 10},
NH(u3) = {1′, 2′, 1, 2, 3, 4, 7, 8}, NH(u4) = {1′, 2′, 1, 2, 3, 5, 7, 9}, NH(u5) = {1′, 2′, 1, 2, 3, 6, 7, 10},
NH(u6) = {1′, 2′, 1, 2, 3, 4, 9, 10}, NH(u7) = {1′, 2′, 1, 2, 5, 6, 7, 8}, NH(u8) = {1′, 2′, 1, 2, 3, 5, 8, 10},
NH(u9) = {1′, 2′, 1, 2, 4, 6, 7, 9}, NH(u10) = {1′, 2′, 1, 2, 3, 6, 8, 9}, NH(u11) = {1′, 2′, 1, 2, 5, 6, 9, 10},
NH(u12) = {1′, 2′, 1, 2, 4, 6, 8, 10}, NH(u13) = {1′, 2′, 1, 2, 4, 5, 8, 9}, NH(u14) = {1′, 2′, 1, 2, 4, 5, 7, 10}.

(2) X = {v1, v2, . . . , v10}, V(G2) = V(H) ∪ X, and G2[X] = K10 − v1v2 − v1v4 − v1v7 − v2v3 − v2v5 −

v3v6 − v3v8 − v4v8 − v4v9 − v5v9 − v5v10 − v6v7 − v6v9 − v7v10 − v8v10, and NH(v1) = {1′, 2′, 1, 2, 3, 4, 5, 6},
NH(v2) = {1′, 2′, 1, 2, 7, 8, 9, 10}, NH(v3) = {1′, 2′, 3, 4, 5, 6, 7, 8}, NH(v4) = {1′, 2′, 3, 4, 7, 8, 9, 10},
NH(v5) = {1′, 2′, 3, 4, 5, 6, 9, 10}, NH(v6) = {1′, 2′, 1, 2, 3, 4, 9, 10}, NH(v7) = {1′, 2′, 5, 6, 7, 8, 9, 10},
NH(v8) = {1′, 2′, 1, 2, 5, 6, 9, 10}, NH(v9) = {1′, 2′, 1, 2, 5, 6, 7, 8}, NH(v10) = {1′, 2′, 1, 2, 3, 4, 7, 8}.

Clearly, G1 has 26 vertices, where 2 vertices of degree 24, 14 vertices of degree 20, 2 vertices of
degree 16, and 8 vertices of degree 9, its spectrum is [−4.70096,−214, 02, 0.66031, 27, 18.04065]; G2

has 22 vertices, where 2 vertices of degree 20, 10 vertices of degree 14, and 10 vertices of degree 8, its
spectrum is [−4.71780,−210, 06, 34, 12.71780].

By Theorem 3.4 and Lemma 3.6, we can conclude that there are exactly two non-isomorphic
maximal graphs with K2,10 as a star complement for µ = −2.

Theorem 3.7. Let G be a graph with K2,10 as a star complement for µ = −2. Then G is maximal if and
only if G � G1 or G � G2.

Remark 3.8. Let S = {1, 2, . . . , 10}, S 1, S 2, . . . , S 210 be all the 6-subsets of S . We construct a graph
GX of order 210 with V(GX) = {v1, v2, . . . , v210} and viv j ∈ E(GX) if |S i ∩ S j| = 2 or 4.

Then finding the maximal graphs with H � K2,10 as a star complement for µ = −2 is equivalent to
finding the maximal family of the 6-subsets of a 10-set such that the intersection of any two 6-sets in
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the family has 2 or 4 elements, is equivalent to finding all maximal cliques in GX.
By Lemma 3.6, GX has two maximal cliques in the sense of isomorphism, one is order 14 and the

other is order 10. When H ∈
{
K2,11,K2,12,K2,18,K2,20,K2,27

}
, we can study the maximal graphs by a

similar way, and now we ignore the characterization.

Finally, it is obvious to obtain the following result.

Corollary 3.9. K2,10, K2,11, K2,12, K2,18, K2,20 and K2,27 are the only graphs among K2,s which can be
star complements for the second smallest eigenvalue λn−1 = −2.

Proof. Let G be a graph of order n with H as a star complement for an eigenvalue −2 of multiplicity
n − s − 2, where H � K2,s (s > 2). We know that K2,s has spectrum: 0s, −

√
2s,
√

2s. If s > 2, then

λs+2(H) = −
√

2s < −2 < 0 = λs+1(H).

