Mathematics

Research article

Maximal graphs with a prescribed complete bipartite graph as a star complement

Xiaona Fang ${ }^{1}$, Lihua You ${ }^{1, *}$ and Yufei Huang ${ }^{2}$
${ }^{1}$ School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, China
${ }^{2}$ Department of Mathematics Teaching, Guangzhou Civil Aviation College, Guangzhou, 510403, China

* Correspondence: Email: ylhua@scnu.edu.cn.

Abstract

Let G be a graph of order n and μ be an adjacency eigenvalue of G with multiplicity $k \geq 1$. A star complement for μ in G is an induced subgraph of G of order $n-k$ with no eigenvalue μ. In this paper, we characterize the maximal graphs with the bipartite graph $K_{2, s}$ as a star complement for eigenvalues $\mu=-2,1$ and study the cases of other eigenvalues for further research.

Keywords: adjacency eigenvalue; star set; star complement; maximal graph
Mathematics Subject Classification: 05C50

1. Introduction

Let G be a simple graph with vertex set $V(G)=\{1,2, \ldots, n\}$ and edge set $E(G)$. The adjacency matrix of G is an $n \times n$ matrix $A(G)=\left(a_{i j}\right)$, where $a_{i j}=1$ if vertex i is adjacency to vertex j, and 0 otherwise. We use the notation $i \sim j$ (or $i j \in E(G)$) to indicate that vertices i, j are adjacent in G. The adjacency eigenvalues of G are just the eigenvalues of $A(G)$. For an eigenvalue μ, let $\mathcal{E}(\mu)$ be the eigenspace $\left\{x \in \mathbb{R}^{n} \mid A(G) x=\mu x\right\}$. For more details on graph spectra, see [4].

Let μ be an eigenvalue of G with multiplicity k. A star set for μ in G is a subset X of $V(G)$ such that $|X|=k$ and μ is not an eigenvalue of $G-X$, where $G-X$ is the subgraph of G induced by $\bar{X}=V(G) \backslash X$. In this situation $H=G-X$ is called a star complement for μ. Star sets and star complements exist for any eigenvalue of a graph, and they need not to be unique. The basic properties of star sets are established in Chapter 7 of [5] and Chapter 5 of [7].

There is another equivalent geometric definition for star sets and star complements. Let G be a graph with vertex set $V(G)=\{1, \ldots, n\}$ and adjacency matrix A. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard orthonormal basis of \mathbb{R}^{n} and P be the matrix which represents the orthogonal projection of \mathbb{R}^{n} onto the eigenspace $\mathcal{E}(\mu)=\left\{x \in \mathbb{R}^{n}: A(G) x=\mu x\right\}$ of A with respect to $\left\{e_{1}, \ldots, e_{n}\right\}$. Since $\mathcal{E}(\mu)$ is spanned by the vectors
$P e_{j}(j=1, \ldots, n)$, there exists $X \subseteq V(G)$ such that the vectors $P e_{j}(j \in X)$ form a basis for $\mathcal{E}(\mu)$. Such a subset X of $V(G)$ is called a star set for μ in G. In this situation $H=G-X$ is called a star complement for $\mu([5,7])$.

For any graph G of order n with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$, there exists a partition $V(G)=$ $V_{1} \cup \cdots \cup V_{m}$ such that V_{i} is a star set for eigenvalue $\lambda_{i}(i=1, \ldots, m)$. Such a partition is called a star partition of G. For any graph G, there exists at least one star partition ([5]). Each star partition determines a basis for \mathbb{R}^{n} consisting of eigenvectors of an adjacency matrix. It provides a strong link between graph structure and linear algebra.

In [7], it was proved that if $Y \subset X$ then $X \backslash Y$ is a star set for μ in $G-Y$. Thus the induced subgraph $G-Y$ also has H as a star complement for μ. If G has H as a star complement for μ, and G is not a proper induced subgraph of some other graph with H as a star complement for μ, then G is a maximal graph with H as a star complement for μ, or it is an H-maximal graph for μ. Accordingly, in determining all the graphs with H as a star complement for μ, it suffices to describe the maximal graphs which arise.

There are a lot of literatures about using star complements to construct and characterize certain graphs. Regular graphs with a prescribed graph such as $K_{1, s}, K_{2, s}, K_{1,1, t}, K_{1,1,1, t}, \overline{s K_{1} \cup K_{t}}, P_{t}, K_{r, r, r}$ or $K_{r, s}+t K_{1}$ as a star complement are discussed in the literature ($[1,8,10,12,15-18]$). Bipartite graphs with complete bipartite $K_{r, s}$ as a star complement is considered by Rowlinson in 2014 ([9]). Maximal graphs with a prescribed graph such as $S_{m}, K_{m}, S_{m, n}, K_{2,5}, K_{1,1, t}, C_{t}, P_{t}, \overline{L\left(R_{t}\right)}, \overline{L\left(Q_{t}\right)}$ or unicyclic graph as a star complement for given eigenvalue are well studied in the literature ($[2,3,6,11,13,14,17,18]$). In this paper, we introduce some results on the theory of star complements in Section 2, characterize the maximal graphs with the bipartite graph $K_{2, s}$ as a star complement for eigenvalues $\mu=-2,1$ in Section 3, and study the cases of other eigenvalues for further research in Section 4.

2. Preliminaries

In this section, we introduce some results of star sets and star complements that will be required in the sequel. The following fundamental result combines the Reconstruction Theorem ([5, Theorem 7.4.1]) with its converse ([5, Theorem 7.4.4]).

Theorem 2.1. ([5]) Let X be a set of vertices in the graph G. Suppose that G has adjacency matrix

$$
\left(\begin{array}{cc}
A_{X} & B^{T} \\
B & C
\end{array}\right),
$$

where A_{X} is the adjacency matrix of the subgraph induced by X. Then X is a star set for μ in G if and only if μ is not an eigenvalue of C and

$$
\begin{equation*}
\mu I-A_{X}=B^{T}(\mu I-C)^{-1} B . \tag{2.1}
\end{equation*}
$$

Note that if X is a star set for μ, then the corresponding star complement $H(=G-X)$ has adjacency matrix C, and (2.1) tells us that G is determined by μ, H and the H-neighbourhood of vertices in X, where the H-neighbourhood of vertex $u \in X$, denoted by $N_{H}(u)$, is defined as $N_{H}(u)=\{v \mid v \sim u, v \in V(H)\}$.

It is usually convenient to apply (2.1) in the form $m(\mu)\left(\mu I-A_{X}\right)=B^{T} m(\mu)(\mu I-C)^{-1} B$, where $m(x)$ is the minimal polynomial of C. This is because $m(\mu)(\mu I-C)^{-1}$ is given explicitly as follows.

Proposition 2.2. ([6], Proposition 0.2) Let C be a square matrix with minimal polynomial

$$
m(x)=x^{d+1}+c_{d} x^{d}+c_{d-1} x^{d-1}+\cdots+c_{1} x+c_{0} .
$$

If μ is not an eigenvalue of C, then

$$
m(\mu)(\mu I-C)^{-1}=a_{d} C^{d}+a_{d-1} C^{d-1}+\cdots+a_{1} C+a_{0} I,
$$

where $a_{d}=1$ and for $0<i \leq d, a_{d-i}=\mu^{i}+c_{d} \mu^{i-1}+c_{d-1} \mu^{i-2}+\cdots+c_{d-i+1}$.
In order to find all the graphs with a prescribed star complement for μ, we need to find, for given μ and C where μ is not an eigenvalue of C, all A_{X} and B satisfying $\mu I-A_{X}=B^{T}(\mu I-C)^{-1} B$. For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{q}$, where $q=|V(H)|$, let

$$
\begin{equation*}
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T}(\mu I-C)^{-1} \mathbf{y} . \tag{2.2}
\end{equation*}
$$

Let \mathbf{b}_{u} be the column of B for any $u \in X$. By Theorem 2.1, we have
Corollary 2.3. ([7], Corollary 5.1.8) Suppose that μ is not an eigenvalue of the graph H, where $|V(H)|=q$. There exists a graph G with a star set $X=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ for μ such that $G-X=H$ if and only if there exist $(0,1)$-vectors $\boldsymbol{b}_{u_{1}}, \boldsymbol{b}_{u_{2}}, \ldots, \boldsymbol{b}_{u_{k}}$ in \mathbb{R}^{q} such that
(1) $\left\langle\boldsymbol{b}_{u}, \boldsymbol{b}_{u}\right\rangle=\mu$ for all $u \in X$, and
(2) $\left\langle\boldsymbol{b}_{u}, \boldsymbol{b}_{v}\right\rangle=\left\{\begin{array}{cc}-1, & u \sim v \\ 0, & u \times v\end{array}\right.$ for all pairs u, v in X.

Given a graph H, a subset U of $V(H)$ and a vertex u not in $V(H)$, denote by $H(U)$ the graph obtained from H by joining u to all vertices of U. We will say that u (resp. $U, H(U)$) is a good vertex (resp. good set, good extension) for μ and H, if μ is an eigenvalue of $H(U)$ but is not an eigenvalue of H. By Theorem 2.1, a vertex u, or a subset U, or a graph $H(U)$ is good if and only if $\left\langle\mathbf{b}_{u}, \mathbf{b}_{u}\right\rangle=\mu$, and two vertices u and v are good partners if and only if $\left\langle\mathbf{b}_{u}, \mathbf{b}_{v}\right\rangle \in\{-1,0\}$. It follows that any vertex set X in which all vertices are good and any two vertices are good partners, gives rise to a extensional graph, say G. In this situation, X can be viewed as a star set for μ with H as the corresponding star complement.

