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1. Introduction

Fractional differential equations have recently been applied in various areas. For some fundamental
results in the theory of fractional calculus and fractional differential equations we refer the reader to
[1, 3, 4, 19, 25, 27, 29], and the references therein. Some new aspects of the Caputo-Fabrizio derivative
can be seen in [11, 21] and the references therein. For some applications of a such derivative, we refer
to [5, 15].

Differential equations involving impulses effects; appear as a natural description of observed
evolution phenomena of several real world problems [12, 16, 18, 26]. Many physical situations are
modeled by impulsive differential equations, for example problems in optimal control theory and
problems in threshold theory in Biology. Major developments in the theory of impulsive fractional
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differential equations have been developed in the last years; see the books [1, 26], the papers
[1, 2, 7, 6, 17, 20, 24, 28], and the references therein.

Recently, in [4, 8, 13], the measure of noncompactness was applieded to some classes of functional
Riemann-Liouville or Caputo fractional differential equations in Banach spaces. See also the classical
monographs [9, 10].

In this paper first we investigate the existence of solutions for the following Cauchy problem of
Caputo-Fabrizio impulsive fractional differential equations

(CF Dr
tku)(t) = f (t, u(t)); t ∈ Ik, k = 0, · · · ,m,

u(t+
k ) = u(t−k ) + Lk(u(t−k )); k = 1, · · · ,m,

u(0) = u0,

(1.1)

where I0 = [0, t1], Ik = (tk, tk+1]; k = 1, · · · ,m; 0 = t0 < t1 < · · · < tm < tm+1 = T, u0 ∈ R, f :
Ik × R → R; k = 0, . . . ,m, Lk : R → R; k = 1, . . . ,m are given continuous functions, CF Dr

tk is the
Caputo-Fabrizio fractional derivative of order r ∈ (0, 1).

Next, by using the measure of noncompactness, we discuss the existence of solutions for
problem (1.1), when u0 ∈ E, f : Ik × E → E; ; k = 0, . . . ,m, Lk : E → E; k = 1, . . . ,m are given
functions, and (E‖ · ‖, ) is a real or complex Banach space.

2. Preliminaries

Let I := [0,T ]; T > 0, and C(I) := C(I,R) be the Banach space of all continuous functions from I
into R with the norm

‖u‖∞ = sup
t∈I
|u(t)|.

By L1(I) we denote the Banach space of measurable function u : I → R with are Lebesgue integrable,
equipped with the norm

‖u‖L1 =

∫ T

0
|u(t)|dt.

As usual, AC(I) denotes the space of all absolutely continuous functions from I into R.
LetMX denote the class of all bounded subsets of a metric space X.

Definition 2.1. [10] Let X be a complete metric space. A map µ :MX → [0,∞) is called a measure of
noncompactness on X if it satisfies the following properties for all B, B1, B2 ∈ MX.

(a) µ(B) = 0 if and only if B is precompact (Regularity),
(b) µ(B) = µ(B) (Invariance under closure),
(c) µ(B1 ∪ B2) = max{µ(B1), µ(B2)} (Semi-additivity).

Definition 2.2 ([10]). Let X be a Banach space and let ΩX be the family of bounded subsets of E. The
Kuratowski measure of noncompactness is the map µ : ΩX → [0,∞) defined by

µ(M) = inf{ε > 0 : M ⊂ ∪m
j=1M j, diam(M j) ≤ ε} ,

where M ∈ ΩE.
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The measure µ satisfies the following properties

(1) µ(M) = 0⇔ M is compact (M is relatively compact).
(2) µ(M) = µ(M).
(3) M1 ⊂ M2 ⇒ µ(M1) ≤ µ(M2).
(4) µ(M1 + M2) ≤ µ(M1) + µ(M2).
(5) µ(cM) = |c|µ(M), c ∈ R.
(6) µ(conv M) = µ(M).

Definition 2.3. [14] The Caputo-Fabrizio fractional integral of order 0 < r < 1 for a function h ∈ L1(I)
is defined by

(CF Ir
0h)(τ) =

2(1 − r)
M(r)(2 − r)

h(τ) +
2r

M(r)(2 − r)

∫ τ

0
h(x)dx, τ ≥ 0

where M(r) is normalization constant depending on r. For example, taking M(r) = 2
2−r , we have

(CF Ir
0h)(τ) = (1 − r)h(τ) + r

∫ τ

0
h(x)dx, τ ≥ 0.

