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1. Introduction

The stability problem of functional equations originated from a question of Ulam [43] concerning
the stability of group homomorphisms and it was affirmatively answered for Banach spaces by
Hyers [17]. Hyers’ theorem was generalized by Aoki [1] for approximate additive mappings and by
Rassias [37] for approximate linear mappings by considering an unbounded Cauchy difference.
Furthermore, a generalization of the Rassias’ theorem was obtained by Gédvruta [12] by replacing the
unbounded Cauchy difference by a general control function. The stability problems of several
functional equations have been extensively investigated by a number of authors and there are many
interesting results concerning this problem (see [2—4,8,18,20,21,38,41] and references therein). The
stability problems in non-Archimedean Banach spaces were studied in [13, 14,28,30-32].

The functional equation

Jx+y) + fx—y)=2f(x0) +2f() (1.1)

is called quadratic functional equation. In particular, every solution of the quadratic functional equation
is said to be a quadratic mapping. The Hyers-Ulam stability problem for the quadratic functional Eq
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(1.1) was proved by Skof [42] for mappings from a normed space to a Banach space. Cholewa [5]
noticed that Skof’s theorem remains true if the domain is replaced by an Abelian group. In 1992,
Czerwik [7] gave a generalization of the Skof—Cholewa’s result. Later, Lee et al. [26] proved Hyers-
Ulam-Rassias stability of quadratic functional Eq (1.1) in fuzzy Banach spaces.

In 2008, Ravi et al. [39] introduced the following quadratic functional equation

Ja+y) +fx=y)=2f(x+y) + 2f(x = y) +4f(x) = 2f(») (1.2)

and solved the generalized Hyers-Ulam stability of this Eq (1.2). Jun and Kim [19] considered the
following functional equation

JQx+y)+ fQx—y) =2f(x+y) +2f(x —y) + 12f(x) (1.3)

and they established the general solution and the generalized Hyers-Ulam stability of the functional Eq
(1.3) in Banach spaces. The functional Eq (1.3) and its pexiderized version

Ni2x+y)+ LQ2x—y) = filx+y) + falx —y) + f5(x)

were studied by Sahoo [40] on commutative groups using an elementary method quite different from

Jun and Kim [19]. The function f(x) = cx> satisfies the functional Eq (1.3), which is thus called a cubic

functional equation and every solution of the cubic functional equation is said to be a cubic function.
In 2010, Wang and Liu [44] considered the following mixed type functional equation

2fQx+y) +2fQRx—y) =4f(x +y) +4f(x = y) + 4f(2x) + f(2y) = 8f(x) = 8f (). (1.4)

It is easy to show that the function f(x) = ax?> + bx> is a solution of the functional Eq (1.4), where
a, b are arbitrary constants. They established the general solution of the functional Eq (1.4), and then
proved the generalized Hyers-Ulam stability of the Eq (1.4) in quasi-B-normed spaces.

In 2011, Park [34] investigated the approximate additive mappings, approximate Jensen mappings
and approximate quadratic mappings in 2-Banach spaces. This is the first result for the stability
problem of functional equations in 2-Banach spaces. Later, the stability problems of additive
functional inequalities, approximate multi-Jensen and multi-quadratic mappings in 2-Banach spaces
were also studied [6, 36], respectively. In 2012, Xu and Rassias [48] determined the generalized
Hyers-Ulam stability of the mixed additive-cubic functional equation in n-Banach spaces. In 2013,
Xu [47] investigated approximate multi-Jensen, multi-Euler-Lagrange additive and quadratic
mappings in n-Banach spaces.

Kim and Park [24] proved the generalized Hyers-Ulam stability of additive functional inequalities in
non-Archimedean 2-normed spaces. Park et al. [35] proved the generalized Hyers-Ulam stability of the
system of additive-cubic-quartic functional equations with constant coefficients in non-Archimedean
2-normed spaces. In 2015, Yang et al. [49] proved the generalized Hyers-Ulam stability of the Cauchy
functional equation and the Jensen functional equation in non-Archimedean (7, 8)-normed spaces and
that of the Pexiderized Cauchy functional equation in (n, 8)-normed spaces.