In view of the two conditions in the above corollary, we have
Lemma 2.4. ([5]) Let X be a star set for μ in G, and $H=G-X$.
(1) If $\mu \neq 0$, then $V(H)$ is a dominating set for G, that is, the H-neighbourhood of any vertex in X are non-empty;
(2) If $\mu \notin\{-1,0\}$, then $V(H)$ is a location-dominating set for G, that is, the H-neighbourhood of distinct vertices in X are distinct and non-empty.

It follows from (2) of Lemma 2.4 that there are only finitely maximal graphs with a prescribed star complement for $\mu \notin\{-1,0\}$.

Let $H \cong K_{t, s}(s \geq t \geq 1),(R, S)$ be the bipartition of the graph $K_{t, s}$ with $R=\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}, S=$ $\left\{j_{1}, j_{2}, \ldots, j_{s}\right\}$. A vertex $u \in X$ is said to be of type (a, b) if it has a neighbours in R and b neighbours in S, thus $(a, b) \neq(0,0)$ and $0 \leq a \leq t, 0 \leq b \leq s$. The following (2.3) and (2.4) have been given in [11], and now we express them in the form of a necessary and sufficient condition and give a proof.

Proposition 2.5. ([11]) Let $H \cong K_{t, s}(s \geq t \geq 1), R, S$ defined as above, and μ be not an eigenvalue of the graph H. Then G is a graph with H as a star complement for μ if and only if the vertex set X such that $G-X=H$ satisfies the following two conditions:
(1) for any $u \in X$ of type (a, b), we have

$$
\begin{equation*}
\left(\mu^{2}-t s\right)(a+b)+s a^{2}+t b^{2}+2 a b \mu=\mu^{2}\left(\mu^{2}-t s\right) ; \tag{2.3}
\end{equation*}
$$

(2) for any two distinct vertices $u, v \in X$ of type (a, b), (c, d), respectively, $\rho_{u v}=\left|N_{H}(u) \cap N_{H}(v)\right|$, and $a_{u v}=\left\{\begin{array}{ll}1, & u \sim v, \\ 0, & u \not v,\end{array}\right.$ we have

$$
\begin{equation*}
\left(\mu^{2}-t s\right) \rho_{u v}+a c s+b d t+\mu(a d+b c)=-\mu\left(\mu^{2}-t s\right) a_{u v} . \tag{2.4}
\end{equation*}
$$

Proof. Let C be the adjacency matrix of H. Then $C=\left(\begin{array}{cc}O_{t \times t} & J_{t \times s} \\ J_{s \times t} & O_{s \times s}\end{array}\right)$, where $O_{t \times t}$ and $J_{t \times s}$ denote all-0 matrix of size $t \times t$ and all-1 matrix of size $t \times s$, respectively. Thus we have $C^{2}=\left(\begin{array}{cc}s J_{t \times t} & O_{t \times s} \\ O_{s \times t} & t J_{s \times s}\end{array}\right)$, and C has minimal polynomial $m(x)=x\left(x^{2}-t s\right)$.

Since μ is not an eigenvalue of C, we have $\mu \neq 0$ and $\mu^{2} \neq t s$. From Proposition 2.2, we have

$$
\begin{equation*}
m(\mu)(\mu I-C)^{-1}=C^{2}+\mu C+\left(\mu^{2}-t s\right) I . \tag{2.5}
\end{equation*}
$$

Let $\mathbf{b}_{u}=\left(\mathbf{b}_{R}^{T}, \mathbf{b}_{S}^{T}\right)^{T} \in R^{t+s}$, where \mathbf{b}_{R} and \mathbf{b}_{S} are vectors of size $t \times 1$ and size $s \times 1$, respectively. For any $u \in X$ of type (a, b), by $\left\langle\mathbf{b}_{u}, \mathbf{b}_{u}\right\rangle=\mu$, (2.2) and (2.5), we have

$$
\begin{aligned}
\mu^{2}\left(\mu^{2}-t s\right) & =\mu m(\mu) \\
& =\left\langle\mathbf{b}_{u}, \mathbf{b}_{u}\right\rangle m(\mu) \\
& =\mathbf{b}_{u}^{T} m(\mu)(\mu I-C)^{-1} \mathbf{b}_{u} \\
& =\mathbf{b}_{u}^{T}\left(C^{2}+\mu C\right) \mathbf{b}_{u}+\left(\mu^{2}-t s\right) \mathbf{b}_{u}^{T} \mathbf{b}_{u} \\
& =\left(\mathbf{b}_{R}^{T}, \mathbf{b}_{S}^{T}\right)\left(\begin{array}{cc}
s J_{t \times t} & \mu J_{t \times s} \\
\mu J_{s \times t} & t J_{s \times s}
\end{array}\right)\binom{\mathbf{b}_{R}}{\mathbf{b}_{S}}+\left(\mu^{2}-t s\right)\left(\mathbf{b}_{R}^{T}, \mathbf{b}_{S}^{T}\right)\binom{\mathbf{b}_{R}}{\mathbf{b}_{S}} \\
& =s \mathbf{b}_{R}^{T} J_{t \times \mathbf{t}} \mathbf{b}_{R}+t \mathbf{b}_{S}^{T} J_{s \times \times} \mathbf{b}_{S}+\mu \mathbf{b}_{S}^{T} J_{s \times t} \mathbf{b}_{R}+\mu \mathbf{b}_{R}^{T} J_{t \times s} \mathbf{b}_{S}+\left(\mu^{2}-t s\right)\left(\mathbf{b}_{R}^{T} \mathbf{b}_{R}+\mathbf{b}_{S}^{T} \mathbf{b}_{S}\right) \\
& =s a^{2}+t b^{2}+2 a b \mu+\left(\mu^{2}-t s\right)(a+b) .
\end{aligned}
$$

Thus we obtain (2.3).
Similarly, for any two distinct vertices $u, v \in X$ of type $(a, b),(c, d)$, respectively, $\rho_{u v}=\left|N_{H}(u) \cap N_{H}(v)\right|$, by $\left\langle\mathbf{b}_{u}, \mathbf{b}_{v}\right\rangle=-a_{u v},(2.2)$ and (2.5), we have

$$
\begin{aligned}
-\mu\left(\mu^{2}-t s\right) a_{u v} & =-m(\mu) a_{u v} \\
& =m(\mu)\left\langle\mathbf{b}_{u}, \mathbf{b}_{v}\right\rangle \\
& =\mathbf{b}_{u}^{T} m(\mu)(\mu I-C)^{-1} \mathbf{b}_{v} \\
& =\mathbf{b}_{u}^{T}\left(C^{2}+\mu C\right) \mathbf{b}_{v}+\left(\mu^{2}-t s\right) \mathbf{b}_{u}^{T} \mathbf{b}_{v} \\
& =a c s+b d t+\mu(a d+b c)+\left(\mu^{2}-t s\right) \rho_{u v} .
\end{aligned}
$$

Thus we obtain (2.4).
By Corollary 2.3, we complete the proof.

The following lemma is important for us to establish the location of an eigenvalue of a graph. It is a natural extension of Interlacing Theorem.

Lemma 2.6. ([8]) Given a graph of order n with eigenvalue μ of multiplicity $k \geq 1$, let H be a star complement for μ in G. Let $\lambda_{r+1}(H)<\mu<\lambda_{r}(H)$ for some $0 \leq r \leq n-k$, where $\lambda_{0}(H)=\infty$. Then $\lambda_{r+1}(G)=\cdots=\lambda_{r+k}(G)=\mu$.

3. Maximal graphs with $K_{2, s}$ as a star complement for given eigenvalues

As far as we know, researchers can use the star complement technique to construct graphs with certain spectral properties. In fact, we are usually interested in the eigenvalues with large multiplicity in graphs.

Maximal graphs with a prescribed graph such as $S_{m}, K_{m}, S_{m, n}, K_{2,5}, K_{1,1, t}, C_{t}, P_{t}, \overline{L\left(R_{t}\right)}$ or $\overline{L\left(Q_{t}\right)}$ as a star complement for given eigenvalue μ is well studied in the literature($[2,3,6,11,13,17,18]$), see Table 1.

Table 1. The maximal graphs have been characterized for given star complement and eigenvalue.

the star complement	μ	reference
C_{t}	-2	$[2]$
$\frac{P_{t}}{L\left(R_{t}\right)}, \overline{L\left(Q_{t}\right)}$	-2	$[3]$
$L\left(R_{t}\right), L\left(Q_{t}\right)$	1	$[6]$
$K_{2,5}$	-2	$[6]$
$S_{m}=K_{1, m-1}, K_{m}, S_{m, n}$	1	$[11]$
$K_{1,1, t}(t \neq 8,9)$	1	$[13]$
$S_{m}=K_{1, m-1}$	1	$[17]$
	-2	$[18]$

In this section, we study the maximal graphs with $K_{2, s}$ as a star complement for $\mu=-2$ and $\mu=1$.