By Lemma 2.6, we have λs+2(G) = λs+3(G) = · · · = λn−1(G) = −2. �

3.2. µ = 1

In this subsection, we study the maximal graphs with K2,s as a star complement for µ = 1. Clearly,
1 is not an eigenvalue of K2,s. Then by (2.3), we have

Theorem 3.10. K2,5 and K2,13 are the only two graphs among K2,s which can be star complements for
µ = 1.

Proof. Let u ∈ X be a vertex of type (a, b) which means that it has a neighbours in R and b neighbours
in S . Then (a, b) , (0, 0) and a ∈ {0, 1, 2}, 0 ≤ b ≤ s.

If a = 0, then by (2.3), we have

2b2 + (1 − 2s)b + 2s − 1 = 0. (3.4)

Since b is an integer, then (1 − 2s)2 − 8 × (2s − 1) = (2s − 5)2 − 16 must be a perfect square, so s = 5.
Therefore, only K2,5 can be a star complement for µ = 1.

If a = 1, then by (2.3), we have

2b2 + (3 − 2s)b + s = 0. (3.5)

Since b is an integer, then (3− 2s)2 − 8s = (2s− 5)2 − 16 must be a perfect square, so s = 5. Therefore,
only K2,5 can be a star complement for µ = 1.

If a = 2, then by (2.3), we have

2b2 + (5 − 2s)b + 1 + 2s = 0. (3.6)

Since b is an integer, then (5 − 2s)2 − 8 × (1 + 2s) = (2s − 9)2 − 64 must be a perfect square, so s = 13.
Therefore, only K2,13 can be a star complement for µ = 1.

Combining the above arguments, we complete the proof. �

Recalling the definitions of good vertex u, good set U and good extension H(U) in Section 2, we
now proceed to identify all good sets U, i.e., to identify the sets U for which graph H(U) has 1 as an
eigenvalue, where H ∈

{
K2,5,K2,13

}
. We denote the a-subset of R by Ra and the b-subset of S by S b,

where (R, S ) is the bipartition of the graph K2,s.
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Lemma 3.11. For µ = 1, we have
(1) K2,5(U) is good if and only if U ∈ {S 3,R1 ∪ S 1};
(2) K2,13(U) is good if and only if U = R2 ∪ S 9.

Proof. The integral solutions of (3.4), (3.5) and (3.6) are shown in Table 4.

Table 4. The integral solutions of (3.4), (3.5) and (3.6).

a (s, b)
0 (5, 3)
1 (5, 1)
2 (13, 9)

By the definitions of good vertex u, good set U and good extension H(U) in Section 2, Theorem
2.1, Corollary 2.3 and Table 4, we complete the proof. �

When H � K2,5, [11] characterized the unique maximal graph with K2,5 as a star complement for
µ = 1.

Theorem 3.12. ( [11]) The complement of Schläfli graph is the unique maximal graph with K2,5 as a
star complement for µ = 1.

Theorem 3.13. Let H � K2,13. Then G is the maximal graph with H as a star complement for µ = 1 if
and only if the vertex set X such that G − X = H satisfies the following three conditions:
(1) for any u ∈ X, u is a good vertex, say, NH(u) = U = R2 ∪ S 9;
(2) for any two distinct vertices u, v ∈ X of type (a, b), (c, d), respectively, u, v are good partners, say,

ρuv = |NH(u) ∩ NH(v)| =

9, if u ∼ v,

10, if u / v.
(3) XU = {U = NH(u) | u ∈ X} is a maximal family, say, there is no other family X′U satisfies (1), (2),
and XU ⊂ X′U .

Proof. By Proposition 2.5, Theorem 3.2, Lemma 3.11 and the definition of maximal, we only need to
show (2.4) is equivalent to (2).

We note that µ = 1, t = 2, s = 13, a = c = 2, b = d = 9, then

(2.4)⇔ auv + ρuv − 10 = 0⇔ ρuv =

9, if u ∼ v,

10, if u / v.
�

Remark 3.14. Let (R, S ) be the bipartition of the graph H = K2,13 with R = {1′, 2′} and
S = {1, 2, . . . , 13}, X = {u1, . . . , uk} be the star set for µ = 1, and XU = {U1, . . . ,Uk} be the collection
of good sets, where Ui is the corresponding good set of vertex ui. Then for each 1 ≤ i ≤ k, vertex ui is
of type (2, 9) and Ui = {1′, 2′} ∪ Fi by Lemma 3.11, where Fi is a 9-subset of S . In addition, each pair
of sets in F = {Fi | 1 ≤ i ≤ k} are compatible, which means |Fi ∩ F j| = 7 or 8 for any 1 ≤ i < j ≤ k by
ρuv = 9 or 10 from Theorem 3.13.

