The main purpose of this article is to study the value distribution of algebroid function in the $ k $-punctured complex plane. We establish the second fundamental theorems for algebroid function concerning small algebroid functions in the $ k $-punctured complex plane, which extend the Nevanlinna theory for algebroid functions from single connected domain to multiple connected domain.
Citation: Hong Yan Xu, Yu Xian Chen, Jie Liu, Zhao Jun Wu. A fundamental theorem for algebroid function in $ k $-punctured complex plane[J]. AIMS Mathematics, 2021, 6(5): 5148-5164. doi: 10.3934/math.2021305
The main purpose of this article is to study the value distribution of algebroid function in the $ k $-punctured complex plane. We establish the second fundamental theorems for algebroid function concerning small algebroid functions in the $ k $-punctured complex plane, which extend the Nevanlinna theory for algebroid functions from single connected domain to multiple connected domain.
[1] | T. B. Cao, H. X. Yi, H. Y. Xu, On the multiple values and uniqueness of meromorphic functions on annuli, Comput. Math. Appl., 58 (2009), 1457-1465. doi: 10.1016/j.camwa.2009.07.042 |
[2] | Q. T. Chuang, Une généralisation d'une inégalité de Nevanlinna, Sci. Sinica, 13 (1964), 887-895. |
[3] | M. O. Hanyak, A. A. Kondratyuk, Meromorphic functions in m-punctured complex planes, Mat. Stud., 27 (2007), 53-69. |
[4] | W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964. |
[5] | Y. Z. He, I. Laine, On the growth of algebroid solutions of algebraic differential equations, Math. Scand., 58 (1986), 125-138. doi: 10.7146/math.scand.a-12135 |
[6] | Y. Z. He, X. Z. Xiao, Algebroid functions and ordinary differential equations in the complex domain, Beijing: Science Press, 1988. |
[7] | K. L. Hiong, Several recent studies of meromorphic functions (in Chinese), Adv. Math. (China), 6 (1963), 307-320. |
[8] | K. L. Hiong, Sur les fonctions meromorphes et les fonctions algebroides, Mem. Sci. Math. Gauthier-Villars, 1957. |
[9] | A. Ya. Khrystiyanyn, A. A. Kondratyuk, On the Nevanlinna theory for meromorphic functions on annuli. I, Mat. Stud., 23 (2005), 19-30. |
[10] | A. Ya. Khrystiyanyn, A. A. Kondratyuk, On the Nevanlinna theory for meromorphic functions on annuli. II, Mat. Stud., 24 (2005), 57-68. |
[11] | A. A. Kondratyuk, I. Laine, Meromorphic functions in multiply connected domains, Laine, Ilpo (ed.), fourier series methods in complex analysis. Proceedings of the workshop, Mekrijärvi, Finland, July 24-29, 2005. Joensuu: University of Joensuu, Department of Mathematics (ISBN 952-458-888-9/pbk), Report series, Department of mathematics, University of Joensuu 10, (2006), 9-111. |
[12] | M. L. Liang, An algebroid function an its derivative, J. Math. Anal. Appl., 356 (2009), 201-207. doi: 10.1016/j.jmaa.2009.03.014 |
[13] | H. F. Liu, D. C. Sun, On the sharing values of algebroid functions and their derivatives, Acta Math. Sci., 33 B (2013), 268-278. |
[14] | Y. N. Lü, X. L. Zhang, Riemann surface, Science Press, Beijing, 1997 (in Chinese). |
[15] | M. Lund, Z. Ye, Logarithmic derivatives in annuli, J. Math. Anal. Appl., 356 (2009), 441-452. doi: 10.1016/j.jmaa.2009.03.025 |
[16] | M. Lund, Z. Ye, Nevanlinna theory of meromorphic functions on annuli, Sci. China. Math., 53 (2010), 547-554. doi: 10.1007/s11425-010-0037-3 |
[17] | R. Nevanlinna, Zur theorie der meromophen funktionen, Acta Math. 45 (1925), 1-9. |
[18] | G. Rémoundos, Extension aux fonctions algébroides multipliformes du théorème de M. Picard et deses généralisations, Mém. Sci. Math. fase Paris, Gauthier-Villar, 1927. |
[19] | H. L. Selberg, Über die Wertverteilung der algebroiden Funktionen, Math. Z., 31 (1930), 709-728. doi: 10.1007/BF01246442 |
[20] | N. Steinmetz, Eine Verallgemeimerung des zweiten Navanlinnaschen Hauptsatzes, J. Reine Angew. Math., 386 (1986), 134-141. |
[21] | D. C. Sun, Z. S. Gao, Value distribution theory of algebroid functions, Beijing: Science Press, 2014. |
[22] | D. C. Sun, Y. Y. Kong, The growth of algebroid function, J. Math. Anal. Appl., 332 (2007), 542-550. doi: 10.1016/j.jmaa.2006.10.031 |
[23] | Y. Tan, Several uniqueness theorems of algebroid functions on annuli, Acta Math. Sci., 36 B (2016), 295-316. |
[24] | E. Ullrich, Über den Einfluss der Verzweigtheit einer Algebroide auf ihre Wertverteilung, J. rei. u. ang. Math., 167 (1931), 198-220. |
[25] | G. Valiron, Sur quelques propriétés des fonctions algébroïdes, C. R. Acad. Sci. Paris, 189 (1929), 824-826. |
[26] | G. Valiron, Sur la derivèe des fonctions algébroïdes, Bull. Sci. Math., 59 (1931), 17-39. |
[27] | S. M. Wang, The growth and singular direction of algebroid function, Ann. Acad. Sci. Fenn. Math., 37 (2012), 479-489. doi: 10.5186/aasfm.2012.3726 |
[28] | N. Wu, Z. X. Xuan, Common Borel radii of an algebroid function and its derivative, Results Math., 62 (2012), 89-101. doi: 10.1007/s00025-011-0132-y |
[29] | Z. J. Wu, D. C. Sun, On $T$ direction of algebroid function dealing with multiple values, Bull. Aust. Math. Soc., 78 (2008), 147-156. doi: 10.1017/S0004972708000579 |
[30] | H. Y. Xu, S. Y. Liu, Z. J. Wu, Results on algebroid functions in k-punctured complex plane, Revista de la Real Academia de Ciencias Exactas, Fsicas y Naturales. Serie A. Matemáticas, 114 (2020), 54, 1-23. Available from: https://doi.org/10.1007/s13398-020-00785-8. |
[31] | H. Y. Xu, X. M. Zheng, H. Wang, On meromorphic functions for sharing two sets and three sets in m-punctured complex plane, Open Math., 14 (2016), 913-924. doi: 10.1515/math-2016-0084 |
[32] | Z. X. Xuan, On the existence of $T$-direction of algebroid functions: A problem of J. H. Zheng, J. Math. Anal. Appl., 341 (2008), 540-547. doi: 10.1016/j.jmaa.2007.10.032 |
[33] | L. Yang, Value distribution theory, Springer-Verlag, Berlin, 1993. |
[34] | H. X. Yi, C. C. Yang, Uniqueness theory of meromorphic functions, Kluwer Academic Publishers, Dordrecht, 2003; Chinese original: Science Press, Beijing, 1995. |