3.1. $\mu=-2$

Let $\mu=-2, H=G-X \cong K_{2, s}$ and (R, S) be the bipartition of the graph $H \cong K_{2, s}$. In this subsection, we prove that $K_{2,1}, K_{2,10}, K_{2,11}, K_{2,12}, K_{2,18}, K_{2,20}$ and $K_{2,27}$ are the only graphs among $K_{2, s}$ which can be star complements for $\mu=-2$, and then we take $K_{2,10}$ as an example to characterize the maximal graphs with it as a star complement for -2 .

Let $\mu=-2$. Since -2 is not an eigenvalue of $H \cong K_{2, s}$, we have $\mu^{2} \neq 2 s$, and then $s \neq 2$. Thus we have the following Proposition.

Proposition 3.1. Let $H \cong K_{2, s}$ be a star complements for $\mu=-2$. Then $s \neq 2$.
Theorem 3.2. The graphs $K_{2,1}, K_{2,10}, K_{2,11}, K_{2,12}, K_{2,18}, K_{2,20}$ and $K_{2,27}$ are the only graphs among $K_{2, s}$ which can be star complements for $\mu=-2$.

Proof. Let $u \in X$ be a vertex of type (a, b) which means that it has a neighbours in R and b neighbours in S. Then $(a, b) \neq(0,0)$ and $a \in\{0,1,2\}, 0 \leq b \leq s$.

Case 1: $a=0$.
Then by (2.3), we have

$$
\begin{equation*}
b^{2}+(2-s) b-4(2-s)=0 \tag{3.1}
\end{equation*}
$$

Since b is an integer, then $(2-s)^{2}+4 \times 4(2-s)=(s-10)^{2}-64$ must be a perfect square, so $s \in\{2,18,20,27\}$. Thus only $K_{2,18}, K_{2,20}$ and $K_{2,27}$ can be star complements for -2 by Proposition 3.1.

Case 2: $a=1$.
Then by (2.3), we have

$$
\begin{equation*}
2 b^{2}-2 s b+7 s-12=0 \tag{3.2}
\end{equation*}
$$

Since b is an integer, then $(2 s)^{2}-4 \times 2 \times(7 s-12)=(2 s-14)^{2}-100$ must be a perfect square, so $s \in\{2,12,20\}$. Thus only $K_{2,12}$ and $K_{2,20}$ can be star complements for -2 by Proposition 3.1.

Case 3: $a=2$.
Then by (2.3), we have

$$
\begin{equation*}
b^{2}-(2+s) b+4(s-1)=0 . \tag{3.3}
\end{equation*}
$$

Since b is an integer, then $(2+s)^{2}-4 \times 4 \times(s-1)=(s-6)^{2}-16$ must be a perfect square, so $s \in\{1,2,10,11\}$. Thus only $K_{2,1}, K_{2,10}$ and $K_{2,11}$ can be star complements for -2 by Proposition 3.1.

Combining the above three cases, we complete the proof.
Recalling the definitions of a good vertex u, a good set U and a good extension $H(U)$ in Section 2, we now proceed to identify all good sets U, i.e., to identify the sets U for which graph $H(U)$ has -2 as an eigenvalue, where $H \in\left\{K_{2,1}, K_{2,10}, K_{2,11}, K_{2,12}, K_{2,18}, K_{2,20}, K_{2,27}\right\}$. We denote the a-subset of R by R_{a} and the b-subset of S by S_{b}, where (R, S) is the bipartition of the graph $K_{2, s}$.

Lemma 3.3. For $\mu=-2$, we have
(1) $K_{2,1}(U)$ is good if and only if $U=R_{2}$;
(2) $K_{2,10}(U)$ is good if and only if $U=R_{2} \cup S_{6}$;
(3) $K_{2,11}(U)$ is good if and only if $U \in\left\{R_{2} \cup S_{5}, R_{2} \cup S_{8}\right\}$;
(4) $K_{2,12}(U)$ is good if and only if $U=R_{1} \cup S_{6}$;
(5) $K_{2,18}(U)$ is good if and only if $U=S_{8}$;
(6) $K_{2,20}(U)$ is good if and only if $U \in\left\{S_{6}, S_{12}, R_{1} \cup S_{4}, R_{1} \cup S_{16}\right\}$;
(7) $K_{2,27}(U)$ is good if and only if $U \in\left\{S_{5}, S_{20}\right\}$.

Proof. The integral solutions of (3.1), (3.2) and (3.3) are shown in Table 2.
Table 2. The integral solutions of (3.1), (3.2) and (3.3).

a	(s, b)
0	$(27,5),(27,20),(20,6),(20,12),(18,8)$
1	$(20,4),(20,16),(12,6)$
2	$(11,5),(11,8),(10,6),(1,0)$

By the definitions of a good vertex u, a good set U and a good extension $H(U)$ in Section 2, Theorem 2.1, Corollary 2.3 and Table 2, we complete the proof.

Theorem 3.4. A Graph G is a maximal graph with $H \cong K_{2, s}$ as a star complement for $\mu=-2$ if and only if the following two conditions hold:
(1) $H \in\left\{K_{2,1}, K_{2,10}, K_{2,11}, K_{2,12}, K_{2,18}, K_{2,20}, K_{2,27}\right\}$.
(2) The vertex set X such that $G-X=H$ satisfies the following (i) ~ (iii):
(i) for any $u \in X, u$ is a good vertex, say, $N_{H}(u)=U$ satisfies Lemma 3.3;
(ii) for any two distinct vertices $u, v \in X$ of type $(a, b),(c, d)$, respectively, u, v are good partners, say, $\rho_{u v}=\left|N_{H}(u) \cap N_{H}(v)\right|$ and $a_{u v}=\left\{\begin{array}{ll}1, & u \sim v \\ 0, & u \nsim v\end{array}\right.$ satisfy Table 3.
(iii) $X_{U}=\left\{U=N_{H}(u) \mid u \in X\right\}$ is a maximal family, say, there is no other family X_{U}^{\prime} satisfies (i), (ii), and $X_{U} \subset X_{U}^{\prime}$.

Table 3. Adjacency relations of any two vertices $u, v \in X$.

H	(a, b)	(c, d)	$a_{u v}$	$\rho_{u v}$
$K_{2,1}$	$(2,0)$	$(2,0)$	1	0
$K_{2,10}$	$(2,6)$	$(2,6)$	0	4 6
$K_{2,11}$	$(2,5)$	$(2,5)$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	3 5
	$(2,8)$	$(2,8)$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 6 \\ & 8 \end{aligned}$
	$(2,5)$	$(2,8)$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$
$K_{2,12}$	$(1,6)$	$(1,6)$	$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$
$K_{2,18}$	$(0,8)$	$(0,8)$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$
$K_{2,27}$	$(0,5)$	$(0,5)$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$
	$(0,20)$	$(0,20)$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 16 \\ & 18 \end{aligned}$
	$(0,5)$	$(0,20)$	0	4

H	(a, b)	(c, d)	$a_{u v}$	$\rho_{u v}$
$K_{2,20}$	$(0,6)$	$(0,6)$	0	2
			1	4
	$(0,12)$	$(0,12)$	0	8
			1	10
	$(1,4)$	$(1,4)$	0	1
			1	3
	$(1,16)$	$(1,16)$	0	13
			1	15
	$(0,6)$	$(0,12)$	0	4
			1	6
	$(0,6)$	$(1,4)$	0	1
			1	3
	$(0,12)$	$(1,4)$	0	2
			1	4
	$(0,12)$	$(1,16)$	0	10
			1	12
	$(1,4)$	$(1,16)$	0	3
			1	5
	$(0,6)$	$(1,16)$	0	5

Proof. By Proposition 2.5, Theorem 3.2, Lemma 3.3 and the definition of maximal, we only need to show (2.4) is equivalent to (ii).

Since the proof is similar, we only show the case of $H=K_{2,10}$. We note that $\mu=-2, t=2, s=$ $10, a=c=2, b=d=6$, then

$$
(2.4) \Leftrightarrow 2 a_{u v}-\rho_{u v}+4=0 \Leftrightarrow \rho_{u v}= \begin{cases}6, & \text { if } u \sim v, \\ 4, & \text { if } u \not v\end{cases}
$$

By similar way, we can complete the proof.
Now we want to characterize all the maximal graphs with the star complements H given in Theorem 3.2 for -2 . As mentioned in Reference [7], we can invoke an algorithm to find the maximal family
by using a computer and thus find the maximal graphs. Now we're just focusing on the cases of $H \in\left\{K_{2,1}, K_{2,10}\right\}$.

Since $K_{2,1} \cong S_{3}$, we have the following results by Theorem 3.2 in [18].
Theorem 3.5. ([18]) The 4 -cycle C_{4} is the unique maximal graph with $K_{2,1}$ as a star complement for $\mu=-2$ which is the smallest eigenvalue of C_{4}.

Let (R, S) be the bipartition of the graph $H=K_{2,10}$ with $R=\left\{1^{\prime}, 2^{\prime}\right\}$ and $S=\{1,2, \ldots, 10\}$. Now we characterize the maximal graph G with the star complement $K_{2,10}$ for $\mu=-2$.