Definition 2.4. [14] The Caputo-Fabrizio fractional derivative of order 0 < r < 1 for a function
h ∈ AC(I) is defined by

(CF Dr
0h)(τ) =

(2 − r)M(r)
2(1 − r)

∫ τ

0
exp(−

r
1 − r

(τ − x))h′(x)dx; τ ∈ I.

Note that CF Dr
0h = 0 if and only if h is a constant function.

For M(r) = 2
2−r , one has

(CF Dr
0h)(τ) =

1
1 − r

∫ τ

0
exp(−

r
1 − r

(τ − x))h′(x)dx; τ ∈ I.

Lemma 2.5. Let h ∈ L1(I). Then the linear Cauchy problem{
(CF Dr

0u)(t) = h(t); t ∈ I := [0,T ]
u(0) = u0,

(2.1)

has a unique solution given by

u(t) = C + arh(t) + br

∫ t

0
h(s)ds, (2.2)

where

ar =
2(1 − r)

(2 − r)M(r)
, br =

2r
(2 − r)M(r)

, C = u0 − arh(0).

Proof. Suppose that u satisfies (2.1). From Proposition 1 in [22]; the equation

(CF Dr
0u)(t) = h(t)
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implies that

u(t) − u(0) = ar(h(t) − h(0)) + br

∫ t

0
h(s)ds.

Thus from the initial condition u(0) = u0, we obtain

u(t) = u0 − arh(0) + arh(t) + br

∫ t

0
h(s)ds.

Hence we get (2.2).

For our purpose we will need the following fixed point theorems:

Theorem 2.6. (Schauder’s fixed point theorem [9]). Let X be a Banach space, D be a bounded closed
convex subset of X and T : D → D be a compact and continuous map. Then T has at least one fixed
point in D.

Theorem 2.7. (Monch’s fixed point theorem [23]). Let D be a bounded, closed and convex subset of a
Banach space such that 0 ∈ D, and let N be a continuous mapping of D into itself. If the implication

V = convN(V) or V = N(V) ∪ {0} ⇒ V is compact, (2.3)

holds for every subset V of D, then N has a fixed point.

3. Main results

In this section, we present some results concerning the existence of solutions for the problem (1.1).
Consider the Banach space

PC =
{
u : I → E : u ∈ C(Ik); k = 0, . . . ,m, and there exist u(t−k )
and u(t+

k ); k = 1, . . . ,m, with u(t−k ) = u(tk)
}
,

with the norm
‖u‖PC = sup

t∈I
‖u(t)‖.

In the case when E = R, we get
‖u‖PC = sup

t∈I
|u(t)|.

Definition 3.1. By a solution of the problem (1.1) we mean a function u ∈ PC that satisfies u(0) = u0,

(CF Dr
tku)(t) = f (t, u(t)); for t ∈ Ik, k = 0, · · · ,m, and

u(t+
k ) = u(t−k ) + Lk(u(t−k )); k = 1, · · · ,m.

Lemma 3.2. Let h : I → E be a continuous function. A function u ∈ PC is a solution of the fractional
integral equation 

u(t) = u0 − arh(0) + arh(t) + br

∫ t

0
h(s)ds; i f t ∈ I0,

u(t) = u0 − arh(0) +

k∑
i=1

Li(u(t−i )) + arh(t)

+br

∫ t

0
h(s)ds; i f t ∈ Ik, k = 1, . . . ,m,

(3.1)
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if and only if u is a solution of the following problem
(CF Dr

tku)(t) = h(t); t ∈ Ik, k = 0, . . . ,m,
u(t+

k ) = u(t−k ) + Lk(u(t−k )); k = 1, . . . ,m,
u(0) = u0.

(3.2)

Proof. Assume u satisfies (3.2). If t ∈ I0, then

(CF Dr
0u)(t) = h(t).

Lemma 2.5 implies that

u(t) = u0 − arh(0) + arh(t) + br

∫ t

0
h(s)ds.

If t ∈ I1, then
(CF Dr

t1u)(t) = h(t).

Lemma 2.5 implies that

u(t) = u(t1) − arh(t1) + arh(t) + br

∫ t

t1
h(s)ds.