The main purpose of this paper is to establish the generalized Hyers-Ulam stability of the mixed
type quadratic-cubic functional Eq (1.4) in non-Archimedean (7, 8)-normed spaces.

Throughout this paper, let N denote the set of positive integers and i, j,m,n € N, and let n > 2 be
fixed.
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2. Preliminaries

The concept of 2-normed spaces was initially developed by Gihler [9,10] in the middle of the 1960s.
Then the concept of 2-Banach spaces was introduced by Géhler [11] and White [45,46]. A systematic
development of linear n-normed spaces is due to Kim and Cho [25], Malceski [27], Misiak [29] and
Gunawan and Mashadi [15]. Following [48,49], we recall some basic facts concerning (n, §)-normed
space and some preliminary results.

Definition 2.1. (cf. [49]) Let n € N, and let X be a real linear space withdimX > nand 0 < B < 1, let
I, ..., "llg : X" — R be a function satisfying the following properties:
(N1) [|x1, x2, ..., xullg = O if and only if x1, x,, . .., x, are linearly dependent;

(N2) ||x1, X2, . . ., X4l|g is invariant under permutation of x1, xa, . .., Xy,

(N3) ||CYX], X2y enes xn”ﬁ = |a|ﬁ||x1’ X2y enes xn”ﬁ;

(ND) |lx + y, X2, ..., Xallg < 1%, X2, .., Xallg + |y, X, . -, Xallg for all x,y,x1,%2,...,x, € X and a € R.
Then the function ||-, . ..,||g is called an (n,B)-norm on X and the pair (X, ||, ..., ||g) is called a linear

(n, B)-normed space or an (n, 3)-normed space.

Note that the concept of an (n, 8)-normed space is a generalization of an n-normed space (8 = 1)
and of a S-normed space (n = 1). For some examples of n-normed space, we can refer to [48,49].

Definition 2.2. (cf. [49]) A sequence {x;} in an (n, 8)-normed space X is called a convergent sequence
if there exists x € X such that

lim ”Xk —XY2... ’yn”ﬁ =0
k—o0
forall y,,...,y, € X. In this case, we call that {x;} converges to x or that x is the limit of {x;}, write
Xy — xas k — oo or lim x; = x.
k— o0

Definition 2.3. (cf. [49]) A sequence {x;} in an (n,5)-normed space X is called a Cauchy sequence if
= s 3, Yally = 0

forall y,,...,y, € X. A linear (n,3)-normed space in which every Cauchy sequence is convergent is
called a complete (n,3)-normed space.

Remark 2.1. (cf. [49]) Let (X, ||, ..., llg) be a linear (n,)-normed space, 0 < g < 1. One can show
that conditions (N2) and (N4) in Definition 2.1 imply that

|||X,)’2, .. ’}’n”,B - ||y,)’2, o ’yl’lHﬁl < ”x_y,yZ’ .. ’yl’lHﬁ
forall x,y,y,,...,y, € X.

Lemma 2.1. (cf. [49]). Let (X, |I,...,llgp) be a linear (n,B)-normed space,n >2,0 << 1. Ifxe X
and ||x,y2,...,Yllg = 0 forall y,,...,y, € X, then x = 0.
Lemma 2.2. (cf. [48,49]). Let (X,||-,...,|lp) be a linear (n,B)-normed space, n > 2,0 < < 1. Fora

convergent sequence {x;} in a linear (n, 3)-normed space X,
lim ”xk’yZ, oo ,)’n”ﬂ = ” lim Xics Y250+ - ,}’n”ﬁ
k—o0 k—oo

forally,,...,y, € X.
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In 1897, Hensel [16] has introduced a normed space which does not have the Archimedean property.
It turned out that non-Archimedean spaces have many nice applications [22,23,33].

Definition 2.4. (cf. [30]) By a non-Archimedean field we mean a field K equipped with a function
(valuation) | - | : K — [0, 00) such that for r, s € K, the following conditions hold:

(1) |rl =0 ifand only if r = 0;

(2) lrsl = Irllsl;

(3) |Ir + s| < max{|r|, |s|}.