Let $X=\left\{u_{1}, \ldots, u_{k}\right\}$ be the star set for $\mu=-2$, and $X_{U}=\left\{U_{1}, \ldots, U_{k}\right\}$ be the collection of good sets, where U_{i} is the corresponding good set of vertex u_{i}. Then for each $1 \leq i \leq k$, vertex u_{i} is of type $(2,6)$ and $U_{i}=\left\{1^{\prime}, 2^{\prime}\right\} \cup V_{i}$ by Theorem 3.4, where V_{i} is a 6 -subset of S. In addition, each pair of sets in $X_{V}=\left\{V_{i} \mid 1 \leq i \leq k\right\}$ are compatible, which means $\left|V_{i} \cap V_{j}\right|=2$ or 4 for any $1 \leq i<j \leq k$ by $\rho_{u v}=4$ or 6 from Table 3 .

Therefore, finding the maximal graphs with $K_{2,10}$ as a star complement for $\mu=-2$ is equivalent to finding the maximal family of the 6 -subsets of the 10 -set S such that any two 6 -sets in the family has 2 or 4 common elements. If there exists a bijection of elements between two families, we say these two families are isomorphic.
Lemma 3.6. Let $S=\{1,2, \ldots, 10\}$ be a 10 -set. Then there exist exactly two non-isomorphic maximal families of 6 -subsets of S such that any two 6 -sets in each family has 2 or 4 common elements.
Proof. Let $X_{V}=\left\{V_{1}, V_{2}, \ldots, V_{k}\left|V_{i} \subset S,\left|V_{i}\right|=6,1 \leq i \leq k\right\}\right.$ be a maximal family such that each pair of sets in X_{V} are compatible, which means $\left|V_{i} \cap V_{j}\right|=2$ or 4 for any $1 \leq i<j \leq k$.

Claim 1: Let $V_{i}, V_{j} \in X_{V}$. If $\left|V_{i} \cap V_{j}\right|=4$, then $V_{p}=\left(V_{i} \cap V_{j}\right) \cup\left(S \backslash\left(V_{i} \cup V_{j}\right)\right) \in X_{V}$.
Without loss of generality, we can assume that $V_{i}=\{1,2,3,4,5,6\}$ and $V_{j}=\{1,2,3,4,7,8\}$, then $V_{p}=\{1,2,3,4,9,10\}$. Assume to the contrary, $V_{p} \notin X_{V}$. Then there exist a set $V_{l} \in X_{V}$ such that $\left|V_{p} \cap V_{l}\right|=3$ or 5 since any two 6 -subsets has at least 2 common elements in 10 -set S and X_{V} is maximal.

If $\left|V_{p} \cap V_{l}\right|=3$, then V_{l} contains three elements in $S \backslash V_{p}=\{5,6,7,8\}$ and $\left|\{1,2,3,4\} \cap V_{l}\right| \geq 1$, which implies one of $\left|V_{i} \cap V_{l}\right|$ and $\left|V_{j} \cap V_{l}\right|$ must be odd, it is a contradiction with $\left|V_{i} \cap V_{l}\right|=2$ or 4, $\left|V_{j} \cap V_{l}\right|=2$ or 4 . If $\left|V_{p} \cap V_{l}\right|=5$, we get a contradiction in a similar way. Thus $V_{p} \in X_{V}$. Claim 1 holds.

Claim 2: There are at least two sets in X_{V} having exactly two elements in common.
Assume the contrary. Then any two sets in X_{V} have exactly four elements in common. Without loss of generality, we can assume $V_{1}=\{1,2,3,4,5,6\}, V_{2}=\{1,2,3,4,7,8\} \in X_{V}$. Then by Claim 1, we have $V_{3}=\{1,2,3,4,9,10\} \in X_{V}$.

The maximality of X_{V} implies that there exist other sets in X_{V}. Let $V_{4}=\{a, b, c, d, e, f\} \in X_{V}$, where $1 \leq a<b<c<d<e<f \leq 10$. Then $a \leq 4$, otherwise $V_{4}=\{5,6,7,8,9,10\}$ and $\left|V_{4} \cap V_{i}\right|=2$ for any $i \in\{1,2,3\}$, it is a contradiction.

If $1 \leq a<b<c<d \leq 4<e<f \leq 10$, then there exist some $i \in\{1,2,3\}$ such that $\left|V_{4} \cap V_{i}\right| \geq 5$, it is a contradiction; if $1 \leq a<b \leq 4<c<d<e<f \leq 10$, then there exist some $i \in\{1,2,3\}$ such that $\left|V_{4} \cap V_{i}\right| \leq 3$, it is a contradiction; if $1 \leq a \leq 4<b<c<d<e<f \leq 10$, then for any $i \in\{1,2,3\}$, we have $\left|V_{4} \cap V_{i}\right| \leq 3$, it is a contradiction. Thus $1 \leq a<b<c \leq 4<d<e<f \leq 10$.

Clearly, $d \in\{5,6\}, e \in\{7,8\}, f \in\{9,10\}$ by the fact $\left|V_{4} \cap V_{i}\right|=4$ for any $i \in\{1,2,3\}$ and $1 \leq a<$ $b<c \leq 4<d<e<f \leq 10$. Without loss of generality, we take $V_{4}=\{a, b, c, 5,7,9\} \in X_{V}$. By Claim

1, we have $V_{5}=\{a, b, c, 5,8,10\}, V_{6}=\{a, b, c, 6,7,10\}, V_{7}=\{a, b, c, 6,8,9\} \in X_{V}$, and we can check that any other set $V_{8}=\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right\}$ such that $1 \leq a^{\prime}<b^{\prime}<c^{\prime} \leq 4<d^{\prime}<e^{\prime}<f^{\prime} \leq 10$ cannot have four elements in common with each of V_{1}, \ldots, V_{7}, so $X_{V}=\left\{V_{1}, V_{2}, \ldots, V_{7}\right\}$.

Let $V_{9}=\{a, b, g, 5,7,10\}, g \in\{1,2,3,4\} \backslash\{a, b, c\}$. We can check that $\left|V_{9} \cap V_{i}\right|=4$ for $1 \leq i \leq 6$ and $\left|V_{9} \cap V_{7}\right|=2$. Therefore, $X_{V} \cup\left\{V_{9}\right\} \supseteq X_{V}$, it implies a contradiction with the maximality of X_{V}. Thus there exists at least two sets in X_{V} having exactly two elements in common. Claim 2 holds.

Claim 3: Let $V_{i}, V_{j} \in X_{V}$. If $V_{i} \cap V_{j}=\{a, b\}$, then for any $V_{p} \in X_{V},\{a, b\} \subseteq V_{p}$ or $\{a, b\} \cap V_{p}=\phi$.
Without loss of generality, we can assume $V_{1}=\{1,2,3,4,5,6\}, V_{2}=\{1,2,7,8,9,10\} \in X_{V}$. If $V_{3} \in X_{V}$ and $\left|\{1,2\} \cap V_{3}\right|=1$, then one of $\left|V_{1} \cap V_{3}\right|$ and $\left|V_{2} \cap V_{3}\right|$ must be odd, it is a contradiction. Then Claim 3 holds.

Now we study the structure of X_{V}. Due to Claim 2, we can assume $V_{1}=\{1,2,3,4,5,6\}, V_{2}=$ $\{1,2,7,8,9,10\} \in X_{V}$. By Claim 3, we consider the following two cases.

Case 1: Each set in X_{V} contains elements 1 and 2.
In this case, every set in X_{V} has the form $\{1,2, c, d, e, f\}$ where $3 \leq c<d \leq 6$ and $7 \leq e<f \leq 10$ by $\left|V_{i} \cap V_{j}\right|=2$ or 4 for any $V_{i}, V_{j} \in X_{V}$, and the symmetry between $\{3,4,5,6\}$ and $\{7,8,9,10\}$. If we divide $3,4,5$, and 6 into two groups of two numbers, there are three ways to divide them, say, $\{3,4\}$ and $\{5,6\},\{3,5\}$ and $\{4,6\},\{3,6\}$ and $\{4,5\}$. For example, we take divide $3,4,5$, and 6 into $\{3,4\}$ and $\{5,6\}$, then in the sense of isomorphism, we have $2 \times 2=4$ ways to take $\{c, d, e, f\}$, say, $\{3,4,7,8\}$, $\{3,4,9,10\},\{5,6,7,8\},\{5,6,9,10\}$. Then $\left|X_{V}\right| \leq 1+1+3 \times 4=14$.

Without loss of generality, we can assume that $V_{3}=\{1,2,3,4,7,8\}, V_{4}=\{1,2,3,5,7,9\}, V_{5}=$ $\{1,2,3,6,7,10\}$. By Claim 1, we have $V_{6}=\{1,2,3,4,9,10\} \in X_{V}, V_{7}=\{1,2,5,6,7,8\} \in X_{V}, V_{8}=$ $\{1,2,3,5,8,10\} \in X_{V}, V_{9}=\{1,2,4,6,7,9\} \in X_{V}, V_{10}=\{1,2,3,6,8,9\} \in X_{V}, V_{11}=\{1,2,5,6,9,10\} \in$ $X_{V}, V_{12}=\{1,2,4,6,8,10\} \in X_{V}, V_{13}=\{1,2,4,5,8,9\} \in X_{V}, V_{14}=\{1,2,4,5,7,10\} \in X_{V}$.

It is easy to check that every pair $V_{i}, V_{j}(1 \leq i, j \leq 14)$ are compatible. Then $\left|X_{V}\right|=14$, say, X_{V} is a maximal family.