Thus

u(t) = L1(u(t−1 )) + u(t−1 ) − arh(t1) + arh(t) + br

∫ t

t1
h(s)ds

= L1(u(t−1 )) + u0 − arh(0) + arh(t−1 )

+ br

∫ t−1

0
h(s)ds − arh(t1) + arh(t) + br

∫ t

t1
h(s)ds

= L1(u(t−1 )) + u0 − arh(0) + arh(t) + br

∫ t

0
h(s)ds.

If t ∈ I2, then
(CF Dr

t2u)(t) = h(t).

Then, we obtain

u(t) = u(t2) − arh(t2) + arh(t) + br

∫ t

t2
h(s)ds

= L2(u(t−2 )) + u(t−2 ) − arh(t2) + arh(t) + br

∫ t

t2
h(s)ds

= L2(u(t−2 )) + L1(u(t−1 )) + u0 − arh(0) + arh(t−2 ) + br

∫ t−2

0
h(s)ds

− arh(t2) + arh(t) + br

∫ t

t2
h(s)ds

= L2(u(t−2 )) + L1(u(t−1 )) + u0 − arh(0) + arh(t) + br

∫ t

0
h(s)ds.
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If t ∈ Ik, then again from Lemma 3.3 we get (3.1).

Conversely, suppose that u satisfies (3.1). If t ∈ I0, then

u(t) = u0 − arh(0) + arh(t) + br

∫ t

0
h(s)ds.

Thus, u(0) = u0 and using the fact that CF Dr
tk is the left inverse of (CF Ir

0 we get (CF Dr
0u)(t) = h(t).

Now, if t ∈ Ik; k = 1, . . . ,m, we get (CF Dr
tku)(t) = h(t). Also, we can easily show that

u(t+
k ) = u(t−k ) + Lk(u(t−k )).

Hence, if u satisfies (3.1) then we get (3.2).

As in the prove of the above Lemma, we can show the following one:

Lemma 3.3. A function u ∈ PC is a solution of problem (1.1), if and only if u satisfies the following
integral equation 

u(t) = c + ar f (t, u(t)) + br

∫ t

0
f (s, u(s))ds; i f t ∈ I0,

u(t) = c +

k∑
i=1

Li(u(t−i )) + ar f (t, u(t))

+br

∫ t

0
f (s, u(s))ds; i f t ∈ Ik, k = 1, . . . ,m,

(3.3)

where c = u0 − ar f (0, u0).

3.1. Existence results in the scalar case

The following hypotheses will be used in the sequel.

(H1) There exists a positive continuous function p ∈ C(Ik); k = 0, . . . ,m, such that

| f (t, u)| ≤ p(t)(1 + |u|); t ∈ Ik, u ∈ R.

(H2) There exists q∗ ≥ 0 such that
|Lk(u)| ≤ q∗(1 + |u|); u ∈ R.

(H3) For each bounded set B ⊂ PC, the set {t 7→ f (t, u(t)) : u ∈ B, t ∈ Ik; k = 0, . . . ,m} is
equicontinuous.

Set
p∗ = sup

t∈I
p(t).

Theorem 3.4. Assume that the hypotheses (H1) − (H3) hold. If

mq∗ + p∗(ar + Tbr) < 1, (3.4)

then the problem (1.1) has at least one solution defined on I.
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Proof. Consider the operator N : PC → PC defined by:
(Nu)(t) = c + ar f (t, u(t)) + br

∫ t

0
f (s, u(s))ds; i f t ∈ I0,

(Nu)(t) = c +

k∑
i=1

Li(u(t−i )) + ar f (t, u(t))

+br

∫ t

0
f (s, u(s))ds; i f t ∈ Ik, k = 1, . . . ,m.

(3.5)

Clearly, the fixed points of the operator N are solutions of the problem (1.1).
Let R > 0, such that

R >
|c| + mq∗ + p∗(ar + Tbr)
1 − mq∗ − p∗(ar + Tbr)

,

and consider the ball BR := B(0,R) = {w ∈ ‖w‖PC ≤ R}.
For each t ∈ I0, and u ∈ PC, we have

|(Nu)(t)| =

∣∣∣∣∣∣c + ar f (t, u(t)) + br

∫ t

0
f (s, u(s))ds

∣∣∣∣∣∣
≤ |c| + ar| f (t, u(t))| + br

∫ t

0
| f (s, u(s))|ds

≤ |c| + p∗(ar + Tbr)(1 + R)
≤ R.

