In the present paper, the finite element approximation of a class of system of two quasi-variational inequalities with terms sources and obstacles depending on solution is analyzed. An optimal L∞-error estimate is derived, combining a modified algorithm of Bensoussan-Lions type and standard uniform error estimates known for elliptic variational inequalities (VIs).
Citation: Abida Harbi, Nasreddine Nemis, Mohamed Haiour. Optimal error estimates of a class of system of two quasi-variational inequalities[J]. AIMS Mathematics, 2021, 6(6): 5977-6001. doi: 10.3934/math.2021353
In the present paper, the finite element approximation of a class of system of two quasi-variational inequalities with terms sources and obstacles depending on solution is analyzed. An optimal L∞-error estimate is derived, combining a modified algorithm of Bensoussan-Lions type and standard uniform error estimates known for elliptic variational inequalities (VIs).
[1] | A. Bensoussan, J. L. Lions, Impulse Control and Quasivariational Inequalities, Montrouge: Gauthier-Villars, 1984. |
[2] | D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Their Applications Pure and Applied Mathematics, New York: Academic Press, 1980. |
[3] | M. Boulbrachene, H. Mohamed, B. Chentouf, On a noncoercive system of quasi-variational inequalities related to stochatic control problems, J. Inequalities Pure Appl. Math., 3 (2002), 14. |
[4] | M. Boulbrachene, Pointwise error estimate for a noncoercive system of quasi-variational inequalities related to the management of energy production, J. Inequalities Pure Appl. Math., 3 (2002), 318. |
[5] | M. Boulbrachene, L∞-error estimate for a system of elliptic quasi-variational inequalities with noncoercive operators, Comput. Math. Appl., 45 (2003), 983-989. doi: 10.1016/S0898-1221(03)00072-5 |
[6] | M. Boulbrachene, M. Haiour, S. Saadi, L∞-error estimate for a system of elliptic quasi-variational inequalities, Int. J. Math. Math. Sci., 2003 (2003), 579135. |
[7] | M. Boulbrachene, L∞-error estimate for a noncoercive system of elliptic quasi-variational inequalities: A simple proof, Appl. Math. E-Notes, 5 (2005), 97-102. |
[8] | M. Boulbrachene, S. Saadi, L∞-error analysis for a system of quasivariational inequalities with noncoercive operators, J. Inequalities Appl., 5 (2006), 15704. |
[9] | S. Boulaares, M. Haiour, The finite element approximation of evolutionary Hamilton-Jacobi-Bellman equations with nonlinear source terms, Indagationes Math., 24 (2013), 161-173. doi: 10.1016/j.indag.2012.07.005 |
[10] | S. Boulaares, M. Haiour, The theta time scheme combined with a finite element spatial approximation in the evolutionary Hamilton-Jacobi-Bellman equation with linear source terms, Comput. Math. Model., 25 (2014), 423-438. doi: 10.1007/s10598-014-9237-y |
[11] | S. Boulaares, M. Haiour, A new proof for the existence and uniqueness of the discrete evolutionary HJB equation, Appl. Math. Comput., 262 (2015), 42-55. doi: 10.1016/j.amc.2015.03.095 |
[12] | P. Cortey-Dumont, On finite element approximation in the L∞-norm of variational inequalities, Numerische Math., 47 (1985), 45-57. doi: 10.1007/BF01389875 |
[13] | A. Harbi, Maximum norm analysis of a nonmatching grids method for a class of variational inequalities with nonlinear source terms, J. Inequalities Appl., 2016 (2016), 181. doi: 10.1186/s13660-016-1110-4 |
[14] | P. Cortey-Dumont, Sur les inéquations variationnelles opérateurs non coercifs, ESAIM Math. Modell. Numer. Anal., 19 (1985), 195-212. doi: 10.1051/m2an/1985190201951 |
[15] | J. Karátson, S. Korotov, Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions, Numerische Math., 99 (2005), 669-698. doi: 10.1007/s00211-004-0559-0 |
[16] | P. G. Ciarlet, P. A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Eng., 2 (1973), 17-31. doi: 10.1016/0045-7825(73)90019-4 |