Case 2: There exists a set in X_{V} does not contain elements 1 and 2.
Let $V_{3}^{\prime} \in X_{V}$ be a set that does not contain elements 1 and 2. Then it must have two elements in common with one of sets V_{1}, V_{2} and four elements in common with the other. In the sense of isomorphism, noting that the symmetry between $\{3,4,5,6\}$ and $\{7,8,9,10\},\{3,4\}$ and $\{5,6\},\{7,8\}$ and $\{9,10\}$, we can assume $V_{3}^{\prime}=\{3,4,5,6,7,8\}$.

Subcase 2.1: $V_{4}^{\prime}=\{3,4,7,8,9,10\} \in X_{V}$.
Then by Claim 1, we have $V_{5}^{\prime}=\{3,4,5,6,9,10\}, V_{6}^{\prime}=\{1,2,3,4,9,10\}, V_{7}^{\prime}=\{5,6,7,8,9,10\}$, $V_{8}^{\prime}=\{1,2,5,6,9,10\}, V_{9}^{\prime}=\{1,2,5,6,7,8\}, V_{10}^{\prime}=\{1,2,3,4,7,8\} \in X_{V}$.

It is easy to check that any two set of $\left\{V_{1}, V_{2}, V_{3}^{\prime}, \ldots, V_{10}^{\prime}\right\}$ are compatible, say, having two or four common elements. Thus $\left\{V_{1}, V_{2}, V_{3}^{\prime}, \ldots, V_{10}^{\prime}\right\} \subseteq X_{V}$.

Now we show $X_{V}=\left\{V_{1}, V_{2}, V_{3}^{\prime}, \ldots, V_{10}^{\prime}\right\}$. Otherwise, we can assume that there exists $V_{11}^{\prime} \in X_{V}$. For the five sets $W_{1}=\{1,2\}, W_{2}=\{3,4\}, W_{3}=\{5,6\}, W_{4}=\{7,8\}, W_{5}=\{9,10\}$, any 6 -set formed by the union of three 2 -sets from $\left\{W_{1}, W_{2}, W_{3}, W_{4}, W_{5}\right\}$ is in $\left\{V_{1}, V_{2}, V_{3}^{\prime}, \ldots, V_{10}^{\prime}\right\}$. Then there exist at least two sets W_{i}, W_{j} such that $\left|W_{i} \cap V_{11}^{\prime}\right|=\left|W_{j} \cap V_{11}^{\prime}\right|=1$ for $2 \leq i<j \leq 5$ by Claim 3 .

Without loss of generality, we assume that $3,5 \in V_{11}^{\prime}$ and $4,6 \notin V_{11}^{\prime}$, then one of $\left|V_{11}^{\prime} \cap V_{6}^{\prime}\right|,\left|V_{11}^{\prime} \cap V_{7}^{\prime}\right|$ and $\left|V_{11}^{\prime} \cap V_{10}^{\prime}\right|$ is odd, it is a contradiction because any two set of X_{V} are compatible.

Combining the above arguments, we have $X_{V}=\left\{V_{1}, V_{2}, V_{3}^{\prime}, \ldots, V_{10}^{\prime}\right\}$ is another maximal family.
Subcase 2.2: $V_{4}^{\prime}=\{3,4,7,8,9,10\} \notin X_{V}$.

Then there exist a set $V_{m} \in X_{V}$ such that $\left|V_{m} \cap V_{4}^{\prime}\right|=3$ or 5 since any two 6 -subsets has at least 2 common elements in 10 -set S.

If $\left|V_{m} \cap V_{4}^{\prime}\right|=3$, then V_{m} contains three elements in $S \backslash V_{4}^{\prime}=\{1,2,5,6\}$. By Claim $3,\{1,2\} \subseteq V_{m}$ and thus $\left|V_{m} \cap\{5,6\}\right|=1$. Since $\left|V_{m}\right|=6,\left|V_{m} \cap V_{2}\right|=2$ or 4 , we have $\left|V_{m} \cap\{7,8,9,10\}\right|=2,\left|V_{m} \cap\{3,4\}\right|=1$. Without loss of generality, we assume that $V_{m}=\{1,2,3,5,7,8\}$. By Claim 1 and $V_{1}, V_{2}, V_{3}^{\prime}, V_{m}$, we can obtain a new maximal family X_{V}^{1}.

Let ψ be a mapping from S to S such that $\psi(3)=6, \psi(6)=3$ and $\psi(a)=a$ for any $a \in S \backslash\{3,6\}$. Then ψ is a bijection, thus X_{V}^{1} and $\left\{V_{1}, V_{2}, V_{3}^{\prime}, \ldots, V_{10}^{\prime}\right\}$ are isomorphic.

If $\left|V_{m} \cap V_{4}^{\prime}\right|=5$, then V_{m} contains one elements in $S \backslash V_{4}^{\prime}=\{1,2,5,6\}$. By Claim $3,\{1,2\} \nsubseteq V_{m}$ and thus $\left|V_{m} \cap\{5,6\}\right|=1$. Since $\left|V_{m}\right|=6,\left|V_{m} \cap V_{2}\right|=2$ or 4 , we have $\left|V_{m} \cap\{7,8,9,10\}\right|=4,\left|V_{m} \cap\{3,4\}\right|=1$. Without loss of generality, we assume that $V_{m}=\{3,5,7,8,9,10\}$. By Claim 1 and $V_{1}, V_{2}, V_{3}^{\prime}, V_{m}$, we can obtain another new maximal family X_{V}^{2}.

Let φ be a mapping from S to S such that $\varphi(4)=5, \varphi(5)=4$ and $\varphi(a)=a$ for any $a \in S \backslash\{4,5\}$. Then φ is a bijection, X_{V}^{2} and $\left\{V_{1}, V_{2}, V_{3}^{\prime}, \ldots, V_{10}^{\prime}\right\}$ are isomorphic.

Combining the above two subcases, we obtain another maximal family $X_{V}=\left\{V_{1}, V_{2}, V_{3}^{\prime}, \ldots, V_{10}^{\prime}\right\}$.
By Case 1 and Case 2, we complete the proof.

Let (R, S) be the bipartition of $H=K_{2,10}$ with $R=\left\{1^{\prime}, 2^{\prime}\right\}, S=\{1,2, \ldots, 10\}$. We define two graphs G_{1}, G_{2} as follows:
(1) $X=\left\{u_{1}, u_{2}, \ldots, u_{14}\right\}, V\left(G_{1}\right)=V(H) \cup X$, and $G_{1}[X]=K_{14}-u_{1} u_{2}-u_{3} u_{11}-u_{4} u_{12}-u_{5} u_{13}-$ $u_{6} u_{7}-u_{8} u_{9}-u_{10} u_{14}$, and $N_{H}\left(u_{1}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,3,4,5,6\right\}, N_{H}\left(u_{2}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,7,8,9,10\right\}$, $N_{H}\left(u_{3}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,3,4,7,8\right\}, N_{H}\left(u_{4}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,3,5,7,9\right\}, N_{H}\left(u_{5}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,3,6,7,10\right\}$, $N_{H}\left(u_{6}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,3,4,9,10\right\}, N_{H}\left(u_{7}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,5,6,7,8\right\}, N_{H}\left(u_{8}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,3,5,8,10\right\}$, $N_{H}\left(u_{9}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,4,6,7,9\right\}, N_{H}\left(u_{10}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,3,6,8,9\right\}, N_{H}\left(u_{11}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,5,6,9,10\right\}$, $N_{H}\left(u_{12}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,4,6,8,10\right\}, N_{H}\left(u_{13}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,4,5,8,9\right\}, N_{H}\left(u_{14}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,4,5,7,10\right\}$.
(2) $X=\left\{v_{1}, v_{2}, \ldots, v_{10}\right\}, V\left(G_{2}\right)=V(H) \cup X$, and $G_{2}[X]=K_{10}-v_{1} v_{2}-v_{1} v_{4}-v_{1} v_{7}-v_{2} v_{3}-v_{2} v_{5}-$ $v_{3} v_{6}-v_{3} v_{8}-v_{4} v_{8}-v_{4} v_{9}-v_{5} v_{9}-v_{5} v_{10}-v_{6} v_{7}-v_{6} v_{9}-v_{7} v_{10}-v_{8} v_{10}$, and $N_{H}\left(v_{1}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,3,4,5,6\right\}$, $N_{H}\left(v_{2}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,7,8,9,10\right\}, N_{H}\left(v_{3}\right)=\left\{1^{\prime}, 2^{\prime}, 3,4,5,6,7,8\right\}, N_{H}\left(v_{4}\right)=\left\{1^{\prime}, 2^{\prime}, 3,4,7,8,9,10\right\}$, $N_{H}\left(v_{5}\right)=\left\{1^{\prime}, 2^{\prime}, 3,4,5,6,9,10\right\}, N_{H}\left(v_{6}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,3,4,9,10\right\}, N_{H}\left(v_{7}\right)=\left\{1^{\prime}, 2^{\prime}, 5,6,7,8,9,10\right\}$, $N_{H}\left(v_{8}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,5,6,9,10\right\}, N_{H}\left(v_{9}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,5,6,7,8\right\}, N_{H}\left(v_{10}\right)=\left\{1^{\prime}, 2^{\prime}, 1,2,3,4,7,8\right\}$.