On the other hand, for each t ∈ Ik : k = 1, . . . ,m, and u ∈ PC, we have

|(Nu)(t)| ≤
k∑

i=1

|Li(u(t−i ))| + |c| + ar| f (t, u(t))| + br

∫ t

0
| f (s, u(s))|ds

≤ mq∗(1 + R) + |c| + p∗(ar + Tbr)(1 + R)
≤ R.

Hence, for t ∈ I, and u ∈ PC, we get

‖N(u)‖PC ≤ mq∗ + |c| + p∗(ar + Tbr) := R.

This proves that N(BR) ⊂ BR. We shall show that the operator N : BR → BR satisfies all the
assumptions of Theorem 2.6. The proof will be given in two steps.

Step 1. N : BR → BR is continuous.
Let {un}n∈N be a sequence such that un → u in BR. Then, for each t ∈ I0, we have

|(Nun)(t) − (Nu)(t)| ≤ ar| f (t, un(t)) − f (t, u(t))| + br

∫ t

0
| f (s, un(s)) − f (s, u(s))|ds. (3.6)

Since un → u as n → ∞ and f is continuous, then by using the Lebesgue dominated convergence
theorem, (3.6) implies

‖N(un) − N(u)‖PC → 0 as n→ ∞.
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Also, for each t ∈ Ik; k = 1, . . . ,m, we have

|(Nun)(t) − (Nu)(t)| ≤
k∑

i=1

|Li(un(t−i )) − Li(u(t−i ))|

+ ar| f (t, un(t)) − f (t, u(t))|

+ br

∫ t

0
| f (s, un(s)) − f (s, u(s))|ds.

Again, we get the continuity of our operator N.

Step 2. N(BR) is bounded and equicontinuous.
Since N(BR) ⊂ BR and BR is bounded, then N(BR) is bounded.

Next, let τ1, τ2 ∈ Ik; k = 0, . . . ,m; such that tk ≤ τ1 < t ≤ τ2 ≤ tk+1 and let u ∈ BR. Then, from the
continuity of f , and (H3), we get

|(Nu)(τ2) − (Nu)(τ1)| ≤ ar| f (τ2, u(τ2)) − f (τ1, u(τ1))| + br

∫ τ2

τ1

| f (s, u(s))|ds

≤ ar| f (τ2, u(τ2)) − f (τ1, u(τ1))| + (1 + R)p∗br(τ2 − τ1)
−→ 0 as τ1 −→ τ2.

Hence, N(BR) is bounded and equicontinuous.
As a consequence of the above two steps, together with the Ascoli-Arzelá theorem, we can conclude

that N : BR → BR is continuous and compact. From an application of Theorem 2.6, we deduce that N
has a fixed point u which is a solution of problem (1.1).

3.2. Existence results in Banach spaces

The following hypotheses will be used in the sequel.

(H4) The function t 7→ f (t, u) is measurable on Ik; k = 0, . . . ,m, for each u ∈ E, and the function
u 7→ f (t, u) is continuous on E for each t ∈ Ik; k = 0, . . . ,m,

(H5) There exists a positive continuous function p ∈ C(Ik); k = 0, . . . ,m, such that

‖ f (t, u)‖ ≤ p(t)(1 + ‖u‖); t ∈ Ik, u ∈ E,

(H6) For each bounded set B ⊂ E and for each t ∈ Ik; k = 0, . . . ,m, we have

µ( f (t, B)) ≤ p(t)µ(B); t ∈ Ik, k = 0, . . . ,m,

(H7) There exists q∗ ≥ 0, such that

‖Lk(u)‖ ≤ q∗(1 + ‖u‖); u ∈ E,

and, for each bounded set B ⊂ E; k = 0, . . . ,m, we have

µ(Lk(B)) ≤ q∗µ(B),
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(H8) For each bounded set B1 ⊂ PC, the set {t 7→ f (t, u(t)) : u ∈ B1, t ∈ Ik; k = 0, . . . ,m} is
equicontinuous.

Set
p∗ = sup

t∈I
p(t).

Theorem 3.5. Assume that the hypotheses (H4) − (H8) hold. If

ρ := mq∗ + ar p∗ + Tbr p∗ < 1, (3.7)

then the problem (1.1) has at least one solution defined on I.

Proof. Consider the operator N : PC → PC defined in (3.5), and let BR ⊂ PC be the ball centered
at the origin with radius R ≥ ‖c‖+ρ1−ρ . For each t ∈ I0, and u ∈ PC, we have

‖((Nu)(t)‖ =

∥∥∥∥∥∥c + ar f (t, u(t)) + br

∫ t

0
f (s, u(s))ds

∥∥∥∥∥∥
≤ ‖c‖ + ar‖ f (t, u(t))‖ + br

∫ t

0
‖ f (s, u(s))‖ds

≤ ‖c‖ + p∗(ar + Tbr)(1 + R)
≤ ‖c‖ + mq∗(1 + R) + p∗(ar + Tbr)(1 + R)
≤ R.

Next, for each t ∈ Ik : k = 1, . . . ,m, and u ∈ PC, we get

‖(Nu)(t)‖ ≤
k∑

i=1

‖Li(u(t−i ))‖ + ‖c‖ + ar‖ f (t, u(t))‖ + br

∫ t

0
‖ f (s, u(s))‖ds

≤ ‖c‖ + mq∗(1 + R) + p∗(ar + Tbr)(1 + R)
≤ R.

Hence, for t ∈ I, and u ∈ PC, we get
‖N(u)‖PC ≤ R.

This proves that N transforms the ball BR into itself.
We prove in three steps that N : BR → BR satisfies all the assumptions of Theorem 2.7.

Step 1. N : BR → BR is continuous.
Let {un}n∈N be a sequence such that un → u in BR. Then, for each t ∈ I0, we have

‖(Nun)(t) − (Nu)(t)‖ ≤ ar‖ f (t, un(t)) − f (t, u(t))‖ + br

∫ t

0
‖ f (s, un(s)) − f (s, u(s))‖ds.

Since un → u as n→ ∞ and f is continuous, then (3.6) implies

‖N(un) − N(u)‖PC → 0 as n→ ∞,
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by the Lebesgue dominated convergence theorem.
Also, for each t ∈ Ik; k = 1, . . . ,m, we get

‖(Nun)(t) − (Nu)(t)‖ ≤
k∑

i=1

‖Li(un(t−i )) − Li(u(t−i ))‖

+ ar‖ f (t, un(t)) − f (t, u(t))‖

+ br

∫ t

0
‖ f (s, un(s)) − f (s, u(s))‖ds.

Hence, we get the continuity of our operator N.

Step 2. N(BR) is bounded and equicontinuous.
Since N(BR) ⊂ BR and BR is bounded, then N(BR) is bounded.

Next, let τ1, τ2 ∈ Ik; k = 0, . . . ,m; such that tk ≤ τ1 < t ≤ τ2 ≤ tk+1 and let u ∈ BR. Then, we have

‖(Nu)(τ2) − (Nu)(τ1)‖ ≤ ar‖ f (τ2, u(τ2)) − f (τ1, u(τ1))‖ + br

∫ τ2

τ1

‖ f (s, u(s))‖ds

≤ ar‖ f (τ2, u(τ2)) − f (τ1, u(τ1))‖ + br p∗(1 + R)(τ2 − τ1).

From the continuity of f , and (H8) the right-hand side of the above inequality tends to zero as τ1 −→ τ2,

and such convergence is uniform in u ∈ BR. Hence, N(BR) is bounded and equicontinuous.

Step 3. The implication (2.3) holds.
Now let V be a subset of BR such that V ⊂ N(V) ∪ {0}, V is bounded and equicontinuous and therefore
the function t → v(t) = µ(V(t)) is continuous on I. By (H6) and the properties of the measure µ, for
each t ∈ I0, we have

v(t) ≤ µ((NV)(t) ∪ {0})
≤ µ((NV)(t))

≤ arv(t) + br

∫ t

0
v(s)ds

≤ ar p(t)µ(V(t) + br

∫ t

0
p(s)µ(V(s))ds

≤ ar p∗µ(V(t) + br p∗
∫ t

0
µ(V(s))ds

≤ (ar + Tbr)p∗‖v‖PC.

Thus
‖v‖PC ≤ ρ‖v‖PC.

Also, for each t ∈ Ik; k = 1, . . . ,m, we get
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v(t) ≤ µ((NV)(t) ∪ {0})
≤ µ((NV)(t))

≤ q∗
k∑

i=1

µ(V(s)) + ar p(t)µ(V(t) + br

∫ t

0
p(s)µ(V(s))ds

≤ q∗
k∑

i=1

µ(V(t)) + ar p∗µ(V(t) + br p∗
∫ t

0
µ(V(s))ds

≤ (mq∗ + ar p∗ + Tbr p∗)‖v‖PC.