Clearly [1| = | — 1| = 1 and |n| < 1 for all n € N. By the trivial valuation we mean the function
| - | taking everything but O into 1 and |0| = O (i.e., the function | - | is called the trivial valuation if
rl =1,Vre K,r # 0, and |0] = 0).

Definition 2.5. (cf. [30]) Let X be a vector space over a scalar field K with a non-Archimedean non-
trivial valuation |-|. A function ||-|| : X — R is called a non-Archimedean norm (valuation) if it satisfies
the following conditions:

(1) ||x]| = O if and only if x = 0O;

(1) For any r € K and x € X, ||rx|| = ||||x||;

(iii) For all x,y € X, ||x + y|| < max{||x||, [[y||} (the strong triangle inequality).

Then (X, || - ||) is called a non-Archimedean normed space.

Now, we give the definition of a non-Archimedean (n, 8)-normed space which has been introduced
in [49].

Definition 2.6. (cf. [49]) Let X be a real vector space with dimX > n over a scalar field K with
a non-Archimedean non-trivial valuation | - |, where n is a positive integer and 3 is a constant with
0 < B < 1. A real-valued function |-, ..., ||z : X" — R is called a non-Archimedean (n, 8)-norm on X
if the following conditions hold:

(NT) llx1, x2, . .., X4llg = O if and only if x1, x2, . . ., x, are linearly dependent;

(N2') ||x1, X2, . . ., X,llg is invariant under permutation of x1, Xz, . . ., Xu;

(N3') llaxy, x2, . . ., Xallp = | llxr, xa, . .. Xl

(N4) [lx + y, x2, ..., xillp < max{[lx, x2, ..., Xullg, 1y, X2, - . -, Xallg} for all x,y,x1,x2,...,x, € X and
a € K. Then (X, ||, ..., llp) is called a non-Archimedean (n, 5)-normed space.

It follows from the preceding definition that the non-Archimedean (7, )-normed space is a non-
Archimedean n-normed space if 8 = 1, and a non-Archimedean S-normed space if n = 1, respectively.

Remark 2.2. (cf. [49]) A sequence {x;} in a non-Archimedean (n,3)-normed space X is a Cauchy
sequence if and only if {x;.1 — x;} converges to zero.

3. Main results

In this section, we will assume that X is an n-normed space vector space and Y is a complete
non-Archimedean (n, 5)-normed space, where n > 2 and 0 < 8 < 1. We prove the generalized Hyers-
Ulam stability of the mixed type quadratic-cubic functional Eq (1.4) in non-Archimedean (n, 8)-normed
spaces. For the sake of convenience, given mapping f : X — Y, we define the difference operator
D¢(x,y) : X — Y of the functional Eq (1.4) by

Dy(x,y) =2f2x+y) + 2f2x —y) = 4f(x +y) = 4f(x = y) = 4f(2x) = f(2y) + 8f(x) + 8f(¥)
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for all x,y € X.
Before proceeding to the proof of the main results, we first introduce the following lemmas which
will be used in this paper.

Lemma 3.1. (cf. [44]). Let V and W be real vector spaces. If an even mapping f : V — W satisfies
(1.4), then f is quadratic.

Lemma 3.2. (cf. [44]). Let V and W be real vector spaces. If an odd mapping f : V — W satisfies
(1.4), then f is cubic.

Theorem 3.1. Let ¢ : X"™! — [0, o0) be a function such that

@M x, 2™y, un, ., Uy)

lim =0 3.1

forall x,y,u,...,u, € X. The limit

lim max {|4|_j'8<,0((), Vi) 0< < m} (3.2)
denoted by $o(x,uy, . .., u,), exists for all x,u,, ..., u, € X. Suppose that f : X — Y is an even function
satisfying f(0) = 0 and

||Df(x’ )’)’ Uz, ..., un”ﬁ < ()O(x’ YUz, ..., un) (3'3)
forall x,y,us,...,u, € X. Then there exists a quadratic function Q : X — Y such that
I

If(x) = O(x), uz, . ..., tnllg < P Go(x,up, ..., u,) (3.4)

forall x,u,,...,u, € X, and if, in addition,

lim lim max {|4|-fﬁ¢(0, 2ix Uy, .. ) i< j<mA+ i} =0

—00 Mm—00
then Q is the unique quadratic function satisfying (3.4).

Proof. Putting x = 0 in (3.3), and by the evenness of f, we get
If2y) —4f (), uz, ..., tallg < (0, y, ua, .. ., 1) (3.5)

forall y,u,, ..., u, € X. If we replace y by xin (3.5) and divide both sides of (3.5) by |4/%, then we have

Hf (2x)

1 < |47 @0, x, us, . .., u,) (3.6)

_f(x)’MZ’-'~’un
B

for all x, us, . ..,u, € X. Replacing x by 2"x in (3.6) and dividing both sides of (3.6) by |4/, we obtain

2m+1 m
‘ﬂ v _[ey < 1P 90,27 x s 1y) -7)

4m+1 4qm AR R

B
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for all x,uy,...,u, € X and m € N. Taking the limit as m — oo and using (3.1), we have
2m+1 m
fim L0 _SC0 Ll =0 (3.8)
—>c0 4m+1 4m
B
for all x,u,,...,u, € X. By Remark 2.2, we know that the sequence {f (i:")} is Cauchy. Since Y is a
complete space, we conclude that (L (i::x)} is convergent. So we can define the function Q : X — Y by
f (2"x)
0w = lim =

for all x € X. It follows from (3.1) and (3.3) that

e2"x, 2"y, uy, . .., Uy)

=0
4%

1
1Do(, y)s tz, - ttallp = lim Ml—mﬁllDf(me,Zmy),uz,.. s tnllp < lim

for all x,y,uy,...,u, € X. By Lemma 2.1, we get Dy(x,y) = 0 for all x,y € X. Therefore the function
Q : X — Y satisfies (1.4). Since f is an even function, Q is an even function. By Lemma 3.1 (see
also [44, Corollary 2.2]), Q is quadratic. Then Q satisfies

0Q2x+y) + 02x—y) =20(x +y) + 20(x — y) + 40(x) — 20(y) (3.9)

for all x,y € X. Letting x = 0 in (3.9), and by the evenness of Q, we get Q(2x) = 4Q(x), so Q(2"x) =

4" Q(x).
Replacing x by 2x in (3.6) and dividing both sides by |4//, we obtain

22 fQ2
||f( 2~ (4X)’ Uny .y Un|| < 147000, 2x,us, . .. 1) (3.10)
B
for all x, u,,...,u, € X. It follows from (3.6) and (3.10) that
22
Hf( ) - f( X) Uy,..., Uy S maX{|4|_ﬁ(p(0’ X, Uy ooy un)’ |4|_2ﬁ¢(07 2x9 Uzy..., un)}
B
for all x,u,,...,u, € X.
By induction on m, we get
f(2mx) ©(0,2'x,us, . .., uy) _
Hf( ) - oyl BSmaX{ o 0<i<m) (3.11)

for all x, u,, ..., u, € X. Replacing x by 2x in (3.11) and dividing both sides by |4}°, we get

fQ2x) Q™) @(0,2" x,u, . uy)
H ~ T JUDy ., Uy ; < max{ 28 :0<i< m} (3.12)
for all x, u,,...,u, € X. By (3.6) and (3.12), we obtain
fQ2""x) @0, x,ur, ... u) 00,2 x,u5, .. u)
“f(x)—w,uz,...,unBSmax{ VI , WIS .0£l<m}
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{<P(0, 2%, Uy, - - Uy)
= max

PTG :0£i<m+1}

for all x,uy,...,u, € X and m € N. This completes the proof of (3.11). By taking the limit as m — oo
in (3.11) and using (3.2), one obtains (3.4).

Now we proceed to prove the uniqueness property of Q. Let Q' be another quadratic function
satisfying (3.4). Since

P xua, . uy) 1 @(0,2™x, us, ..., uy) .
i SR = i i max (ES 0 0 < <o
O, 2J 9 sy Up . . .
= lim lim max{w( x|4b|tfﬁ Un) i< j<m+ z} (3.13)

for all x, u,,...,u, € X. So we have
10() = Q') 1t .. tlly = i P Q20) = Q' Q).
< Tim 41 max {10Q%) = FQI sty 1FR0) = Q') sl

1
whli ’B(pQ(Zx Uy, ... uy) =0

forall x,us,...,u, € X. If

lim lim max{|4| Bp(0,27x,up, ... uy) i< j<m+ i} =0,

l—)OO m—-0oo

then ||Q(x) — O'(x), ua, ..., uyllg = 0. By Lemma 2.1, Q = Q’, and the proof is complete. |

Corollary 3.1. Let p : [0, 00) — [0, 00) be a function satisfying

(1) p(1217) < p(12]) p(2) for all t = 0,

(i) p(12]) < 128, where r is a fixed real number in r € [2, o).

Let 6 > 0, X be an n-normed space with norm ||-,...,-|, let f : X — Y be an even function with
f(0) = 0 and satisfying the inequality

IDf(x,¥), ua, . .., unllpg < 6 [p(lx, ua, . .., unll) + p(lly, ua, . . .., uylD)] (3.14)

forall x,y,us,...,u, € X. Then there exists a unique quadratic function Q : X — Y such that

0
If(x) = O(x), uz, ..., upllg < Wp(llx, Upy ... Uyl]) (3.15)

forall x,u,,...,u, €X.
Proof. Define ¢ : X"*! — [0, o) by
O(x, ¥, un, ...y ) 1= O[p(llx, uo, .. ull) + oy, o, . .. unlD)].
Since 4| Pp(12]) < [2|""?# < 1, we have

2y, om
im £E%2" w2, ’”)<1' (pl(ilﬁl))ﬂso( V. U, . .

m—oo |4|mﬁ m—oo

L) =0
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for all x,y,uy,...,u, € X. Also

0’ 2] D) 9y p .
Go(x,uz,. .., u,) = lim maX{gD( x|4bltfﬁ Un) 0<j< m} = @0, x,uz, ..., u,)
and
0’2j7 99 n . . . . 072i’ LR g /)
lli_)rzlor}gr.}omax{"o( x|4bltjﬁ tn) :lSJ<m+l}:,-ll,rgw( xljlfﬁ ) =0
for all x, u,, ...,u, € X. Hence the result follows by Theorem 3.1. O
Theorem 3.2. Let ¢ : X" — [0, 00) be a function such that
. 02", 2"y, u, . Uy)
1 =0 3.16
e 8|8 ( )
forall x,y,u,...,u, € X. The limit
lim max{|8|—-'ﬁgo(o, 2x Uy, .. uy) 0L j< m} (3.17)

denoted by pc(x,us, . .., uy), exists for all x,u,, . ..,u, € X. Suppose that f : X — Y is an odd function
satisfying

1D (x, y), 2, . . . s tnllp < o(X, y, U, ..., ) (3.18)
forall x,y,us,...,u, € X. Then there exists a cubic function C : X — Y such that
|
1f(x) = C(x), uz, ..., unllg < 8P Gc(x, s, ..., ) (3.19)

forall x,u,,...,u, € X. And if, in addition,

lim Tim max{|8|-fﬂ¢(o, VXt ) i< j<m i} ~0

then C is the unique cubic function satisfying (3.19).
Proof. Putting x = 0 in (3.18), and by the oddness of f, we get
If(2y) = 8f (3, uz, . . o, tnllp < (0, y, ua, . . ., ) (3.20)

for all y, us, ..., u, € X. If we replace y by x in (3.20) and divide both sides of (3.20) by |8/%, then we
have

< 18179(0, x, us, . .., uy) (3.21)

Hf (2x)
8

_f(x)’MZa-“aun
B

for all x,u,,...,u, € X. Replacing x by 2/x in (3.21) and dividing both sides of (3.21) by |8, we
obtain

2m+1 2"1
‘ - 182 < B8 (0. 2"x, . 1ty) (3.22)

gm+1 {m 2500 et

B
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for all x,u,,...,u, € X and m € N. Taking the limit as m — oo and using (3.16), we have
2m+1 om
fim L& _SEOD ] =0 (3.23)
m—oco {m+l 8m
B
for all x,u,,...,u, € X. By Remark 2.2, we know that the sequence {f %:x)} is Cauchy. Since Y is a
complete space, we conclude that (L (é,:")} is convergent. So we can define the function C : X — Y by
2m
C) = lim L&Y
m— oo {m
forall x € X.
Similar to the proof of Theorem 3.1, using induction one can show that
f(2"x) 0(0,2'x,us, ..., uy) ) .
Hf(x) ~ gt < max { S 0si< m) (3.24)

for all x,u,,...,u, € X and m € N. By taking m to approach infinity in (3.24) and using (3.17), one
obtains (3.19). It follows from (3.16) and (3.18) that

e(2"x, 2"y, uy, . .., Uy)

=0
18]

: 1 o Am .
”DC(-x’y)’uZ’-"’un”ﬁ = nlll—r};lolgl_mﬁ”Df(z x72 y)’u29"'?un”,3 < n111—1>1c‘>10

for all x,y,u,,...,u, € X. By Lemma 2.1, we get Dc(x,y) = 0 for all x,y € X. Therefore the function
C : X — Y satisfies (1.4). Since f is an odd function, C is an odd function. By Lemma 3.2 (see
also [44, Corollary 2.2]), C is cubic. Then C satisfies

CQRx+y)+CQRx—y)=2C(x+y)+2C(x —y) + 12C(x) (3.25)

for all x,y € X. Letting x = 0 in (3.25), and by the oddness of C, we get C(2x) = 8C(x), so C(2"x) =
8"C(x). Let

lim lim max{|8|-fﬁ<p(0, 2ix Uy, .. uy) i< j<m i} =0,

[—00 Mm—00

for all x, u,,...,u, € X and let C’ be another cubic function satisfying (3.19). Then

IC()=C"(x), ua, - ..., uyllp = }Ll}lw|8|_iﬁ ICQ27x) = C'(2%), ua, - .., yllg

i—00

< lim 8/ max {||C<2"x> —F @)t s I 2T) — C2), unnﬁ}

i—00 m—o0

{90(0, 2ix,uy, .., Uy)

1
< — lim lim ma :
| * 1817

i< j<m+ i} =0
for all x,u,,...,u, € X. Therefore ||C(x) — C'(x),us, ..., uyllg = 0. By Lemma 2.1, we have C = C’.
This completes the proof of the uniqueness of C. O

Corollary 3.2. Let p : [0, 00) — [0, 00) be a function satisfying

(1) p(12lt) < p(12]) p(2) for all t = 0,
(i) p(|12]) < 121*, where A a fixed real number in A € [3, o).
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Let 6 > 0, X be an n-normed space with norm ||-,...,-||, let f : X — Y be an odd function satisfying
the inequality
IDs(x,y), ua, - - . s tnllp < S[p(llx, w2, - . . ull) + p(Ily, U2, - - . s ual)] (3.26)
forall x,y,us,...,u, € X. Then there exists a unique cubic function C : X — Y such that
o
I (x) = C(x), ua, . .., ullp < @p(llx, U, ..., Unll) (3.27)

forall x,u,...,u, €X.

Proof. The proof is similar to the proof of Corollary 3.1 and the result follows from Theorem 3.2.
m]
Combining Theorems 3.1 and 3.2, we obtain the following theorem.

Theorem 3.3. Let ¢ : X" — [0, 00) be a function such that

. ‘)D(mea zmy’ Upyy..., Mn) T ‘)0(2m-x’ 2my7 Uz, ..., ul’l) _
”lll_r)rc}o VI = ”121_{1010 8[B =0 (3.28)
forall x,y,u,...,u, € X. The limit
09 Zj s sy lUp .
lim max{"”( x|4b|‘jﬁ << m} (3.29)
denoted by o(x,uy, ..., u,), and
09 2] s sy lUp .
lim max{‘o( xl 87;3 W o< < m} (3.30)

denoted by pc(x,us, ..
satisfying f(0) = 0 and

I1Df(x,y), us, ..

for all x,y,u,,..
C : X — Y such that

., Uy), exists for all x,u,, ..