Therefore, finding the maximal graphs with K2,13 as a star complement for µ = 1 is equivalent to
finding the non-isomorphic maximal family of the 9-subsets of the 13-set S such that any two 9-sets in
the family has 7 or 8 common elements.
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As mentioned in Reference [7], we can invoke an algorithm to find the maximal family by using a
computer and thus find the maximal graphs. Now we only give two examples to illustrate the existence
of maximal families.

Example 3.15. Let S = {1, 2, . . . , 13}, F1 = {1, 2, . . . , 9}, F1 = {10, 11, 12, 13}, and F = {F1}
⋃
{Fi |

|Fi ∩ F1| = 8, |Fi ∩ F1| = 1} be a family of 9-subsets of S . Then F is a maximal family such that any
two sets in F has 7 or 8 common elements.

Proof. First, we prove that all sets in F are compatible. For any Fi ∈ F \F1, we have |F1∩Fi| = 8. For
any two sets Fi, F j ∈ F \F1, i , j, if (Fi ∩ F1) ∩ (F j ∩ F1) = ∅, then |(Fi ∩ F1) ∩ (F j ∩ F1)| = 7 or 8
since |F1| = 9, |F1∩Fi| = 8 and |F1∩F j| = 8, thus |Fi∩F j| = 7 or 8; if |(Fi∩F1)∩ (F j∩F1)| = 1, then
|(Fi ∩ F1) ∩ (F j ∩ F1)| = 7 since Fi , F j, thus |Fi ∩ F j| = 8. Therefore, all sets in F are compatible.

Next, we prove that the family is maximal. Assume to the contrary, if F is not maximal, then there
is a set F < F such that |F| = 9 and F is compatible with all sets in F , say, |F ∩ Fi| = 7 or 8 for any
Fi ∈ F . Since F1 = {1, 2, . . . , 9} ∈ F , we have |F ∩ F1| = 7 or 8.

If |F ∩ F1| = 8, then F ∈ F , it implies a contradiction. If |F ∩ F1| = 7, without loss of generality,
we assume that F = {1, 2, 3, 4, 5, 6, 7, 10, 11}, then there is a set Fq = {2, 3, 4, 5, 6, 7, 8, 9, 12} ∈ F such
that |F ∩ Fq| = 6, it is a contradiction.

Therefore, F is a maximal family such that the intersection of any two sets in F has 7 or 8 elements.
�

Example 3.16. Let S = {1, 2, . . . , 13}, F1 = {1, 2, . . . , 9}, F1 = {10, 11, 12, 13}, S 1 = {1, 2, . . . , 7},
S 2 = {1, 2, . . . , 7, 8}, S 3 = {1, 2, . . . , 7, 9}, and F ∗ = {F1}

⋃
{Fi | S 1 ⊆ Fi, |Fi ∩ F1| = 2}

⋃
{Fi | S 2 ⊆

Fi, |Fi ∩ F1| = 1}
⋃
{Fi | S 3 ⊆ Fi, |Fi ∩ F1| = 1} be a family of 9-subsets of S . Then F ∗ is a maximal

family such that the intersection of any two sets in F ∗ has 7 or 8 elements.

Proof. First, we prove that all sets in F ∗ are compatible. For any two sets Fp, Fq ∈ F
∗, we have

|Fp ∩ Fq| ≥ 7 since |S 1 ∩ S 2| = |S 1 ∩ S 3| = |S 2 ∩ S 3| = 7. On the other hand, |Fp| = |Fq| = 9, and
Fp , Fq, thus |Fp ∩ Fq| = 7 or 8. Therefore, all sets in F ∗ are compatible.

Next, we prove that the family is maximal. Assume to the contrary, if F ∗ is not maximal, then there
is a set F < F ∗ such that |F| = 9 and F is compatible with all sets in F ∗, say, |F ∩ Fi| = 7 or 8 for any
Fi ∈ F

∗. Since F1 = {1, 2, . . . , 9} ∈ F ∗, we have |F ∩ F1| = 7 or 8.
Case 1: |F ∩ F1| = 7.
Then |F ∩ S 1| = 5, 6 or 7. If |F ∩ S 1| = 7, then F ∈ {Fi | S 1 ⊆ Fi, |Fi ∩ F1| = 2} ⊆ F ∗, it is a

contradiction. If |F ∩ S 1| = 6, without loss of generality, we assume that F = {1, 2, 3, 4, 5, 6, 8, 10, 11},
then there is a set Fl = {1, 2, 3, 4, 5, 6, 7, 12, 13} ∈ {Fi | S 1 ⊆ Fi, |Fi ∩ F1| = 2} ⊆ F ∗ such that
|F ∩ Fl| = 6, it is a contradiction. If |F ∩ S 1| = 5, without loss of generality, we assume that F =

{1, 2, 3, 4, 5, 8, 9, 10, 11}, then there is a set Fl = {1, 2, 3, 4, 5, 6, 7, 12, 13} ∈ F ∗ such that |F ∩ Fl| = 5, it
is a contradiction.

