Research article

A fundamental theorem for algebroid function in $ k $-punctured complex plane

  • Received: 04 January 2021 Accepted: 24 February 2021 Published: 10 March 2021
  • MSC : 32C20, 30D45

  • The main purpose of this article is to study the value distribution of algebroid function in the $ k $-punctured complex plane. We establish the second fundamental theorems for algebroid function concerning small algebroid functions in the $ k $-punctured complex plane, which extend the Nevanlinna theory for algebroid functions from single connected domain to multiple connected domain.

    Citation: Hong Yan Xu, Yu Xian Chen, Jie Liu, Zhao Jun Wu. A fundamental theorem for algebroid function in $ k $-punctured complex plane[J]. AIMS Mathematics, 2021, 6(5): 5148-5164. doi: 10.3934/math.2021305

    Related Papers:

  • The main purpose of this article is to study the value distribution of algebroid function in the $ k $-punctured complex plane. We establish the second fundamental theorems for algebroid function concerning small algebroid functions in the $ k $-punctured complex plane, which extend the Nevanlinna theory for algebroid functions from single connected domain to multiple connected domain.



    加载中


    [1] T. B. Cao, H. X. Yi, H. Y. Xu, On the multiple values and uniqueness of meromorphic functions on annuli, Comput. Math. Appl., 58 (2009), 1457-1465. doi: 10.1016/j.camwa.2009.07.042
    [2] Q. T. Chuang, Une généralisation d'une inégalité de Nevanlinna, Sci. Sinica, 13 (1964), 887-895.
    [3] M. O. Hanyak, A. A. Kondratyuk, Meromorphic functions in m-punctured complex planes, Mat. Stud., 27 (2007), 53-69.
    [4] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
    [5] Y. Z. He, I. Laine, On the growth of algebroid solutions of algebraic differential equations, Math. Scand., 58 (1986), 125-138. doi: 10.7146/math.scand.a-12135
    [6] Y. Z. He, X. Z. Xiao, Algebroid functions and ordinary differential equations in the complex domain, Beijing: Science Press, 1988.
    [7] K. L. Hiong, Several recent studies of meromorphic functions (in Chinese), Adv. Math. (China), 6 (1963), 307-320.
    [8] K. L. Hiong, Sur les fonctions meromorphes et les fonctions algebroides, Mem. Sci. Math. Gauthier-Villars, 1957.
    [9] A. Ya. Khrystiyanyn, A. A. Kondratyuk, On the Nevanlinna theory for meromorphic functions on annuli. I, Mat. Stud., 23 (2005), 19-30.
    [10] A. Ya. Khrystiyanyn, A. A. Kondratyuk, On the Nevanlinna theory for meromorphic functions on annuli. II, Mat. Stud., 24 (2005), 57-68.
    [11] A. A. Kondratyuk, I. Laine, Meromorphic functions in multiply connected domains, Laine, Ilpo (ed.), fourier series methods in complex analysis. Proceedings of the workshop, Mekrijärvi, Finland, July 24-29, 2005. Joensuu: University of Joensuu, Department of Mathematics (ISBN 952-458-888-9/pbk), Report series, Department of mathematics, University of Joensuu 10, (2006), 9-111.
    [12] M. L. Liang, An algebroid function an its derivative, J. Math. Anal. Appl., 356 (2009), 201-207. doi: 10.1016/j.jmaa.2009.03.014
    [13] H. F. Liu, D. C. Sun, On the sharing values of algebroid functions and their derivatives, Acta Math. Sci., 33 B (2013), 268-278.
    [14] Y. N. Lü, X. L. Zhang, Riemann surface, Science Press, Beijing, 1997 (in Chinese).
    [15] M. Lund, Z. Ye, Logarithmic derivatives in annuli, J. Math. Anal. Appl., 356 (2009), 441-452. doi: 10.1016/j.jmaa.2009.03.025
    [16] M. Lund, Z. Ye, Nevanlinna theory of meromorphic functions on annuli, Sci. China. Math., 53 (2010), 547-554. doi: 10.1007/s11425-010-0037-3
    [17] R. Nevanlinna, Zur theorie der meromophen funktionen, Acta Math. 45 (1925), 1-9.
    [18] G. Rémoundos, Extension aux fonctions algébroides multipliformes du théorème de M. Picard et deses généralisations, Mém. Sci. Math. fase Paris, Gauthier-Villar, 1927.
    [19] H. L. Selberg, Über die Wertverteilung der algebroiden Funktionen, Math. Z., 31 (1930), 709-728. doi: 10.1007/BF01246442
    [20] N. Steinmetz, Eine Verallgemeimerung des zweiten Navanlinnaschen Hauptsatzes, J. Reine Angew. Math., 386 (1986), 134-141.
    [21] D. C. Sun, Z. S. Gao, Value distribution theory of algebroid functions, Beijing: Science Press, 2014.
    [22] D. C. Sun, Y. Y. Kong, The growth of algebroid function, J. Math. Anal. Appl., 332 (2007), 542-550. doi: 10.1016/j.jmaa.2006.10.031
    [23] Y. Tan, Several uniqueness theorems of algebroid functions on annuli, Acta Math. Sci., 36 B (2016), 295-316.
    [24] E. Ullrich, Über den Einfluss der Verzweigtheit einer Algebroide auf ihre Wertverteilung, J. rei. u. ang. Math., 167 (1931), 198-220.
    [25] G. Valiron, Sur quelques propriétés des fonctions algébroïdes, C. R. Acad. Sci. Paris, 189 (1929), 824-826.
    [26] G. Valiron, Sur la derivèe des fonctions algébroïdes, Bull. Sci. Math., 59 (1931), 17-39.
    [27] S. M. Wang, The growth and singular direction of algebroid function, Ann. Acad. Sci. Fenn. Math., 37 (2012), 479-489. doi: 10.5186/aasfm.2012.3726
    [28] N. Wu, Z. X. Xuan, Common Borel radii of an algebroid function and its derivative, Results Math., 62 (2012), 89-101. doi: 10.1007/s00025-011-0132-y
    [29] Z. J. Wu, D. C. Sun, On $T$ direction of algebroid function dealing with multiple values, Bull. Aust. Math. Soc., 78 (2008), 147-156. doi: 10.1017/S0004972708000579
    [30] H. Y. Xu, S. Y. Liu, Z. J. Wu, Results on algebroid functions in k-punctured complex plane, Revista de la Real Academia de Ciencias Exactas, Fsicas y Naturales. Serie A. Matemáticas, 114 (2020), 54, 1-23. Available from: https://doi.org/10.1007/s13398-020-00785-8.
    [31] H. Y. Xu, X. M. Zheng, H. Wang, On meromorphic functions for sharing two sets and three sets in m-punctured complex plane, Open Math., 14 (2016), 913-924. doi: 10.1515/math-2016-0084
    [32] Z. X. Xuan, On the existence of $T$-direction of algebroid functions: A problem of J. H. Zheng, J. Math. Anal. Appl., 341 (2008), 540-547. doi: 10.1016/j.jmaa.2007.10.032
    [33] L. Yang, Value distribution theory, Springer-Verlag, Berlin, 1993.
    [34] H. X. Yi, C. C. Yang, Uniqueness theory of meromorphic functions, Kluwer Academic Publishers, Dordrecht, 2003; Chinese original: Science Press, Beijing, 1995.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1700) PDF downloads(78) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog