Citation: Elmetwally M. Elabbasy, Amany Nabih, Taher A. Nofal, Wedad R. Alharbi, Osama Moaaz. Neutral differential equations with noncanonical operator: Oscillation behavior of solutions[J]. AIMS Mathematics, 2021, 6(4): 3272-3287. doi: 10.3934/math.2021196
[1] | R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation Theory for Diy erence and Functional Differential Equations, Kluwer Academic, Dordrecht, The Netherlands, 2000. |
[2] | R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation criteria for certain nth order differential equations with deviating arguments, J. Math. Anal. Appl., 262 (2001), 601–622. |
[3] | B. Baculikova, J. Dzurina, J. R. Graef, On the oscillation of higher-order delay differential equations, Journal of Mathematical Sciences, 187 (2012), 387–400. |
[4] | M. Bartusek, M. Cecchi, Z. Dosl, M. Marini, Fourth-order differential equation with deviating argument, Abstr. Appl. Anal., 2012 (2012), 185242. |
[5] | M. Bohner, T. S. Hassan, T. Li, Fite–Hille–Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments, Indagationes Mathematicae, 29 (2018), 548–560. |
[6] | T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Zeitschrift für angewandte Mathematik und Physik, 70 (2019), 86. |
[7] | T. Li, Y. V. Rogovchenko, On asymptotic behavior of solutions to higher-order sublinear Emden–Fowler delay differential equations, Appl. Math. Lett., 67 (2017), 53–59. |
[8] | T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 106293. |
[9] | J. Džurina, S. R. Grace, I. Jadlovsk, T. Li, Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910–922. |
[10] | J. K. Hale, Theory of Functional Differential Equations, Springer, New York, 1977. |
[11] | I. Kiguradze, T. Chanturia, Asymptotic properties of solutions of nonautonomous ordinary differential equations, vol. 89, Kluwer Academic Publishers Group, Dordrecht, 2012. |
[12] | G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York, 1987. |
[13] | T. Li, Y. V. Rogovchenko, Oscillation criteria for even-order neutral differential equations, Appl. Math. Lett., 61 (2016), 35–41. |
[14] | T. Li, Y. V. Rogovchenko, Asymptotic behavior of higher-order quasilinear neutral differential equations, Abstr. Appl. Anal., 2014 (2014), 395368. |
[15] | T. Li, Tongxing, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 106293. |
[16] | F. Meng, R. Xu, Oscillation criteria for certain even order quasi-linear neutral differential equations with deviating arguments, Appl. Math. Comput., 190 (2007), 458–464. |
[17] | O. Moaaz, P. Kumam, O. Bazighifan, On the oscillatory behavior of a class of fourth-order nonlinear differential equation, Symmetry, 12 (2020), 524. |
[18] | O. Moaaz, A. Muhib, New oscillation criteria for nonlinear delay differential equations of fourth-order, Appl. Math. Comput., 377 (2020), 125192. |
[19] | O. Moaaz, I. Dassios, O. Bazighifan, Oscillation criteria of higher-order neutral differential equations with several deviating arguments, Mathematics, 8 (2020), 412. |
[20] | O. Moaaz, I. Dassios, O. Bazighifan, A. Muhib, Oscillation theorems for nonlinear differential equations of fourth-order, Mathematics, 8 (2020), 520. |
[21] | O. Moaaz, D. Baleanu, A. Muhib, New aspects for non-existence of kneser solutions of neutral differential equations with odd-order, Mathematics, 8 (2020), 494. |
[22] | Ch. G. Philos, On the existence of nonoscillatory solutions tending to zero at $\infty $ for differential equations with positive delays, Arch. Math., 36 (1981), 168–178. |
[23] | G. Viglialoro, J. Murcia, A singular elliptic problem related to the membrane equilibrium equations, Int. J. Comput. Math., 90 (2013), 2185–2196. |
[24] | T. Li, G. Viglialoro, Analysis and explicit solvability of degenerate tensorial problems, Bound. Value Probl., 2018 (2018), 1–13. |
[25] | G. Xing, T. Li, C. Zhang, Oscillation of higher-order quasi-linear neutral differential equations, Adv. Differ. Equ., 2011 (2011), 45. |
[26] | Z. Xu, Y. Xia, Integral averaging technique and oscillation of certain even order delay differential equations, J. Math. Appl. Anal., 292 (2004), 238–246. |
[27] | A. Zafer, Oscillation criteria for even order neutral differential equations, Appl. Math. Lett., 11 (1998), 21–25. |
[28] | B. G. Zhang, G. S. Ladde, Oscillation of even order delay differential equations, J. Math. Appl. Anal., 127 (1987), 140–150. |
[29] | C. Zhang, T. Li, B. Suna, E. Thandapani, On the oscillation of higher-order half-linear delay differential equations, Appl. Math. Lett., 24 (2011), 1618–1621. |
[30] | C. Zhang, R. P. Agarwal, M. Bohner, T. Li, New results for oscillatory behavior of even-order half-linear delay differential equations, Appl. Math. Lett., 26 (2013), 179–183. |
[31] | C. Zhang, T. Li, S. H. Saker, Oscillation of fourth-order delay differential equations, J. Math. Sci., 201 (2014), 296–309. |
[32] | Q. Zhang, J. Yan, Oscillation behavior of even order neutral differential equations with variable coefficients, Appl. Math. Lett., 19 (2006), 1202–1206. |
[33] | Q. Zhang, J. Yan, L. Gao, Oscillation behavior of even-order nonlinear neutral differential equations with variable coefficients, Comput. Math. Appl., 59 (2010), 426–430. |