In this paper, we investigate the generalized Hyers-Ulam stability of the following mixed type quadratic-cubic functional equation
2f(2x+y)+2f(2x−y)=4f(x+y)+4f(x−y)+4f(2x)+f(2y)−8f(x)−8f(y)
in non-Archimedean (n,β)-normed spaces.
Citation: Zhihua Wang. Approximate mixed type quadratic-cubic functional equation[J]. AIMS Mathematics, 2021, 6(4): 3546-3561. doi: 10.3934/math.2021211
[1] | Kandhasamy Tamilvanan, Jung Rye Lee, Choonkil Park . Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces. AIMS Mathematics, 2021, 6(1): 908-924. doi: 10.3934/math.2021054 |
[2] | Sizhao Li, Xinyu Han, Dapeng Lang, Songsong Dai . On the stability of two functional equations for (S,N)-implications. AIMS Mathematics, 2021, 6(2): 1822-1832. doi: 10.3934/math.2021110 |
[3] | Murali Ramdoss, Divyakumari Pachaiyappan, Inho Hwang, Choonkil Park . Stability of an n-variable mixed type functional equation in probabilistic modular spaces. AIMS Mathematics, 2020, 5(6): 5903-5915. doi: 10.3934/math.2020378 |
[4] | K. Tamilvanan, Jung Rye Lee, Choonkil Park . Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces. AIMS Mathematics, 2020, 5(6): 5993-6005. doi: 10.3934/math.2020383 |
[5] | Zhihua Wang, Choonkil Park, Dong Yun Shin . Additive ρ-functional inequalities in non-Archimedean 2-normed spaces. AIMS Mathematics, 2021, 6(2): 1905-1919. doi: 10.3934/math.2021116 |
[6] | Lingxiao Lu, Jianrong Wu . Hyers-Ulam-Rassias stability of cubic functional equations in fuzzy normed spaces. AIMS Mathematics, 2022, 7(5): 8574-8587. doi: 10.3934/math.2022478 |
[7] | Abasalt Bodaghi, Choonkil Park, Sungsik Yun . Almost multi-quadratic mappings in non-Archimedean spaces. AIMS Mathematics, 2020, 5(5): 5230-5239. doi: 10.3934/math.2020336 |
[8] | Nazek Alessa, K. Tamilvanan, G. Balasubramanian, K. Loganathan . Stability results of the functional equation deriving from quadratic function in random normed spaces. AIMS Mathematics, 2021, 6(3): 2385-2397. doi: 10.3934/math.2021145 |
[9] | Zhihua Wang . Stability of a mixed type additive-quadratic functional equation with a parameter in matrix intuitionistic fuzzy normed spaces. AIMS Mathematics, 2023, 8(11): 25422-25442. doi: 10.3934/math.20231297 |
[10] | Debao Yan . Quantitative analysis and stability results in β-normed space for sequential differential equations with variable coefficients involving two fractional derivatives. AIMS Mathematics, 2024, 9(12): 35626-35644. doi: 10.3934/math.20241690 |
In this paper, we investigate the generalized Hyers-Ulam stability of the following mixed type quadratic-cubic functional equation
2f(2x+y)+2f(2x−y)=4f(x+y)+4f(x−y)+4f(2x)+f(2y)−8f(x)−8f(y)
in non-Archimedean (n,β)-normed spaces.
The stability problem of functional equations originated from a question of Ulam [43] concerning the stability of group homomorphisms and it was affirmatively answered for Banach spaces by Hyers [17]. Hyers' theorem was generalized by Aoki [1] for approximate additive mappings and by Rassias [37] for approximate linear mappings by considering an unbounded Cauchy difference. Furthermore, a generalization of the Rassias' theorem was obtained by Găvruţă [12] by replacing the unbounded Cauchy difference by a general control function. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [2,3,4,8,18,20,21,38,41] and references therein). The stability problems in non-Archimedean Banach spaces were studied in [13,14,28,30,31,32].
The functional equation
f(x+y)+f(x−y)=2f(x)+2f(y) | (1.1) |
is called quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The Hyers-Ulam stability problem for the quadratic functional Eq (1.1) was proved by Skof [42] for mappings from a normed space to a Banach space. Cholewa [5] noticed that Skof's theorem remains true if the domain is replaced by an Abelian group. In 1992, Czerwik [7] gave a generalization of the Skof–Cholewa's result. Later, Lee et al. [26] proved Hyers-Ulam-Rassias stability of quadratic functional Eq (1.1) in fuzzy Banach spaces.
In 2008, Ravi et al. [39] introduced the following quadratic functional equation
f(x+y)+f(x−y)=2f(x+y)+2f(x−y)+4f(x)−2f(y) | (1.2) |
and solved the generalized Hyers-Ulam stability of this Eq (1.2). Jun and Kim [19] considered the following functional equation
f(2x+y)+f(2x−y)=2f(x+y)+2f(x−y)+12f(x) | (1.3) |
and they established the general solution and the generalized Hyers-Ulam stability of the functional Eq (1.3) in Banach spaces. The functional Eq (1.3) and its pexiderized version
f1(2x+y)+f2(2x−y)=f3(x+y)+f4(x−y)+f5(x) |
were studied by Sahoo [40] on commutative groups using an elementary method quite different from Jun and Kim [19]. The function f(x)=cx3 satisfies the functional Eq (1.3), which is thus called a cubic functional equation and every solution of the cubic functional equation is said to be a cubic function.
In 2010, Wang and Liu [44] considered the following mixed type functional equation
2f(2x+y)+2f(2x−y)=4f(x+y)+4f(x−y)+4f(2x)+f(2y)−8f(x)−8f(y). | (1.4) |
It is easy to show that the function f(x)=ax2+bx3 is a solution of the functional Eq (1.4), where a,b are arbitrary constants. They established the general solution of the functional Eq (1.4), and then proved the generalized Hyers-Ulam stability of the Eq (1.4) in quasi-β-normed spaces.