Case 2: |F ∩ F1| = 8.
Then |F ∩ S 1| = 6 or 7. If |F ∩ S 1| = 7, then F ∈ {Fi | S 2 ⊆ Fi, |Fi ∩ F1| = 1}

⋃
{Fi | S 3 ⊆

Fi, |Fi∩F1| = 1} ⊆ F ∗, it is a contradiction. If |F ∩S 1| = 6, without loss of generality, we assume that
F = {1, 2, 3, 4, 5, 6, 8, 9, 10}, then there is a set Fl = {1, 2, 3, 4, 5, 6, 7, 12, 13} ∈ F ∗ such that |F∩Fl| = 6,
it is a contradiction.

Combining the above arguments, F ∗ is a maximal family such that the intersection of any two sets
in F ∗ has 7 or 8 elements. �
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Corollary 3.17. K2,5 and K2,13 are the only graphs among K2,s which can be star complements for the
second largest eigenvalue λ2 = 1.

Proof. Let G be a graph of order n with H as a star complement for an eigenvalue 1 of multiplicity k,
where H � K2,s. We know that K2,s has spectrum: 0s, −

√
2s,
√

2s, then

λ2(H) = 0 < 1 <
√

2s = λ1(H).

By Lemma 2.6, we have λ2(G) = λ3(G) = · · · = λ1+k(G) = 1. �

4. The cases of other eigenvalues and some remarks

By Table 1, we can see that the known research on the maximal graph with H as a star complement
is about a relatively small eigenvalue, such as 1 and −2. We are curious about what will happen to the
maximal graph when the eigenvalue becomes larger.

In this section, we will study the maximal graphs with K2,s as a star complement for other
eigenvalues, such as µ = 2, 3,−3, 4.

Proposition 4.1. The only graphs among K2,s which can be star complements for µ = 2,−3, 3, 4 are
shown in Table 5.

Table 5. graphs among K2,s which can be as star complements for µ.

µ K2,s

2 K2,1, K2,18, K2,20, K2,26, K2,27, K2,29, K2,34, K2,51, K2,52

3 K2,3, K2,42, K2,45, K2,65, K2,67, K2,78, K2,126, K2,185, K2,225, K2,317

-3 K2,3, K2,4, K2,29, K2,36, K2,42, K2,45, K2,65, K2,78, K2,89, K2,117, K2,185

4
K2,6, K2,7, K2,72, K2,78, K2,80, K2,88, K2,89, K2,98, K2,106, K2,108,
K2,133, K2,134, K2,152, K2,168, K2,170, K2,250, K2,297, K2,449, K2,656

Proof. We only prove the case of µ = 2. The proofs for µ = −3, 3, 4 are similar, so we omit them.
Let u ∈ X be a vertex of type (a, b) which means that it has a neighbours in R and b neighbours in

S . Then (a, b) , (0, 0) and a ∈ {0, 1, 2}, 0 ≤ b ≤ s.
By (2.3), µ = 2 and t = 2, we have

2b2 + (4a + 4 − 2s)b + sa2 − 2sa + 4a + 8s − 16 = 0. (4.1)

Since b is an integer, the discriminant of (4.1), 4s2 − 80s − 8sa2 + 16a2 + 144 must be a perfect
square. Table 6 shows the possible values of s and (s, b) when a = 0, 1, 2.

Since µ = 2 is not the eigenvalue of H � K2,s, so µ2 , 2s, and then s , 2. Therefore only K2,1,
K2,18, K2,20, K2,26, K2,27, K2,29, K2,34, K2,51 and K2,52 can be star complements for µ = 2. �

Similar to the cases of µ = 1 and µ = −2, we can study the maximum graphs. Now we only
characterize the following cases.