Clearly, G_{1} has 26 vertices, where 2 vertices of degree 24,14 vertices of degree 20,2 vertices of degree 16 , and 8 vertices of degree 9 , its spectrum is $\left[-4.70096,-2^{14}, 0^{2}, 0.66031,2^{7}, 18.04065\right] ; G_{2}$ has 22 vertices, where 2 vertices of degree 20,10 vertices of degree 14 , and 10 vertices of degree 8 , its spectrum is $\left[-4.71780,-2^{10}, 0^{6}, 3^{4}, 12.71780\right]$.

By Theorem 3.4 and Lemma 3.6, we can conclude that there are exactly two non-isomorphic maximal graphs with $K_{2,10}$ as a star complement for $\mu=-2$.

Theorem 3.7. Let G be a graph with $K_{2,10}$ as a star complement for $\mu=-2$. Then G is maximal if and only if $G \cong G_{1}$ or $G \cong G_{2}$.

Remark 3.8. Let $S=\{1,2, \ldots, 10\}, S_{1}, S_{2}, \ldots, S_{210}$ be all the 6 -subsets of S. We construct a graph G^{X} of order 210 with $V\left(G^{X}\right)=\left\{v_{1}, v_{2}, \ldots, v_{210}\right\}$ and $v_{i} v_{j} \in E\left(G^{X}\right)$ if $\left|S_{i} \cap S_{j}\right|=2$ or 4 .

Then finding the maximal graphs with $H \cong K_{2,10}$ as a star complement for $\mu=-2$ is equivalent to finding the maximal family of the 6 -subsets of a 10 -set such that the intersection of any two 6 -sets in
the family has 2 or 4 elements, is equivalent to finding all maximal cliques in G^{X}.
By Lemma 3.6, G^{X} has two maximal cliques in the sense of isomorphism, one is order 14 and the other is order 10. When $H \in\left\{K_{2,11}, K_{2,12}, K_{2,18}, K_{2,20}, K_{2,27}\right\}$, we can study the maximal graphs by a similar way, and now we ignore the characterization.

Finally, it is obvious to obtain the following result.
Corollary 3.9. $K_{2,10}, K_{2,11}, K_{2,12}, K_{2,18}, K_{2,20}$ and $K_{2,27}$ are the only graphs among $K_{2, s}$ which can be star complements for the second smallest eigenvalue $\lambda_{n-1}=-2$.

Proof. Let G be a graph of order n with H as a star complement for an eigenvalue -2 of multiplicity $n-s-2$, where $H \cong K_{2, s}(s>2)$. We know that $K_{2, s}$ has spectrum: $0^{s},-\sqrt{2 s}, \sqrt{2 s}$. If $s>2$, then

$$
\lambda_{s+2}(H)=-\sqrt{2 s}<-2<0=\lambda_{s+1}(H) .
$$

By Lemma 2.6, we have $\lambda_{s+2}(G)=\lambda_{s+3}(G)=\cdots=\lambda_{n-1}(G)=-2$.

3.2. $\mu=1$

In this subsection, we study the maximal graphs with $K_{2, s}$ as a star complement for $\mu=1$. Clearly, 1 is not an eigenvalue of $K_{2, s}$. Then by (2.3), we have
Theorem 3.10. $K_{2,5}$ and $K_{2,13}$ are the only two graphs among $K_{2, s}$ which can be star complements for $\mu=1$.
Proof. Let $u \in X$ be a vertex of type (a, b) which means that it has a neighbours in R and b neighbours in S. Then $(a, b) \neq(0,0)$ and $a \in\{0,1,2\}, 0 \leq b \leq s$.

If $a=0$, then by (2.3), we have

$$
\begin{equation*}
2 b^{2}+(1-2 s) b+2 s-1=0 \tag{3.4}
\end{equation*}
$$

Since b is an integer, then $(1-2 s)^{2}-8 \times(2 s-1)=(2 s-5)^{2}-16$ must be a perfect square, so $s=5$. Therefore, only $K_{2,5}$ can be a star complement for $\mu=1$.

If $a=1$, then by (2.3), we have

$$
\begin{equation*}
2 b^{2}+(3-2 s) b+s=0 \tag{3.5}
\end{equation*}
$$

Since b is an integer, then $(3-2 s)^{2}-8 s=(2 s-5)^{2}-16$ must be a perfect square, so $s=5$. Therefore, only $K_{2,5}$ can be a star complement for $\mu=1$.

If $a=2$, then by (2.3), we have

$$
\begin{equation*}
2 b^{2}+(5-2 s) b+1+2 s=0 \tag{3.6}
\end{equation*}
$$

Since b is an integer, then $(5-2 s)^{2}-8 \times(1+2 s)=(2 s-9)^{2}-64$ must be a perfect square, so $s=13$. Therefore, only $K_{2,13}$ can be a star complement for $\mu=1$.

Combining the above arguments, we complete the proof.
Recalling the definitions of good vertex u, good set U and good extension $H(U)$ in Section 2, we now proceed to identify all good sets U, i.e., to identify the sets U for which graph $H(U)$ has 1 as an eigenvalue, where $H \in\left\{K_{2,5}, K_{2,13}\right\}$. We denote the a-subset of R by R_{a} and the b-subset of S by S_{b}, where (R, S) is the bipartition of the graph $K_{2, s}$.

Lemma 3.11. For $\mu=1$, we have
(1) $K_{2,5}(U)$ is good if and only if $U \in\left\{S_{3}, R_{1} \cup S_{1}\right\}$;
(2) $K_{2,13}(U)$ is good if and only if $U=R_{2} \cup S_{9}$.

Proof. The integral solutions of (3.4), (3.5) and (3.6) are shown in Table 4.
Table 4. The integral solutions of (3.4), (3.5) and (3.6).

a	(s, b)
0	$(5,3)$
1	$(5,1)$
2	$(13,9)$

By the definitions of good vertex u, good set U and good extension $H(U)$ in Section 2, Theorem 2.1, Corollary 2.3 and Table 4, we complete the proof.

When $H \cong K_{2,5}$, [11] characterized the unique maximal graph with $K_{2,5}$ as a star complement for $\mu=1$.

Theorem 3.12. ([11]) The complement of Schläfli graph is the unique maximal graph with $K_{2,5}$ as a star complement for $\mu=1$.
Theorem 3.13. Let $H \cong K_{2,13}$. Then G is the maximal graph with H as a star complement for $\mu=1$ if and only if the vertex set X such that $G-X=H$ satisfies the following three conditions:
(1) for any $u \in X, u$ is a good vertex, say, $N_{H}(u)=U=R_{2} \cup S_{9}$;
(2) for any two distinct vertices $u, v \in X$ of type ($a, b),(c, d)$, respectively, u, v are good partners, say, $\rho_{u v}=\left|N_{H}(u) \cap N_{H}(v)\right|= \begin{cases}9, & \text { if } u \sim v, \\ 10, & \text { if } u \nsim v .\end{cases}$
(3) $X_{U}=\left\{U=N_{H}(u) \mid u \in X\right\}$ is a maximal family, say, there is no other family X_{U}^{\prime} satisfies (1), (2), and $X_{U} \subset X_{U}^{\prime}$.
Proof. By Proposition 2.5, Theorem 3.2, Lemma 3.11 and the definition of maximal, we only need to show (2.4) is equivalent to (2).

We note that $\mu=1, t=2, s=13, a=c=2, b=d=9$, then

$$
(2.4) \Leftrightarrow a_{u v}+\rho_{u v}-10=0 \Leftrightarrow \rho_{u v}= \begin{cases}9, & \text { if } u \sim v \\ 10, & \text { if } u \nsim v\end{cases}
$$

Remark 3.14. Let (R, S) be the bipartition of the graph $H=K_{2,13}$ with $R=\left\{1^{\prime}, 2^{\prime}\right\}$ and $S=\{1,2, \ldots, 13\}, X=\left\{u_{1}, \ldots, u_{k}\right\}$ be the star set for $\mu=1$, and $X_{U}=\left\{U_{1}, \ldots, U_{k}\right\}$ be the collection of good sets, where U_{i} is the corresponding good set of vertex u_{i}. Then for each $1 \leq i \leq k$, vertex u_{i} is of type $(2,9)$ and $U_{i}=\left\{1^{\prime}, 2^{\prime}\right\} \cup F_{i}$ by Lemma 3.11, where F_{i} is a 9 -subset of S. In addition, each pair of sets in $\mathcal{F}=\left\{F_{i} \mid 1 \leq i \leq k\right\}$ are compatible, which means $\left|F_{i} \cap F_{j}\right|=7$ or 8 for any $1 \leq i<j \leq k$ by $\rho_{u v}=9$ or 10 from Theorem 3.13.

Therefore, finding the maximal graphs with $K_{2,13}$ as a star complement for $\mu=1$ is equivalent to finding the non-isomorphic maximal family of the 9 -subsets of the 13 -set S such that any two 9 -sets in the family has 7 or 8 common elements.