In 2011, Park [34] investigated the approximate additive mappings, approximate Jensen mappings and approximate quadratic mappings in 2-Banach spaces. This is the first result for the stability problem of functional equations in 2-Banach spaces. Later, the stability problems of additive functional inequalities, approximate multi-Jensen and multi-quadratic mappings in 2-Banach spaces were also studied [6,36], respectively. In 2012, Xu and Rassias [48] determined the generalized Hyers-Ulam stability of the mixed additive-cubic functional equation in n-Banach spaces. In 2013, Xu [47] investigated approximate multi-Jensen, multi-Euler-Lagrange additive and quadratic mappings in n-Banach spaces.
Kim and Park [24] proved the generalized Hyers-Ulam stability of additive functional inequalities in non-Archimedean 2-normed spaces. Park et al. [35] proved the generalized Hyers-Ulam stability of the system of additive-cubic-quartic functional equations with constant coefficients in non-Archimedean 2-normed spaces. In 2015, Yang et al. [49] proved the generalized Hyers-Ulam stability of the Cauchy functional equation and the Jensen functional equation in non-Archimedean (n,β)-normed spaces and that of the Pexiderized Cauchy functional equation in (n,β)-normed spaces.
The main purpose of this paper is to establish the generalized Hyers-Ulam stability of the mixed type quadratic-cubic functional Eq (1.4) in non-Archimedean (n,β)-normed spaces.
Throughout this paper, let N denote the set of positive integers and i,j,m,n∈N, and let n≥2 be fixed.
The concept of 2-normed spaces was initially developed by Gähler [9,10] in the middle of the 1960s. Then the concept of 2-Banach spaces was introduced by Gähler [11] and White [45,46]. A systematic development of linear n-normed spaces is due to Kim and Cho [25], Malceski [27], Misiak [29] and Gunawan and Mashadi [15]. Following [48,49], we recall some basic facts concerning (n,β)-normed space and some preliminary results.
Definition 2.1. (cf. [49]) Let n∈N, and let X be a real linear space with dimX≥n and 0<β≤1, let ‖⋅,…,⋅‖β:Xn→R be a function satisfying the following properties:
(N1) ‖x1,x2,…,xn‖β=0 if and only if x1,x2,…,xn are linearly dependent;
(N2) ‖x1,x2,…,xn‖β is invariant under permutation of x1,x2,…,xn;
(N3) ‖αx1,x2,…,xn‖β=|α|β‖x1,x2,…,xn‖β;
(N4) ‖x+y,x2,…,xn‖β≤‖x,x2,…,xn‖β+‖y,x2,…,xn‖β for all x,y,x1,x2,…,xn∈X and α∈R.
Then the function ‖⋅,…,⋅‖β is called an (n,β)-norm on X and the pair (X,‖⋅,…,⋅‖β) is called a linear (n,β)-normed space or an (n,β)-normed space.
Note that the concept of an (n,β)-normed space is a generalization of an n-normed space (β=1) and of a β-normed space (n=1). For some examples of n-normed space, we can refer to [48,49].
Definition 2.2. (cf. [49]) A sequence {xk} in an (n,β)-normed space X is called a convergent sequence if there exists x∈X such that
limk→∞‖xk−x,y2,…,yn‖β=0 |
for all y2,…,yn∈X. In this case, we call that {xk} converges to x or that x is the limit of {xk}, write xk→x as k→∞ or limk→∞xk=x.
Definition 2.3. (cf. [49]) A sequence {xk} in an (n,β)-normed space X is called a Cauchy sequence if
limk,m→∞‖xk−xm,y2,…,yn‖β=0 |
for all y2,…,yn∈X. A linear (n,β)-normed space in which every Cauchy sequence is convergent is called a complete (n,β)-normed space.
Remark 2.1. (cf. [49]) Let (X,‖⋅,…,⋅‖β) be a linear (n,β)-normed space, 0<β≤1. One can show that conditions (N2) and (N4) in Definition 2.1 imply that
|‖x,y2,…,yn‖β−‖y,y2,…,yn‖β|≤‖x−y,y2,…,yn‖β |
for all x,y,y2,…,yn∈X.
Lemma 2.1. (cf. [49]). Let (X,‖⋅,…,⋅‖β) be a linear (n,β)-normed space, n≥2, 0<β≤1. If x∈X and ‖x,y2,…,yn‖β=0 for all y2,…,yn∈X, then x=0.
Lemma 2.2. (cf. [48,49]). Let (X,‖⋅,…,⋅‖β) be a linear (n,β)-normed space, n≥2, 0<β≤1. For a convergent sequence {xk} in a linear (n,β)-normed space X,
limk→∞‖xk,y2,…,yn‖β=‖limk→∞xk,y2,…,yn‖β |
for all y2,…,yn∈X.
In 1897, Hensel [16] has introduced a normed space which does not have the Archimedean property. It turned out that non-Archimedean spaces have many nice applications [22,23,33].
Definition 2.4. (cf. [30]) By a non-Archimedean field we mean a field K equipped with a function (valuation) |⋅|:K→[0,∞) such that for r,s∈K, the following conditions hold:
(1) |r|=0 if and only if r=0;
(2) |rs|=|r||s|;
(3) |r+s|≤max{|r|,|s|}.
Clearly |1|=|−1|=1 and |n|≤1 for all n∈N. By the trivial valuation we mean the function |⋅| taking everything but 0 into 1 and |0|=0 (i.e., the function |⋅| is called the trivial valuation if |r|=1,∀r∈K,r≠0, and |0|=0).
