The subjuct of this paper is the existence of solutions for a class of Caputo-Fabrizio fractional differential equations with instantaneous impulses. Our results are based on Schauder's and Monch's fixed point theorems and the technique of the measure of noncompactness. Two illustrative examples are the subject of the last section.
Citation: Saïd Abbas, Mouffak Benchohra, Juan J. Nieto. Caputo-Fabrizio fractional differential equations with instantaneous impulses[J]. AIMS Mathematics, 2021, 6(3): 2932-2946. doi: 10.3934/math.2021177
The subjuct of this paper is the existence of solutions for a class of Caputo-Fabrizio fractional differential equations with instantaneous impulses. Our results are based on Schauder's and Monch's fixed point theorems and the technique of the measure of noncompactness. Two illustrative examples are the subject of the last section.
[1] | S. Abbas, M. Benchohra, J. R. Graef, J. Henderson, Implicit fractional differential and integral equations: Existence and stability, De Gruyter, Berlin, 2018. |
[2] | S. Abbas, M. Benchohra, J. Graef, J. E. Lazreg, Implicit Hadamard fractional differential equations with impulses under weak topologies, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 26 (2019), 89–112. |
[3] | S. Abbas, M. Benchohra, G. M. N'Guérékata, Topics in fractional differential equations, Springer, New York, 2012. |
[4] | S. Abbas, M. Benchohra, G. M. N'Guérékata, Advanced fractional differential and integral equations, Nova Science Publishers, New York, 2015. |
[5] | B. Acay, R. Ozarslan, E. Bas, Fractional physical models based on falling body problem, AIMS Math., 5 (2020), 2608–2628. doi: 10.3934/math.2020170 |
[6] | R. P. Agarwal, S. Hristova, D. O'Regan, Exact solutions of linear Riemann-Liouville fractional differential equations with impulses, Rocky Mt. J. Math., 50 (2020), 779–791. |
[7] | W. Albarakati, M. Benchohra, J. E. Lazreg, J. J. Nieto, Anti-periodic boundary value problem for nonlinear implicit fractional differential equations with impulses, An. Univ. Oradea Fasc. Mat., 25 (2018), 13–24. |
[8] | J. C. Alvàrez, Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally convex spaces, Rev. Real. Acad. Cienc. Exact. Fis. Natur. Madrid, 79 (1985), 53–66. |
[9] | J. M. A. Toledano, T. D. Benavides, G. L. Acedo, Measures of noncompactness in metric fixed point theory, In: Operator theory, advances and applications, Birkhäuser, Basel, Boston, Berlin, 1997. |
[10] | J. Bana$\mathop {\rm{s}}\limits^{\rm{'}}$, K. Goebel, Measures of noncompactness in Banach spaces, Marcel Dekker, New York, 1980. |
[11] | M. Bekkouche, M. Guebbai, H. Kurulay, M. Benmahmoud, A new fractional integral associated with the Caputo-Fabrizio fractional derivative, Rend. Circ. Mat. Palermo, Series II, 2020. Available from: https://doi.org/10.1007/s12215-020-00557-8. |
[12] | M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive differential equations and inclusions, Hindawi Publishing Corporation, New York, 2006. |
[13] | M. Benchohra, J. Henderson, D. Seba, Measure of noncompactness and fractional differential equations in Banach spaces, Commun. Appl. Anal., 12 (2008), 419–428. |
[14] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Frac. Differ. Appl., 1 (2015), 73–85. |
[15] | M. A. Dokuyucu, A fractional order alcoholism model via Caputo-Fabrizio derivative, AIMS Math., 5 (2020), 781–797. doi: 10.3934/math.2020053 |
[16] | J. R. Graef, J. Henderson, A. Ouahab, Impulsive differential inclusions: A fixed point approch, De Gruyter, Berlin/Boston, 2013. |
[17] | E. Hernández, K. A. G. Azevedo, M. C. Gadotti, Existence and uniqueness of solution for abstract differential equations with state-dependent delayed impulses, J. Fixed Point Theory Appl., 21 (2019), 1–17. doi: 10.1007/s11784-018-0638-y |
[18] | E. Hernández, D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 141 (2013), 1641–1649. |
[19] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, 2006. |
[20] | F. Kong, J. J. Nieto, Control of bounded solutions for first-order singular differential equations with impulses, IMA J. Math. Control Inf., 37 (2020), 877–893. doi: 10.1093/imamci/dnz033 |
[21] | Y. Liu, E. Fan, B. Yin, H. Li, Fast algorithm based on the novel approximation formula for the Caputo-Fabrizio fractional derivative, AIMS Math., 5 (2020), 1729–1744. doi: 10.3934/math.2020117 |
[22] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92. |
[23] | H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., 4 (1980), 985–999. doi: 10.1016/0362-546X(80)90010-3 |
[24] | J. J. Nieto, J. M. Uzal, Positive periodic solutions for a first order singular ordinary differential equation generated by impulses, Qual. Theory Dyn. Syst., 17 (2018), 637–650. doi: 10.1007/s12346-017-0266-8 |
[25] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, (Engl. Trans. from the Russian), Gordon and Breach, Amsterdam, 1987. |
[26] | I. Stamova, G. Stamov, Functional and impulsive differential equations of fractional order: Qualitative analysis and applications, CRC Press, 2017. |
[27] | V. E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media, Springer, Heidelberg; Higher Education Press, Beijing, 2011. |
[28] | Z. You, J. Wang, D. O'Regan, Y. Zhou, Relative controllability of delay differential systems with impulses and linear parts defined by permutable matrices, Math. Methods Appl. Sci., 42 (2019), 954–968. doi: 10.1002/mma.5400 |
[29] | Y. Zhou, J. R. Wang, L. Zhang, Basic theory of fractional differential equations, 2Eds., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. |