. ’un”ﬁ < QD(X,)’, uz,...

. u, € X. Suppose that f : X — Y is a function

Uy (3.31)

.,u, € X. Then there exist a quadratic function Q : X — Y and a cubic function

1
1f(x) = O(x) = C(x), u, . . .., uylg S@ max { max{@o(x, Us, . .., U,), po(=X, s, . .., Uy)},
P max{@c(x, Uz, ..., Up), pc(=x,us, ..., un)}} (3.32)

forall x,u,,...,u, € X, and if, in addition,

QO(O, 2j~x7 Uz, ..., un)

47

lim lim max{

i—00 m—00

©(0,2/x,u,, . ..

:i§j<m+i}

s Uy)

= lim lim max{

i—00 m—o0

B :z§]<m+l}:0

then Q is the unique quadratic function and C is the unique cubic function.
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Proof. Let f.(x) = 5[f(x) + f(—x)] for all x € X. Then f,(0) =0, f.(—x) = f.(x) for all x € X, and

1
2

1
D, (x,¥), ta, ..., tllg < —— max {@(x,y, Ua, ..., U,), (=X, =y, s, . .., Uy)}

121
for all x,y,u,,...,u, € X. By Theorem 3.1, then there exists a unique quadratic function Q : X —» Y
satisfying
1 - N
”,fe(x) - Q(x)’ MZ’ cees un”ﬁ S W max {‘,OQ(X, MZ» ey Mn)» SDQ(_X’ MZ’ cees ul’l)} (333)
for all x,u,,...,u, € X.

Let f,(x) = 1[f(x) = f(—x)] for all x € X. Then £,(0) = 0, f,(—x) = —f,(x), and

1
1D/, (x,¥), ta, ..., upllg < == max {@(x,y, Uy, ..., Uuy), (=X, =y, Us, ..., uy,)}

2K
for all x,y,u,,...,u, € X. By Theorem 3.2, then there exists a unique cubic function C : X — Y
satisfying
1 - -
lfo(x) = C(x), ua, ..., un”ﬁ < W max {SDC(X’ Uy, ..., Up), @c(=X, U, ..., Mn)} (3.34)

for all x, u,,...,u, € X. Hence, (3.32) follows from (3.33) and (3.34). This completes the proof of the
theorem. O

From now on, assume that |2| # 1, X is a non-Archimedean (n, 8;)-normed space and Y is a complete
non-Archimedean (n, 5)-normed space, where n > 2 and 0 < 3,8, < 1. We can formulate our results
as follows.

Theorem 3.4. Let 6 € [0, ), p,q € (0,00) with (p + q)B1 > 2B. Suppose that f : X — Y is an even
function satisfying f(0) = 0 and

ID(x,9),ta, ..y tnllp < 01X, s - .l lys o, - ually
+ ||x, up, . . ., unllgfq + |y, ua, ..., Mn||§1+q) (3.35)
forall x,y,us,...,u, € X. Then there exists a unique quadratic function Q : X — Y such that
0 +
If(x) = Q(x), 1z, . . ., uyllg < P 12, 42, sl (3.36)
forall x,u,,...,u, €X.

Proof. Putting x = 0 in (3.35), and by the evenness of f, we get

1FQ2y) = 4f () ttas s tallg < Olly, ua, - oyl (3.37)

1

for all y,u,, ...,u, € X. If we replace y by x in (3.37) and divide both sides of (3.37) by |4/, then we
have

<O P Ix, up, . . w27 (3.38)

Bi

”f(Zx) — F(X), tta, . . ., U

4

B
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for all x,us,...,u, € X. Replacing x by 2"x in (3.38) and dividing both sides of (3.38) by 4|, we
obtain