Definition 2.5. (cf. [30]) Let X be a vector space over a scalar field K with a non-Archimedean non-trivial valuation |⋅|. A function ‖⋅‖:X→R is called a non-Archimedean norm (valuation) if it satisfies the following conditions:
(ⅰ) ‖x‖=0 if and only if x=0;
(ⅱ) For any r∈K and x∈X, ‖rx‖=|r|‖x‖;
(ⅲ) For all x,y∈X, ‖x+y‖≤max{‖x‖,‖y‖} (the strong triangle inequality).
Then (X,‖⋅‖) is called a non-Archimedean normed space.
Now, we give the definition of a non-Archimedean (n,β)-normed space which has been introduced in [49].
Definition 2.6. (cf. [49]) Let X be a real vector space with dimX≥n over a scalar field K with a non-Archimedean non-trivial valuation |⋅|, where n is a positive integer and β is a constant with 0<β≤1. A real-valued function ‖⋅,…,⋅‖β:Xn→R is called a non-Archimedean (n,β)-norm on X if the following conditions hold:
(N1′) ‖x1,x2,…,xn‖β=0 if and only if x1,x2,…,xn are linearly dependent;
(N2′) ‖x1,x2,…,xn‖β is invariant under permutation of x1,x2,…,xn;
(N3′) ‖αx1,x2,…,xn‖β=|α|β‖x1,x2,…,xn‖β;
(N4′) ‖x+y,x2,…,xn‖β≤max{‖x,x2,…,xn‖β,‖y,x2,…,xn‖β} for all x,y,x1,x2,…,xn∈X and α∈K. Then (X,‖⋅,…,⋅‖β) is called a non-Archimedean (n,β)-normed space.
It follows from the preceding definition that the non-Archimedean (n,β)-normed space is a non-Archimedean n-normed space if β=1, and a non-Archimedean β-normed space if n=1, respectively.
Remark 2.2. (cf. [49]) A sequence {xk} in a non-Archimedean (n,β)-normed space X is a Cauchy sequence if and only if {xk+1−xk} converges to zero.
In this section, we will assume that X is an n-normed space vector space and Y is a complete non-Archimedean (n,β)-normed space, where n≥2 and 0<β≤1. We prove the generalized Hyers-Ulam stability of the mixed type quadratic-cubic functional Eq (1.4) in non-Archimedean (n,β)-normed spaces. For the sake of convenience, given mapping f:X→Y, we define the difference operator Df(x,y):X→Y of the functional Eq (1.4) by
Df(x,y)=2f(2x+y)+2f(2x−y)−4f(x+y)−4f(x−y)−4f(2x)−f(2y)+8f(x)+8f(y) |
for all x,y∈X.
Before proceeding to the proof of the main results, we first introduce the following lemmas which will be used in this paper.
Lemma 3.1. (cf. [44]). Let V and W be real vector spaces. If an even mapping f:V→W satisfies (1.4), then f is quadratic.
Lemma 3.2. (cf. [44]). Let V and W be real vector spaces. If an odd mapping f:V→W satisfies (1.4), then f is cubic.
Theorem 3.1. Let φ:Xn+1→[0,∞) be a function such that
limm→∞φ(2mx,2my,u2,…,un)|4|mβ=0 | (3.1) |
for all x,y,u2,…,un∈X. The limit
limm→∞max{|4|−jβφ(0,2jx,u2,…,un):0≤j<m} | (3.2) |
denoted by ˜φQ(x,u2,…,un), exists for all x,u2,…,un∈X. Suppose that f:X→Y is an even function satisfying f(0)=0 and
‖Df(x,y),u2,…,un‖β≤φ(x,y,u2,…,un) | (3.3) |
for all x,y,u2,…,un∈X. Then there exists a quadratic function Q:X→Y such that
‖f(x)−Q(x),u2,…,un‖β≤1|4|β˜φQ(x,u2,…,un) | (3.4) |
for all x,u2,…,un∈X, and if, in addition,
limi→∞limm→∞max{|4|−jβφ(0,2jx,u2,…,un):i≤j<m+i}=0 |
then Q is the unique quadratic function satisfying (3.4).
Proof. Putting x=0 in (3.3), and by the evenness of f, we get
‖f(2y)−4f(y),u2,…,un‖β≤φ(0,y,u2,…,un) | (3.5) |
for all y,u2,…,un∈X. If we replace y by x in (3.5) and divide both sides of (3.5) by |4|β, then we have
‖f(2x)4−f(x),u2,…,un‖β≤|4|−βφ(0,x,u2,…,un) | (3.6) |
for all x,u2,…,un∈X. Replacing x by 2mx in (3.6) and dividing both sides of (3.6) by |4|mβ, we obtain
‖f(2m+1x)4m+1−f(2mx)4m,u2,…,un‖β≤|4|−mβ|4|−βφ(0,2mx,u2,…,un) | (3.7) |
for all x,u2,…,un∈X and m∈N. Taking the limit as m→∞ and using (3.1), we have
limm→∞‖f(2m+1x)4m+1−f(2mx)4m,u2,…,un‖β=0 | (3.8) |
for all x,u2,…,un∈X. By Remark 2, we know that the sequence {f(2mx)4m} is Cauchy. Since Y is a complete space, we conclude that {f(2mx)4m} is convergent. So we can define the function Q:X→Y by
Q(x)=limm→∞f(2mx)4m |
for all x∈X. It follows from (3.1) and (3.3) that
‖DQ(x,y),u2,…,un‖β=limm→∞1|4|mβ‖Df(2mx,2my),u2,…,un‖β≤limm→∞φ(2mx,2my,u2,…,un)|4|mβ=0 |
for all x,y,u2,…,un∈X. By Lemma 2.1, we get DQ(x,y)=0 for all x,y∈X. Therefore the function Q:X→Y satisfies (1.4). Since f is an even function, Q is an even function. By Lemma 3.1 (see also [44, Corollary 2.2]), Q is quadratic. Then Q satisfies
Q(2x+y)+Q(2x−y)=2Q(x+y)+2Q(x−y)+4Q(x)−2Q(y) | (3.9) |
for all x,y∈X. Letting x=0 in (3.9), and by the evenness of Q, we get Q(2x)=4Q(x), so Q(2mx)=4mQ(x).
Replacing x by 2x in (3.6) and dividing both sides by |4|β, we obtain
‖f(22x)42−f(2x)4,u2,…,un‖β≤|4|−2βφ(0,2x,u2,…,un) | (3.10) |
for all x,u2,…,un∈X. It follows from (3.6) and (3.10) that
‖f(x)−f(22x)42,u2,…,un‖β≤max{|4|−βφ(0,x,u2,…,un),|4|−2βφ(0,2x,u2,…,un)} |
for all x,u2,…,un∈X.
By induction on m, we get
‖f(x)−f(2mx)4m,u2,…,un‖β≤max{φ(0,2ix,u2,…,un)|4|(i+1)β:0≤i<m} | (3.11) |
for all x,u2,…,un∈X. Replacing x by 2x in (3.11) and dividing both sides by |4|β, we get
‖f(2x)4−f(2m+1x)4m+1,u2,…,un‖β≤max{φ(0,2i+1x,u2,…,un)|4|(i+2)β:0≤i<m} | (3.12) |
for all x,u2,…,un∈X. By (3.6) and (3.12), we obtain
‖f(x)−f(2m+1x)4m+1,u2,…,un‖β≤max{φ(0,x,u2,…,un)|4|β,φ(0,2i+1x,u2,…,un)|4|(i+2)β:0≤i<m}=max{φ(0,2ix,u2,…,un)|4|(i+1)β:0≤i<m+1} |
for all x,u2,…,un∈X and m∈N. This completes the proof of (3.11). By taking the limit as m→∞ in (3.11) and using (3.2), one obtains (3.4).
Now we proceed to prove the uniqueness property of Q. Let Q′ be another quadratic function satisfying (3.4). Since
limi→∞˜φQ(2ix,u2,…,un)|4|iβ=limi→∞limm→∞1|4|iβmax{φ(0,2i+jx,u2,…,un)|4|jβ:0≤j<m}=limi→∞limm→∞max{φ(0,2jx,u2,…,un)|4|jβ:i≤j<m+i} | (3.13) |
for all x,u2,…,un∈X. So we have
‖Q(x)−Q′(x),u2,…,un‖β=limi→∞|4|−iβ‖Q(2ix)−Q′(2ix),u2,…,un‖β≤limi→∞|4|−iβmax{‖Q(2ix)−f(2ix),u2,…,un‖β,‖f(2ix)−Q′(2ix),u2,…,un‖β}≤1|4|βlimi→∞|4|−iβ˜φQ(2ix,u2,…,un)=0 |
for all x,u2,…,un∈X. If
limi→∞limm→∞max{|4|−jβφ(0,2jx,u2,…,un):i≤j<m+i}=0, |
then ‖Q(x)−Q′(x),u2,…,un‖β=0. By Lemma 2.1, Q=Q′, and the proof is complete.
Corollary 3.1. Let ρ:[0,∞)→[0,∞) be a function satisfying
(ⅰ) ρ(|2|t)≤ρ(|2|)ρ(t) for all t≥0,
(ⅱ) ρ(|2|)≤|2|rβ, where r is a fixed real number in r∈[2,∞).
Let δ>0, X be an n-normed space with norm ‖⋅,…,⋅‖, let f:X→Y be an even function with f(0)=0 and satisfying the inequality
‖Df(x,y),u2,…,un‖β≤δ[ρ(‖x,u2,…,un‖)+ρ(‖y,u2,…,un‖)] | (3.14) |
for all x,y,u2,…,un∈X. Then there exists a unique quadratic function Q:X→Y such that
‖f(x)−Q(x),u2,…,un‖β≤δ|4|βρ(‖x,u2,…,un‖) | (3.15) |
for all x,u2,…,un∈X.
Proof. Define φ:Xn+1→[0,∞) by
φ(x,y,u2,…,un):=δ[ρ(‖x,u2,…,un‖)+ρ(‖y,u2,…,un‖)]. |
Since |4|−βρ(|2|)<|2|(r−2)β≤1, we have
limm→∞φ(2mx,2my,u2,…,un)|4|mβ≤limm→∞(ρ(|2|)|4|β)mφ(x,y,u2,…,un)=0 |
for all x,y,u2,…,un∈X. Also
˜φQ(x,u2,…,un)=limm→∞max{φ(0,2jx,u2,…,un)|4|jβ:0≤j<m}=φ(0,x,u2,…,un) |
and
limi→∞limm→∞max{φ(0,2jx,u2,…,un)|4|jβ:i≤j<m+i}=limi→∞φ(0,2ix,u2,…,un)|4|iβ=0 |
for all x,u2,…,un∈X. Hence the result follows by Theorem 3.1.
Theorem 3.2. Let φ:Xn+1→[0,∞) be a function such that
limm→∞φ(2mx,2my,u2,…,un)|8|mβ=0 | (3.16) |
for all x,y,u2,…,un∈X. The limit
limm→∞max{|8|−jβφ(0,2jx,u2,…,un):0≤j<m} | (3.17) |
denoted by ˜φC(x,u2,…,un), exists for all x,u2,…,un∈X. Suppose that f:X→Y is an odd function satisfying
‖Df(x,y),u2,…,un‖β≤φ(x,y,u2,…,un) | (3.18) |
for all x,y,u2,…,un∈X. Then there exists a cubic function C:X→Y such that
‖f(x)−C(x),u2,…,un‖β≤1|8|β˜φC(x,u2,…,un) | (3.19) |
for all x,u2,…,un∈X. And if, in addition,
limi→∞limm→∞max{|8|−jβφ(0,2jx,u2,…,un):i≤j<m+i}=0 |
then C is the unique cubic function satisfying (3.19).