As mentioned in Reference [7], we can invoke an algorithm to find the maximal family by using a computer and thus find the maximal graphs. Now we only give two examples to illustrate the existence of maximal families.
Example 3.15. Let $S=\{1,2, \ldots, 13\}, F_{1}=\{1,2, \ldots, 9\}, \overline{F_{1}}=\{10,11,12,13\}$, and $\mathcal{F}=\left\{F_{1}\right\} \bigcup\left\{F_{i} \mid\right.$ $\left.\left|F_{i} \cap F_{1}\right|=8,\left|F_{i} \cap \overline{F_{1}}\right|=1\right\}$ be a family of 9 -subsets of S. Then \mathcal{F} is a maximal family such that any two sets in \mathcal{F} has 7 or 8 common elements.
Proof. First, we prove that all sets in \mathcal{F} are compatible. For any $F_{i} \in \mathcal{F} \backslash F_{1}$, we have $\left|F_{1} \cap F_{i}\right|=8$. For any two sets $F_{i}, F_{j} \in \mathcal{F} \backslash F_{1}, i \neq j$, if $\left(F_{i} \cap \overline{F_{1}}\right) \cap\left(F_{j} \cap \overline{F_{1}}\right)=\varnothing$, then $\left|\left(F_{i} \cap F_{1}\right) \cap\left(F_{j} \cap F_{1}\right)\right|=7$ or 8 since $\left|F_{1}\right|=9,\left|F_{1} \cap F_{i}\right|=8$ and $\left|F_{1} \cap F_{j}\right|=8$, thus $\left|F_{i} \cap F_{j}\right|=7$ or 8 ; if $\left|\left(F_{i} \cap \overline{F_{1}}\right) \cap\left(F_{j} \cap \overline{F_{1}}\right)\right|=1$, then $\left|\left(F_{i} \cap F_{1}\right) \cap\left(F_{j} \cap F_{1}\right)\right|=7$ since $F_{i} \neq F_{j}$, thus $\left|F_{i} \cap F_{j}\right|=8$. Therefore, all sets in \mathcal{F} are compatible.

Next, we prove that the family is maximal. Assume to the contrary, if \mathcal{F} is not maximal, then there is a set $F \notin \mathcal{F}$ such that $|F|=9$ and F is compatible with all sets in \mathcal{F}, say, $\left|F \cap F_{i}\right|=7$ or 8 for any $F_{i} \in \mathcal{F}$. Since $F_{1}=\{1,2, \ldots, 9\} \in \mathcal{F}$, we have $\left|F \cap F_{1}\right|=7$ or 8 .

If $\left|F \cap F_{1}\right|=8$, then $F \in \mathcal{F}$, it implies a contradiction. If $\left|F \cap F_{1}\right|=7$, without loss of generality, we assume that $F=\{1,2,3,4,5,6,7,10,11\}$, then there is a set $F_{q}=\{2,3,4,5,6,7,8,9,12\} \in \mathcal{F}$ such that $\left|F \cap F_{q}\right|=6$, it is a contradiction.

Therefore, \mathcal{F} is a maximal family such that the intersection of any two sets in \mathcal{F} has 7 or 8 elements.

Example 3.16. Let $S=\{1,2, \ldots, 13\}, F_{1}=\{1,2, \ldots, 9\}, \overline{F_{1}}=\{10,11,12,13\}, S_{1}=\{1,2, \ldots, 7\}$, $S_{2}=\{1,2, \ldots, 7,8\}, S_{3}=\{1,2, \ldots, 7,9\}$, and $\mathcal{F}^{*}=\left\{F_{1}\right\} \bigcup\left\{F_{i}\left|S_{1} \subseteq F_{i},\left|F_{i} \cap \overline{F_{1}}\right|=2\right\} \bigcup\left\{F_{i} \mid S_{2} \subseteq\right.\right.$ $\left.F_{i},\left|F_{i} \cap \overline{F_{1}}\right|=1\right\} \bigcup\left\{F_{i}\left|S_{3} \subseteq F_{i},\left|F_{i} \cap \overline{F_{1}}\right|=1\right\}\right.$ be a family of 9 -subsets of S. Then \mathcal{F}^{*} is a maximal family such that the intersection of any two sets in \mathcal{F}^{*} has 7 or 8 elements.
Proof. First, we prove that all sets in \mathcal{F}^{*} are compatible. For any two sets $F_{p}, F_{q} \in \mathcal{F}^{*}$, we have $\left|F_{p} \cap F_{q}\right| \geq 7$ since $\left|S_{1} \cap S_{2}\right|=\left|S_{1} \cap S_{3}\right|=\left|S_{2} \cap S_{3}\right|=7$. On the other hand, $\left|F_{p}\right|=\left|F_{q}\right|=9$, and $F_{p} \neq F_{q}$, thus $\left|F_{p} \cap F_{q}\right|=7$ or 8 . Therefore, all sets in \mathcal{F}^{*} are compatible.

Next, we prove that the family is maximal. Assume to the contrary, if \mathcal{F}^{*} is not maximal, then there is a set $F \notin \mathcal{F}^{*}$ such that $|F|=9$ and F is compatible with all sets in \mathcal{F}^{*}, say, $\left|F \cap F_{i}\right|=7$ or 8 for any $F_{i} \in \mathcal{F}^{*}$. Since $F_{1}=\{1,2, \ldots, 9\} \in \mathcal{F}^{*}$, we have $\left|F \cap F_{1}\right|=7$ or 8 .

Case 1: $\left|F \cap F_{1}\right|=7$.
Then $\left|F \cap S_{1}\right|=5,6$ or 7. If $\left|F \cap S_{1}\right|=7$, then $F \in\left\{F_{i}\left|S_{1} \subseteq F_{i},\left|F_{i} \cap \overline{F_{1}}\right|=2\right\} \subseteq \mathcal{F}^{*}\right.$, it is a contradiction. If $\left|F \cap S_{1}\right|=6$, without loss of generality, we assume that $F=\{1,2,3,4,5,6,8,10,11\}$, then there is a set $F_{l}=\{1,2,3,4,5,6,7,12,13\} \in\left\{F_{i}\left|S_{1} \subseteq F_{i},\left|F_{i} \cap \overline{F_{1}}\right|=2\right\} \subseteq \mathcal{F}^{*}\right.$ such that $\left|F \cap F_{l}\right|=6$, it is a contradiction. If $\left|F \cap S_{1}\right|=5$, without loss of generality, we assume that $F=$ $\{1,2,3,4,5,8,9,10,11\}$, then there is a set $F_{l}=\{1,2,3,4,5,6,7,12,13\} \in \mathcal{F}^{*}$ such that $\left|F \cap F_{l}\right|=5$, it is a contradiction.

Case 2: $\left|F \cap F_{1}\right|=8$.
Then $\left|\underline{F} \cap S_{1}\right|=6$ or 7. If $\left|F \cap S_{1}\right|=7$, then $F \in\left\{F_{i}\left|S_{2} \subseteq F_{i},\left|F_{i} \cap \overline{F_{1}}\right|=1\right\} \bigcup\left\{F_{i} \mid S_{3} \subseteq\right.\right.$ $\left.F_{i},\left|F_{i} \cap \overline{F_{1}}\right|=1\right\} \subseteq \mathcal{F}^{*}$, it is a contradiction. If $\left|F \cap S_{1}\right|=6$, without loss of generality, we assume that $F=\{1,2,3,4,5,6,8,9,10\}$, then there is a set $F_{l}=\{1,2,3,4,5,6,7,12,13\} \in \mathcal{F}^{*}$ such that $\left|F \cap F_{l}\right|=6$, it is a contradiction.

Combining the above arguments, \mathcal{F}^{*} is a maximal family such that the intersection of any two sets in \mathcal{F}^{*} has 7 or 8 elements.

Corollary 3.17. $K_{2,5}$ and $K_{2,13}$ are the only graphs among $K_{2, s}$ which can be star complements for the second largest eigenvalue $\lambda_{2}=1$.

Proof. Let G be a graph of order n with H as a star complement for an eigenvalue 1 of multiplicity k, where $H \cong K_{2, s}$. We know that $K_{2, s}$ has spectrum: $0^{s},-\sqrt{2 s}, \sqrt{2 s}$, then

$$
\lambda_{2}(H)=0<1<\sqrt{2 s}=\lambda_{1}(H) .
$$

By Lemma 2.6, we have $\lambda_{2}(G)=\lambda_{3}(G)=\cdots=\lambda_{1+k}(G)=1$.

4. The cases of other eigenvalues and some remarks

By Table 1, we can see that the known research on the maximal graph with H as a star complement is about a relatively small eigenvalue, such as 1 and -2 . We are curious about what will happen to the maximal graph when the eigenvalue becomes larger.

In this section, we will study the maximal graphs with $K_{2, s}$ as a star complement for other eigenvalues, such as $\mu=2,3,-3,4$.

Proposition 4.1. The only graphs among $K_{2, s}$ which can be star complements for $\mu=2,-3,3,4$ are shown in Table 5.

Table 5. graphs among $K_{2, s}$ which can be as star complements for μ.

μ	$K_{2, s}$
2	$K_{2,1}, K_{2,18}, K_{2,20}, K_{2,26}, K_{2,27}, K_{2,29}, K_{2,34}, K_{2,51}, K_{2,52}$
3	$K_{2,3}, K_{2,42}, K_{2,45}, K_{2,65}, K_{2,67}, K_{2,78}, K_{2,126}, K_{2,185}, K_{2,225}, K_{2,317}$
-3	$K_{2,3}, K_{2,4}, K_{2,29}, K_{2,36}, K_{2,42}, K_{2,45}, K_{2,65}, K_{2,78}, K_{2,89}, K_{2,117}, K_{2,185}$
4	$K_{2,6}, K_{2,7}, K_{2,72}, K_{2,78}, K_{2,80}, K_{2,88}, K_{2,89}, K_{2,98}, K_{2,106}, K_{2,108}$,
	$K_{2,133}, K_{2,134}, K_{2,152}, K_{2,168}, K_{2,170}, K_{2,250}, K_{2,297}, K_{2,449}, K_{2,656}$

Proof. We only prove the case of $\mu=2$. The proofs for $\mu=-3,3,4$ are similar, so we omit them.
Let $u \in X$ be a vertex of type (a, b) which means that it has a neighbours in R and b neighbours in S. Then $(a, b) \neq(0,0)$ and $a \in\{0,1,2\}, 0 \leq b \leq s$.