Firstly, we define two graph G3 and G4. Let (R, S ) be the bipartition of H = K2,4 with R = {1′, 2′},
S = {1, 2, 3, 4}. We define a graph G3 as follows: X = {u}, V(G3) = V(H) ∪ X, and NH(u) = {1′, 2′, 1}
(see Figure 1). The spectrum of G3 is [−3,−1, 03, 0.58579, 3.41421].
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Table 6. The integral solutions of (4.1) (0 ≤ b ≤ s).

a
the discriminant
of equation (4.1)

s (s, b)

0 4(s − 10)2 − 256 2, 18, 20, 27 (2, 0), (18, 8), (20, 6), (20, 12), (27, 5), (27, 20)
1 4(s − 11)2 − 324 20, 26, 52 (20, 8), (26, 5), (26, 17), (52, 4), (52, 44)

2 4(s − 14)2 − 576 1, 26, 27, 29, 34, 51
(1, 0), (26, 10), (27, 8), (27, 13), (29, 7),

(29, 16), (34, 6), (34, 22), (51, 5), (51, 40)

Let (R′, S ′) be the bipartition of H = K2,6 with R′ = {1′, 2′}, S ′ = {1, 2, . . . , 6}. We define a graph
G4 as follows: X = {v}, V(G4) = V(H) ∪ X, and NH(v) = {1′, 1, 2, 3} (see Figure 2). The spectrum of
G4 is [−3.51414,−1.57199, 05, 1.08613, 4].

Figure 1. G3.

Figure 2. G4.

Theorem 4.2. The graph G shown in Table 7 is the only graph with H as a star complement for
eigenvalue µ.

Proof. When µ = 2 and H = K2,1, it is clear that a = c = 2, b = d = 0 by Proposition 4.1. By
Proposition 2.5 and µ = 2, t = 2, s = 1, we have G is the graph with K2,1 as a star complement for
µ = 2 if and only if the vertex set X satisfies G − X = H and the following two conditions:(1) for any
u ∈ X, u is of type (2, 0); (2) for any two vertices u, v ∈ X, we have 2auv + ρuv + 2 = 0.

But ρuv ≥ 0 and auv = 0 or 1 imply |X| = 1. Therefore, there is a unique (maximal) graph K2,2 with
K2,1 as a star complement for µ = 2.

Similarly, we can prove other cases in Table 7. �
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Table 7. The only graph with H as a star complement for eigenvalue µ.

µ H G
2 K2,1 K2,2

3 K2,3 K3,3

-3 K2,3 K3,3

-3 K2,4 G3

4 K2,6 G4

4 K2,7 K2,8

Remark 4.3. Let G be a maximal graph with K2,s as a star complements for µ. In order to study
G, the first thing we need to do is to determine what value of s that allows K2,s to be viewed as a star
complement for a given eigenvalue. We compare the graphs among K2,s which can be star complements
for distinct eigenvalues, for example, µ = 1, µ = −2, µ = 2, µ = 3, µ = −3 and µ = 4 (see Theorem
3.10, Theorem 3.2 and Table 5), and we find that:

(1) there are only two graphs among K2,s as star complements for µ = 1;
(2) there are only seven graphs among K2,s as star complements for µ = −2 and nine for µ = 2;
(3) there are only eleven graphs among K2,s as star complements for µ = −3 and ten for µ = 3;
(4) there are nineteen graphs among K2,s as star complements for µ = 4;
(5) as the absolute value of µ gets larger and larger, the value and the number of s get larger and

larger; even though the absolute values are the same, it seems that the value of s corresponding to the
positive eigenvalues is larger than the one corresponding to the negative eigenvalues.

It seems that (5) explains why known research choose eigenvalues with small absolute value for
study.

It is well known that for any graph G, there exists at least one star partition ( [7]). The fact implies
there exist star sets and star complements for any eigenvalue of any graph G. Then what graphs can not
be as star complements for some given eigenvalues seems to be an interesting question worth studying.
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7. D. Cvetković, P. Rowlinson, S. Simić, An introduction to the theory of graph spectra, Cambridge:
Cambridge University Press, 2010.

8. F. Ramezani, B. Tayfeh-Rezaie, Graphs with prescribed star complement for the eigenvalue 1, Ars
Combin., 116 (2014), 129–145.

9. P. Rowlinson, On bipartite graphs with complete bipartite star complements, Linear Algebra Appl.,
458 (2014), 149–160.

10. P. Rowlinson, An extension of the star complement technique for regular graphs, Linear Algebra
Appl., 557 (2018), 496–507.

11. P. Rowlinson, P. S. Jackson, On graphs with complete bipartite star complements, Linear Algebra
Appl., 298 (1999), 9–20.

12. P. Rowlinson, B. Tayfeh-Rezaie, Star complements in regular graphs: old and new results, Linear
Algebra Appl., 432 (2010), 2230–2242.
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