Proof. Putting x=0 in (3.18), and by the oddness of f, we get
‖f(2y)−8f(y),u2,…,un‖β≤φ(0,y,u2,…,un) | (3.20) |
for all y,u2,…,un∈X. If we replace y by x in (3.20) and divide both sides of (3.20) by |8|β, then we have
‖f(2x)8−f(x),u2,…,un‖β≤|8|−βφ(0,x,u2,…,un) | (3.21) |
for all x,u2,…,un∈X. Replacing x by 2jx in (3.21) and dividing both sides of (3.21) by |8|mβ, we obtain
‖f(2m+1x)8m+1−f(2mx)8m,u2,…,un‖β≤|8|−mβ|8|−βφ(0,2mx,u2,…,un) | (3.22) |
for all x,u2,…,un∈X and m∈N. Taking the limit as m→∞ and using (3.16), we have
limm→∞‖f(2m+1x)8m+1−f(2mx)8m,u2,…,un‖β=0 | (3.23) |
for all x,u2,…,un∈X. By Remark 2, we know that the sequence {f(2mx)8m} is Cauchy. Since Y is a complete space, we conclude that {f(2mx)8m} is convergent. So we can define the function C:X→Y by
C(x)=limm→∞f(2mx)8m |
for all x∈X.
Similar to the proof of Theorem 3.1, using induction one can show that
‖f(x)−f(2mx)8m,u2,…,un‖β≤max{φ(0,2ix,u2,…,un)|8|(i+1)β:0≤i<m} | (3.24) |
for all x,u2,…,un∈X and m∈N. By taking m to approach infinity in (3.24) and using (3.17), one obtains (3.19). It follows from (3.16) and (3.18) that
‖DC(x,y),u2,…,un‖β=limm→∞1|8|mβ‖Df(2mx,2my),u2,…,un‖β≤limm→∞φ(2mx,2my,u2,…,un)|8|mβ=0 |
for all x,y,u2,…,un∈X. By Lemma 2.1, we get DC(x,y)=0 for all x,y∈X. Therefore the function C:X→Y satisfies (1.4). Since f is an odd function, C is an odd function. By Lemma 3.2 (see also [44, Corollary 2.2]), C is cubic. Then C satisfies
C(2x+y)+C(2x−y)=2C(x+y)+2C(x−y)+12C(x) | (3.25) |
for all x,y∈X. Letting x=0 in (3.25), and by the oddness of C, we get C(2x)=8C(x), so C(2mx)=8mC(x). Let
limi→∞limm→∞max{|8|−jβφ(0,2jx,u2,…,un):i≤j<m+i}=0, |
for all x,u2,…,un∈X and let C′ be another cubic function satisfying (3.19). Then
‖C(x)−C′(x),u2,…,un‖β=limi→∞|8|−iβ‖C(2ix)−C′(2ix),u2,…,un‖β≤limi→∞|8|−iβmax{‖C(2ix)−f(2ix),u2,…,un‖β,‖f(2ix)−C′(2ix),u2,…,un‖β}≤1|8|βlimi→∞limm→∞max{φ(0,2jx,u2,…,un)|8|jβ:i≤j<m+i}=0 |
for all x,u2,…,un∈X. Therefore ‖C(x)−C′(x),u2,…,un‖β=0. By Lemma 2.1, we have C=C′. This completes the proof of the uniqueness of C.
Corollary 3.2. Let ρ:[0,∞)→[0,∞) be a function satisfying
(ⅰ) ρ(|2|t)≤ρ(|2|)ρ(t) for all t≥0,
(ⅱ) ρ(|2|)≤|2|λβ, where λ a fixed real number in λ∈[3,∞).
Let δ>0, X be an n-normed space with norm ‖⋅,…,⋅‖, let f:X→Y be an odd function satisfying the inequality
‖Df(x,y),u2,…,un‖β≤δ[ρ(‖x,u2,…,un‖)+ρ(‖y,u2,…,un‖)] | (3.26) |
for all x,y,u2,…,un∈X. Then there exists a unique cubic function C:X→Y such that
‖f(x)−C(x),u2,…,un‖β≤δ|8|βρ(‖x,u2,…,un‖) | (3.27) |
for all x,u2,…,un∈X.
Proof. The proof is similar to the proof of Corollary 3.1 and the result follows from Theorem 3.2.
Combining Theorems 3.1 and 3.2, we obtain the following theorem.
Theorem 3.3. Let φ:Xn+1→[0,∞) be a function such that
limm→∞φ(2mx,2my,u2,…,un)|4|mβ=limm→∞φ(2mx,2my,u2,…,un)|8|mβ=0 | (3.28) |
for all x,y,u2,…,un∈X. The limit
limm→∞max{φ(0,2jx,u2,…,un)|4|jβ:0≤j<m} | (3.29) |
denoted by ˜φQ(x,u2,…,un), and
limm→∞max{φ(0,2jx,u2,…,un)|8|jβ:0≤j<m} | (3.30) |
denoted by ˜φC(x,u2,…,un), exists for all x,u2,…,un∈X. Suppose that f:X→Y is a function satisfying f(0)=0 and
‖Df(x,y),u2,…,un‖β≤φ(x,y,u2,…,un) | (3.31) |
for all x,y,u2,…,un∈X. Then there exist a quadratic function Q:X→Y and a cubic function C:X→Y such that
‖f(x)−Q(x)−C(x),u2,…,un‖β≤1|8|βmax{max{˜φQ(x,u2,…,un),˜φQ(−x,u2,…,un)},1|2|βmax{˜φC(x,u2,…,un),˜φC(−x,u2,…,un)}} | (3.32) |
for all x,u2,…,un∈X, and if, in addition,
limi→∞limm→∞max{φ(0,2jx,u2,…,un)|4|jβ:i≤j<m+i}=limi→∞limm→∞max{φ(0,2jx,u2,…,un)|8|jβ:i≤j<m+i}=0 |
then Q is the unique quadratic function and C is the unique cubic function.