By (2.3), $\mu=2$ and $t=2$, we have

$$
\begin{equation*}
2 b^{2}+(4 a+4-2 s) b+s a^{2}-2 s a+4 a+8 s-16=0 . \tag{4.1}
\end{equation*}
$$

Since b is an integer, the discriminant of (4.1), $4 s^{2}-80 s-8 s a^{2}+16 a^{2}+144$ must be a perfect square. Table 6 shows the possible values of s and (s, b) when $a=0,1,2$.

Since $\mu=2$ is not the eigenvalue of $H \cong K_{2, s}$, so $\mu^{2} \neq 2 s$, and then $s \neq 2$. Therefore only $K_{2,1}$, $K_{2,18}, K_{2,20}, K_{2,26}, K_{2,27}, K_{2,29}, K_{2,34}, K_{2,51}$ and $K_{2,52}$ can be star complements for $\mu=2$.

Similar to the cases of $\mu=1$ and $\mu=-2$, we can study the maximum graphs. Now we only characterize the following cases.

Firstly, we define two graph G_{3} and G_{4}. Let (R, S) be the bipartition of $H=K_{2,4}$ with $R=\left\{1^{\prime}, 2^{\prime}\right\}$, $S=\{1,2,3,4\}$. We define a graph G_{3} as follows: $X=\{u\}, V\left(G_{3}\right)=V(H) \cup X$, and $N_{H}(u)=\left\{1^{\prime}, 2^{\prime}, 1\right\}$ (see Figure 1). The spectrum of G_{3} is [$-3,-1,0^{3}, 0.58579,3.41421$].

Table 6. The integral solutions of (4.1) $(0 \leq b \leq s)$.

a	the discriminant of equation (4.1)	s	(s, b)
0	$4(s-10)^{2}-256$	$2,18,20,27$	$(2,0),(18,8),(20,6),(20,12),(27,5),(27,20)$
1	$4(s-11)^{2}-324$	$20,26,52$	$(20,8),(26,5),(26,17),(52,4),(52,44)$
2	$4(s-14)^{2}-576$	$1,26,27,29,34,51$	$(1,0),(26,10),(27,8),(27,13),(29,7)$, $(29,16),(34,6),(34,22),(51,5),(51,40)$

Let $\left(R^{\prime}, S^{\prime}\right)$ be the bipartition of $H=K_{2,6}$ with $R^{\prime}=\left\{1^{\prime}, 2^{\prime}\right\}, S^{\prime}=\{1,2, \ldots, 6\}$. We define a graph G_{4} as follows: $X=\{v\}, V\left(G_{4}\right)=V(H) \cup X$, and $N_{H}(v)=\left\{1^{\prime}, 1,2,3\right\}$ (see Figure 2). The spectrum of G_{4} is $\left[-3.51414,-1.57199,0^{5}, 1.08613,4\right]$.

Figure 1. G_{3}.

Figure 2. G_{4}.

Theorem 4.2. The graph G shown in Table 7 is the only graph with H as a star complement for eigenvalue μ.

Proof. When $\mu=2$ and $H=K_{2,1}$, it is clear that $a=c=2, b=d=0$ by Proposition 4.1. By Proposition 2.5 and $\mu=2, t=2, s=1$, we have G is the graph with $K_{2,1}$ as a star complement for $\mu=2$ if and only if the vertex set X satisfies $G-X=H$ and the following two conditions:(1) for any $u \in X, u$ is of type (2,0); (2) for any two vertices $u, v \in X$, we have $2 a_{u v}+\rho_{u v}+2=0$.

But $\rho_{u v} \geq 0$ and $a_{u v}=0$ or 1 imply $|X|=1$. Therefore, there is a unique (maximal) graph $K_{2,2}$ with $K_{2,1}$ as a star complement for $\mu=2$.

Similarly, we can prove other cases in Table 7.

Table 7. The only graph with H as a star complement for eigenvalue μ.

μ	H	G
2	$K_{2,1}$	$K_{2,2}$
3	$K_{2,3}$	$K_{3,3}$
-3	$K_{2,3}$	$K_{3,3}$
-3	$K_{2,4}$	G_{3}
4	$K_{2,6}$	G_{4}
4	$K_{2,7}$	$K_{2,8}$

Remark 4.3. Let G be a maximal graph with $K_{2, s}$ as a star complements for μ. In order to study G, the first thing we need to do is to determine what value of s that allows $K_{2, s}$ to be viewed as a star complement for a given eigenvalue. We compare the graphs among $K_{2, s}$ which can be star complements for distinct eigenvalues, for example, $\mu=1, \mu=-2, \mu=2, \mu=3, \mu=-3$ and $\mu=4$ (see Theorem 3.10, Theorem 3.2 and Table 5), and we find that:
(1) there are only two graphs among $K_{2, s}$ as star complements for $\mu=1$;
(2) there are only seven graphs among $K_{2, s}$ as star complements for $\mu=-2$ and nine for $\mu=2$;
(3) there are only eleven graphs among $K_{2, s}$ as star complements for $\mu=-3$ and ten for $\mu=3$;
(4) there are nineteen graphs among $K_{2, s}$ as star complements for $\mu=4$;
(5) as the absolute value of μ gets larger and larger, the value and the number of set larger and larger; even though the absolute values are the same, it seems that the value of s corresponding to the positive eigenvalues is larger than the one corresponding to the negative eigenvalues.

It seems that (5) explains why known research choose eigenvalues with small absolute value for study.

It is well known that for any graph G, there exists at least one star partition ([7]). The fact implies there exist star sets and star complements for any eigenvalue of any graph G. Then what graphs can not be as star complements for some given eigenvalues seems to be an interesting question worth studying.

Acknowledgments

The authors would like to thank the referees for their valuable comments, corrections, and suggestions, which lead to an improvement of the original manuscript.

The research is supported by the National Natural Science Foundation of China (Grant No. 11971180), the Guangdong Provincial Natural Science Foundation (Grant No. 2019A1515012052).

Conflict of interest

The authors declare that they have no competing interests.

References

1. L. Asgharsharghi, D. Kiani, On regular graphs with complete tripartite star complements, Ars Combin., 122 (2015), 431-437.
2. F. K. Bell, Characterizing line graphs by star complements, Linear Algebra Appl., 296 (1999), 15-25.
3. F. K. Bell, Line graphs of bipartite graphs with hamiltonian paths, J. Graph Theory, 43 (2003), 137-149.
4. D. Cvetković, M. Doob, H. Sachs, Spectra of graphs: theory and application, New York: Academic Press, 1980.
5. D. Cvetković, P. Rowlinson, S. Simić, Eigenspaces of Graphs, Cambridge: Cambridge University Press, 1997.
6. D. Cvetković, P. Rowlinson, S. Simić, Some characterization of graphs by star complements, Linear Algebra Appl., 301 (1999), 81-97.
7. D. Cvetković, P. Rowlinson, S. Simić, An introduction to the theory of graph spectra, Cambridge: Cambridge University Press, 2010.
8. F. Ramezani, B. Tayfeh-Rezaie, Graphs with prescribed star complement for the eigenvalue 1, Ars Combin., 116 (2014), 129-145.
9. P. Rowlinson, On bipartite graphs with complete bipartite star complements, Linear Algebra Appl., 458 (2014), 149-160.
10. P. Rowlinson, An extension of the star complement technique for regular graphs, Linear Algebra Appl., 557 (2018), 496-507.
11. P. Rowlinson, P. S. Jackson, On graphs with complete bipartite star complements, Linear Algebra Appl., 298 (1999), 9-20.
12. P. Rowlinson, B. Tayfeh-Rezaie, Star complements in regular graphs: old and new results, Linear Algebra Appl., 432 (2010), 2230-2242.
13. Z. Stanić, On graphs whose second largest eigenvalue equals 1 - the star complement technique, Linear Algebra Appl., 420 (2007), 700-710.
14. Z. Stanić, S. K. Simić, On graphs with unicyclic star complement for 1 as the second largest eigenvalue, In: Proceedings of the Conference Contemporary Geometry and Related Topics, Belgrade, June 26-July 2, 2005, Faculty of Mathematics, Belgrade, 2006, 475-484.
15. J. Wang, X. Yuan, L. Liu, Regular graphs with a prescribed complete multipartite graph as a star complement, Linear Algebra Appl., 579 (2019), 302-319.
16. Y. Yang, Q. Huang, J. Wang, Regular graphs with $\overline{s K_{1} \cup K_{t}}$ as a star complement, arXiv:1912. 07594, 2019.
17. X. Yuan, H. Chen, L. Liu, On the characterization of graphs by star complements, Linear Algebra Appl., 533 (2017), 491-506.
18. X. Yuan, Q. Zhao, L. Liu, H. Chen, On graphs with prescribed star complements, Linear Algebra Appl., 559 (2018), 80-94.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