W@W@_ﬂﬂmu

- - +
o ettty | < O PR

8
= 0147 PP o u, I (3.39)

for all x, uy,...,u, € X and m € N. Since (p + ¢)B; > 2B and |2| # 1, we have

2m+1 om

fim [0 _SC™0 Ll =0 (3.40)

M—00 4m+1 4m 5
for all x,u,,...,u, € X. By Remark 2.2, we know that the sequence {f (i:")} is Cauchy. Since Y is a
complete space, we conclude that (L (i:x)} is convergent. So we can define the function Q : X — Y by

2m
0 = tim 120
for all x € X. Similar to the proof of Theorem 3.1, using induction one can show that
2m
‘Lf<X>-‘ f(4n{x), 2oty < 0PI 02, (3.41)
B

for all x,u,,...,u, € X and m € N. By taking the limit as m — oo in (3.41), we obtain (3.36).
It follows from (3.35) and Lemma 2.2 that

1
||DQ(X,y), Uz, ..., un”ﬁ hm TAnB ”Df(zmxa zm)’), Uy oo un”ﬁ

~ AP
0
hm——@ﬂan Sl 27,1, el + 12701, 2,1, mwﬂ
m—oo |4| ﬁ ﬂl
: -2 + +
= lim 9|2(p+q)ﬁ| ﬁlm ||x’ MZ,"-?un”p ||y’ MZa---’un”q + ||x’ MZ"'-aun”p q+ ||y’ Uz, ... un”p I
M— 00 B B 1

for all x,y,u,,...,u, € X. Since (p + q)B; > 2B and |2| # 1, we get

IDo(x,y), 2, ..., tnllg = O

for all x,y,uy,...,u, € X. By Lemma 2.1, we get Dy(x,y) = 0 for all x,y € X. Therefore the function
Q : X — Y satisfies (1.4). Since f is an even function, Q is an even function. By Lemma 3.1 (see
also [44, Corollary 2.2]), Q is quadratic. Then, we get Q(2x) = 4Q(x) and Q(2"x) = 4" Q(x).

To prove the uniqueness property of Q. Let Q' be another quadratic function satisfying (3.36). Then

1000) = Q'(x), ua, -, g = lim 471027 x) — Q' (2" X), s, - . .., yllg

SMMWWmﬂwﬁﬂﬂ—ﬂﬂmmwwmwwwm—Q@%Mmmmm}

m—00

0 )
W hm |2 OBI=2B 15wy un”l’“] =0

for all x,u,...,u, € X. By Lemma 2.1, we get Q = Q' for all x € X. So Q is the unique quadratic
function satisfying (3.36). O
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Theorem 3.5. Let 6 € [0, 00), p,q € (0,00) with (p + q)B1 > 3B. Suppose that f : X — Y is an odd
function satisfying

”Df(x’y)’ MQ’---’ul’l”,B < g(llxa I/tz,...,btn“pl ”y, uZa---’un”gl + ”-x’ U, ... un||p+q + ”y, Upy ... uﬂ”l""‘])
forall x,y,us,...,u, € X. Then there exists a unique cubic function C : X — Y such that
6 p+q
() = C0),uz, .. unllg < —= s 1o, -l
18
forall x,u,,...,u, €X.
Proof. The proof is similar to the proof of Theorem 3.4. O

Next, combining Theorems 3.4 and 3.5, we obtain the following result.
Theorem 3.6. Let 6 € [0, 00), p,qg € (0, 00) with (p + q)B1 > 3B. Suppose that f : X — Y is a function
satisfying f(0) = 0 and

p+ +
”Df(-x’y)’ u2’---’ul’l||ﬁ < g(llx’ MQ,...,Mnllgl ”y, uZa---’un”gl +||-x’ Uy ... un”ﬁ q+||y, Upy ... un”p q)

forall x,y,uy,...,u, € X. Then there exist a unique quadratic function Q : X — Y and a unique cubic
function C : X — Y such that

+,
gl

Ilf(x) = Q(x) = C(x), ua, ..

llx, ua, ..

s < =
JUllg <
T
forall x,u,,...,u, €X.

Proof. The proof is similar to the proof of Theorem 3.3 and the result follows from Theorems 3.4
and 3.5. m]
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