Proof. Let fe(x)=12[f(x)+f(−x)] for all x∈X. Then fe(0)=0, fe(−x)=fe(x) for all x∈X, and
‖Dfe(x,y),u2,…,un‖β≤1|2|βmax{φ(x,y,u2,…,un),φ(−x,−y,u2,…,un)} |
for all x,y,u2,…,un∈X. By Theorem 3.1, then there exists a unique quadratic function Q:X→Y satisfying
‖fe(x)−Q(x),u2,…,un‖β≤1|23|βmax{˜φQ(x,u2,…,un),˜φQ(−x,u2,…,un)} | (3.33) |
for all x,u2,…,un∈X.
Let fo(x)=12[f(x)−f(−x)] for all x∈X. Then fo(0)=0, fo(−x)=−fo(x), and
‖Dfo(x,y),u2,…,un‖β≤1|2|βmax{φ(x,y,u2,…,un),φ(−x,−y,u2,…,un)} |
for all x,y,u2,…,un∈X. By Theorem 3.2, then there exists a unique cubic function C:X→Y satisfying
‖fo(x)−C(x),u2,…,un‖β≤1|24|βmax{˜φC(x,u2,…,un),˜φC(−x,u2,…,un)} | (3.34) |
for all x,u2,…,un∈X. Hence, (3.32) follows from (3.33) and (3.34). This completes the proof of the theorem.
From now on, assume that |2|≠1, X is a non-Archimedean (n,β1)-normed space and Y is a complete non-Archimedean (n,β)-normed space, where n≥2 and 0<β,β1≤1. We can formulate our results as follows.
Theorem 3.4. Let θ∈[0,∞), p,q∈(0,∞) with (p+q)β1>2β. Suppose that f:X→Y is an even function satisfying f(0)=0 and
‖Df(x,y),u2,…,un‖β≤θ(‖x,u2,…,un‖pβ1‖y,u2,…,un‖qβ1+‖x,u2,…,un‖p+qβ1+‖y,u2,…,un‖p+qβ1) | (3.35) |
for all x,y,u2,…,un∈X. Then there exists a unique quadratic function Q:X→Y such that
‖f(x)−Q(x),u2,…,un‖β≤θ|4|β‖x,u2,…,un‖p+qβ1 | (3.36) |
for all x,u2,…,un∈X.
Proof. Putting x=0 in (3.35), and by the evenness of f, we get
‖f(2y)−4f(y),u2,…,un‖β≤θ‖y,u2,…,un‖p+qβ1 | (3.37) |
for all y,u2,…,un∈X. If we replace y by x in (3.37) and divide both sides of (3.37) by |4|β, then we have
‖f(2x)4−f(x),u2,…,un‖β≤θ|4|−β‖x,u2,…,un‖p+qβ1 | (3.38) |
for all x,u2,…,un∈X. Replacing x by 2mx in (3.38) and dividing both sides of (3.38) by |4|mβ, we obtain
‖f(2m+1x)4m+1−f(2mx)4m,u2,…,un‖β≤θ|4|−mβ|4|−β|2m(p+q)β1|‖x,u2,…,un‖p+qβ1=θ|4|−β|2(p+q)β1−2β|m‖x,u2,…,un‖p+qβ1 | (3.39) |
for all x,u2,…,un∈X and m∈N. Since (p+q)β1>2β and |2|≠1, we have
limm→∞‖f(2m+1x)4m+1−f(2mx)4m,u2,…,un‖β=0 | (3.40) |
for all x,u2,…,un∈X. By Remark 2, we know that the sequence {f(2mx)4m} is Cauchy. Since Y is a complete space, we conclude that {f(2mx)4m} is convergent. So we can define the function Q:X→Y by
Q(x)=limm→∞f(2mx)4m |
for all x∈X. Similar to the proof of Theorem 3.2, using induction one can show that
‖f(x)−f(2mx)4m,u2,…,un‖β≤θ|4|−β‖x,u2,…,un‖p+qβ1 | (3.41) |
for all x,u2,…,un∈X and m∈N. By taking the limit as m→∞ in (3.41), we obtain (3.36).
It follows from (3.35) and Lemma 2.2 that
‖DQ(x,y),u2,…,un‖β=limm→∞1|4|mβ‖Df(2mx,2my),u2,…,un‖β≤limm→∞θ|4|mβ(‖2mx,u2,…,un‖pβ1‖2my,u2,…,un‖qβ1+‖2mx,u2,…,un‖p+qβ1+‖2my,u2,…,un‖p+qβ1)=limm→∞θ|2(p+q)β1−2β|m(‖x,u2,…,un‖pβ1‖y,u2,…,un‖qβ1+‖x,u2,…,un‖p+qβ1+‖y,u2,…,un‖p+qβ1) |
for all x,y,u2,…,un∈X. Since (p+q)β1>2β and |2|≠1, we get
‖DQ(x,y),u2,…,un‖β=0 |
for all x,y,u2,…,un∈X. By Lemma 2.1, we get DQ(x,y)=0 for all x,y∈X. Therefore the function Q:X→Y satisfies (1.4). Since f is an even function, Q is an even function. By Lemma 3.1 (see also [44, Corollary 2.2]), Q is quadratic. Then, we get Q(2x)=4Q(x) and Q(2mx)=4mQ(x).