Hence
‖v‖PC ≤ ρ‖v‖PC.

From (3.7), we get ‖v‖PC = 0, that is v(t) = β(V(t)) = 0, for each t ∈ I, and then V(t) is relatively
compact in E. From the Ascoli-Arzelà theorem, V is relatively compact in BR. We conclude by
Theorem 2.7 that N has a fixed point which is a solution of (1.1).

4. Examples

Example 1. Consider the problem of impulsive Caputo-Fabrizio fractional differential equation
(CF Dr

tku)(t) = f (t, u(t)); t ∈ Ik, k = 0, . . . ,m,
u(t+

k ) = u(t−k ) + Lk(u(t−k )); k = 1, . . . ,m,
u(0) = 0,

; r ∈ (0, 1), t ∈ [0, 1], (4.1)

where

f (t, u(t)) =
t2

(1 + 2ar + 2br)(1 + |u(t)|)

(
e−7 +

1
et+5

)
(1 + u(t)); t ∈ [0, 1],

and

Lk(u(t−k )) =
1 + |u(t−k )|

3e5(1 + 2ar + 2br)
; k = 1, . . . ,m.

Clearly, the function f is continuous.
For each t ∈ [0, 1], we have

| f (t, u(t))| ≤
t2

1 + 2ar + 2br

(
e−7 +

1
et+5

)
(1 + |u(t)|),

and

|Lk(u)| ≤
e−5(1 + |u|)

3(1 + 2ar + 2br)
.

Hence, the hypothesis (H1) is satisfied with

p∗ =
2ce−5

1 + 2ar + 2br
,
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and (H2) is satisfied with

q∗ =
e−5

3(1 + 2ar + 2br)
.

We shall show that condition (3.4) holds with T = 1. Indeed; if we assume, for instance, that the
number of impulses m = 3, then we have

mq∗ + p∗(ar + Tbr) = e−5 < 1.

Simple computations show that all conditions of Theorem 3.4 are satisfied. It follows that the
problem (4.1) has at least one solution on [0, 1].

Example 2. Let

E = l1 =

u = (u1, u2, . . . , un, . . .),
∞∑

n=1

|un| < ∞


be the Banach space with the norm

‖u‖E =

∞∑
n=1

|un|.

Consider the problem of Caputo-Fabrizio fractional impulsive differential equation
(CF Dr

tku)(t) = f (t, u(t)); t ∈ Ik, k = 0, . . . ,m,
u(t+

k ) = u(t−k ) + Lk(u(t−k )); k = 1, . . . ,m,
u(0) = 0,

; r ∈ (0, 1), t ∈ [0, 1], (4.2)

where u = (u1, u2, . . . , un, . . .), f = ( f1, f2, . . . , fn, . . .),
CF Dr

tku = (CF Dr
tku1, . . . ,

CF Dr
tkun, . . .); k = 0, . . . ,m,

fn(t, u(t)) =
cr

1 + ‖u(t)‖E

(
e−7 +

1
et+5

)
(2−n + un(t)); t ∈ [0, 1],

Lk(u(t−k )) =
cr(1 + u(t−k ))

3e4 ; k = 1, . . . ,m,

and cr = 1
1+ar+br

.

For each u ∈ E and t ∈ [0, 1], we have

‖ f (t, u(t)‖E ≤ cr

(
e−7 +

1
et+5

)
(1 + ‖u(t)‖E),

and
‖Lk(u(t−k ))‖E ≤

cr

3e4 (1 + ‖u(t−k )‖E).

Hence, the hypothesis (H5) is satisfied with p∗ = 2cre−5, and (H7) is satisfied with q∗ = cr
3 e−4. We shall

show that condition (3.7) holds with T = 1. Indeed; if we assume, for instance, that the number of
impulses m = 3, then we have

ρ = mq∗ + ar p∗ + Tbr p∗ = cr(1 + ar + br)e−5 = e−5 < 1.

Simple computations show that all conditions of Theorem 3.5 are satisfied. It follows that the
problem (4.2) has at least one solution on [0, 1].
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5. Conclusions

In this paper, we provided some sufficient conditions ensuring the existence of solutions for
functional fractional differential equations with instantaneous impulses; involving the
Caputo-Fabrizio fractional derivative. The techniqued used are the fixed point theory and the measure
of noncompactness.
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