To prove the uniqueness property of Q. Let Q′ be another quadratic function satisfying (3.36). Then
‖Q(x)−Q′(x),u2,…,un‖β=limm→∞|4|−mβ‖Q(2mx)−Q′(2mx),u2,…,un‖β≤limm→∞|4|−mβmax{‖Q(2mx)−f(2mx),u2,…,un‖β,‖f(2mx)−Q′(2mx),u2,…,un‖β}≤θ|4|βlimm→∞|2(p+q)β1−2β|m‖x,u2,…,un‖p+qβ1=0 |
for all x,u2,…,un∈X. By Lemma 2.1, we get Q=Q′ for all x∈X. So Q is the unique quadratic function satisfying (3.36).
Theorem 3.5. Let θ∈[0,∞), p,q∈(0,∞) with (p+q)β1>3β. Suppose that f:X→Y is an odd function satisfying
‖Df(x,y),u2,…,un‖β≤θ(‖x,u2,…,un‖pβ1‖y,u2,…,un‖qβ1+‖x,u2,…,un‖p+qβ1+‖y,u2,…,un‖p+qβ1) |
for all x,y,u2,…,un∈X. Then there exists a unique cubic function C:X→Y such that
‖f(x)−C(x),u2,…,un‖β≤θ|8|β‖x,u2,…,un‖p+qβ1 |
for all x,u2,…,un∈X.
Proof. The proof is similar to the proof of Theorem 3.4.
Next, combining Theorems 3.4 and 3.5, we obtain the following result.
Theorem 3.6. Let θ∈[0,∞), p,q∈(0,∞) with (p+q)β1>3β. Suppose that f:X→Y is a function satisfying f(0)=0 and
‖Df(x,y),u2,…,un‖β≤θ(‖x,u2,…,un‖pβ1‖y,u2,…,un‖qβ1+‖x,u2,…,un‖p+qβ1+‖y,u2,…,un‖p+qβ1) |
for all x,y,u2,…,un∈X. Then there exist a unique quadratic function Q:X→Y and a unique cubic function C:X→Y such that
‖f(x)−Q(x)−C(x),u2,…,un‖β≤θ|8|β‖x,u2,…,un‖p+qβ1 |
for all x,u2,…,un∈X.
Proof. The proof is similar to the proof of Theorem 3.3 and the result follows from Theorems 3.4 and 3.5.
The author is grateful to the referees for their helpful comments and suggestions that help to improve the quality of the manuscript.
The author declares no conflict of interest in this paper.
[1] |
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66. doi: 10.2969/jmsj/00210064
![]() |
[2] | Y. J. Cho, P. C. S. Lin, S. S. Kim, A. Misiak, Theory of 2-Inner Product Spaces, Nova Science Publishers, Inc., New York, 2001. |
[3] | Y. J. Cho, Th. M. Rassias, R. Saadati, Stability of Functional Equations in Random Normed Spaces, Springer Science, New York, 2013. |
[4] | Y. J. Cho, C. Park, Th. M. Rassias, R. Saadati, Stability of Functional Equations in Banach Algebras, Springer Science, New York, 2015. |
[5] |
P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76–86. doi: 10.1007/BF02192660
![]() |
[6] | K. Ciepliński, T. Z. Xu, Approximate multi-Jensen and multi-quadratic mappings in 2-Banach spaces, Carpathian J. Math., 29 (2013), 159–166. |
[7] |
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59–64. doi: 10.1007/BF02941618
![]() |
[8] | R. W. Freese, Y. J. Cho, Geometry of Linear 2-Normed Spaces, Nova Science Publishers, Inc., New York, 2001. |
[9] |
S. Gähler, 2-metrische Räume und ihere topologische struktur, Math. Nachr., 26 (1963), 115–148. doi: 10.1002/mana.19630260109
![]() |
[10] |
S. Gähler, Lineare 2-normierte Räume, Math. Nachr., 28 (1964), 1–43. doi: 10.1002/mana.19640280102
![]() |
[11] |
S. Gähler, Über 2-Banach Räume, Math. Nachr., 42 (1969), 335–347. doi: 10.1002/mana.19690420414
![]() |
[12] |
P. Găvruţă, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436. doi: 10.1006/jmaa.1994.1211
![]() |
[13] |
M. E. Gordji, M. B. Savadkouhi, Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces, Appl. Math. Lett., 23 (2010), 1198–1202. doi: 10.1016/j.aml.2010.05.011
![]() |
[14] |
M. E. Gordji, M. B. Savadkouhi, Stability of cubic and quartic functional equations in non-Archimedean spaces, Acta Appl. Math., 110 (2010), 1321–1329. doi: 10.1007/s10440-009-9512-7
![]() |
[15] | H. Gunawan, M. Mashadi, On n-normed spaces, Int. J. Appl. Math. Sci., 27 (2001), 631–639. |
[16] | K. Hensel, Über eine neue Begründung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein, 6 (1897), 83–88. |
[17] |
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27 (1941), 222–224. doi: 10.1073/pnas.27.4.222
![]() |
[18] | D. H. Hyers, G. Isac, Th. M. Rassias, Stability of Functional Equations in Several variables, Birkh¨auser, Basel, 1998. |
[19] | K. W. Jun, H. M. Kim, The generalized of the Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274 (2002), 267–278. |
[20] | S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Science, New York, 2011. |
[21] | Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Science, New York, 2009. |
[22] |
A. K. Katsaras, A. Beoyiannis, Tensor products of non-Archimedean weighted spaces of continuous functions, Georgian Math. J., 6 (1999), 33–44. doi: 10.1023/A:1022926309318
![]() |
[23] | A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer Academic Publishers, Dordrecht, 1997. |
[24] |
C. I. Kim, S. W. Park, The generalized Hyers-Ulam stability of additive functional inequalities in non-Archimedean 2-normed space, Korean J. Math., 22 (2014), 339–348. doi: 10.11568/kjm.2014.22.2.339
![]() |
[25] | S. S. Kim, Y. J. Cho, Strict convexity in linear n-normed spaces, Demonstr. Math., 29 (1996), 739–744. |
[26] |
J. R. Lee, S. Y. Jang, C. Park, D. Y. Shin, Fuzzy stability of quadratic functional equations, Adv. Differ. Equ., 2010 (2010), 412160. doi: 10.1186/1687-1847-2010-412160
![]() |
[27] | R. Malceski, Strong n-convex n-normed spaces, Mat. Bilt., 21 (1997), 81–102. |
[28] |
A. K. Mirmostafaee, Approximately additive mappings in non-Archimedean normed spaces, Bull. Korean Math. Soc., 46 (2009), 387–400. doi: 10.4134/BKMS.2009.46.2.387
![]() |
[29] | A. Misiak, N-inner product spaces, Math. Nachr., 140 (1989), 299–319. |
[30] |
M. S. Moslehian, Th. M. Rassias, Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discrete Math., 1 (2007), 325–334. doi: 10.2298/AADM0702325M
![]() |
[31] |
M. S. Moslehian, Gh. Sadeghi, A Mazur-Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal., 69 (2008), 3405–3408. doi: 10.1016/j.na.2007.09.023
![]() |
[32] | A. Najati, F. Moradlou, Hyers-Ulam-Rassias stability of the Apollonius type quadratic mapping in non-Archimedean spaces, Tamsui Oxf. J. Math. Sci., 24 (2008), 367–380. |
[33] |
P. J. Nyikos, On some non-Archimedean spaces of Alexandroff and Urysohn, Topol. Appl., 91 (1999), 1–23. doi: 10.1016/S0166-8641(97)00239-3
![]() |
[34] |
W. G. Park, Approximate additive mappings in 2-Banach spaces and related topics, J. Math. Anal. Appl., 376 (2011), 193–202. doi: 10.1016/j.jmaa.2010.10.004
![]() |
[35] |
C. Park, M. E. Gordji, M. B. Ghaemi, H. Majani, Fixed points and approximately octic mappings in non-Archimedean 2-normed spaces, J. Ineq. Appl., 2012 (2012), 289. doi: 10.1186/1029-242X-2012-289
![]() |
[36] |
C. Park, Additive functional inequalities in 2-Banach spaces, J. Ineq. Appl., 2013 (2013), 447. doi: 10.1186/1029-242X-2013-447
![]() |
[37] |
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. doi: 10.1090/S0002-9939-1978-0507327-1
![]() |
[38] | Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic, Dordrecht, 2003. |
[39] | K. Ravi, R. Murali, M. Arunkumar, The generalized Hyers-Ulam-Rassias stability of a quadratic function equation, J. Ineq. Pure Appl. Math., 9 (2008), 20. |
[40] |
P. K. Sahoo, A generalized cubic functional equation, Acta Math. Sinica (English Series), 21 (2005), 1159–1166. doi: 10.1007/s10114-005-0551-3
![]() |
[41] | P. K. Sahoo, P. Kannappan, Introduction to Functional Equations, CRC Press, Boca Raton, 2011. |
[42] |
F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113–129. doi: 10.1007/BF02924890
![]() |
[43] | S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964. |
[44] |
L. G. Wang, B. Liu, The Hyers-Ulam stability of a functional equation deriving from quadratic and cubic functions in quasi-β-normed spaces, Acta Math. Sin., 26 (2010), 2335–2348. doi: 10.1007/s10114-010-9330-x
![]() |
[45] | A. White, 2-Banach spaces, Doctorial Diss., St. Louis Univ., 1968. |
[46] | A. White, 2-Banach spaces, Math. Nachr., 42 (1969), 43–60. |
[47] | T. Z. Xu, Approximate multi-Jensen, multi-Euler-Lagrange additive and quadratic mappings in n-Banach spaces, Abst. Appl. Anal., 2013 (2013), 648709. |
[48] | T. Z. Xu, J. M. Rassias, On the Hyers-Ulam stability of a general mixed additive and cubic functional equation in n-Banach spaces, Abst. Appl. Anal., 2012 (2012), 926390. |
[49] |
X. Z. Yang, L. D. Chang, G. F. Liu, G. N. Shen, Stability of functional equations in (n,β)-normed spaces, J. Ineq. Appl., 2015 (2015), 112. doi: 10.1186/s13660-015-0628-1
![]() |
1. | Mohammad Amin Tareeghee, Abbas Najati, Batool Noori, Choonkil Park, Asymptotic behavior of a generalized functional equation, 2022, 7, 2473-6988, 7001, 10.3934/math.2022389 | |
2. | Araya Kheawborisut, Siriluk Paokanta, Jedsada Senasukh, Choonkil Park, Ulam stability of hom-ders in fuzzy Banach algebras, 2022, 7, 2473-6988, 16556, 10.3934/math.2022907 | |
3. | S. Deepa, S. Bowmiya, A. Ganesh, Vediyappan Govindan, Choonkil Park, Jung Rye Lee, Mahgoub transform and Hyers-Ulam stability of nth order linear differential equations, 2022, 7, 2473-6988, 4992, 10.3934/math.2022278 | |
4. | Yamin Sayyari, Mehdi Dehghanian, Choonkil Park, Jung Rye Lee, Stability of hyper homomorphisms and hyper derivations in complex Banach algebras, 2022, 7, 2473-6988, 10700, 10.3934/math.2022597 | |
5. | Ramakrishnan Kalaichelvan, Uma Jayaraman, Gunaseelan Mani, Sabri T.M. Thabet, Imed Kedim, Thabet Abdeljawad, Stability of generalized cubic- and quartic-type functional equations in the setting of non-Archimedean spaces, 2025, 19, 1658-3655, 10.1080/16583655.2025.2474846 |