Nonlinear Bresse-Timoshenko beam model with thermal, mass diffusion and theormoelastic effects is studied. We state and prove the well-posedness of problem. The global existence and uniqueness of solution is proved by using the classical Faedo-Galerkin approximations along with two a priori estimates. We prove an exponential stability estimate under assumption $ (2.3)_{1} $ and polynomial decay rate for solution under $ (2.3)_{2} $, by using a multiplier technique combined with an appropriate Lyapuniv functions.
Citation: Khaled zennir, Djamel Ouchenane, Abdelbaki Choucha, Mohamad Biomy. Well-posedness and stability for Bresse-Timoshenko type systems with thermodiffusion effects and nonlinear damping[J]. AIMS Mathematics, 2021, 6(3): 2704-2721. doi: 10.3934/math.2021164
Nonlinear Bresse-Timoshenko beam model with thermal, mass diffusion and theormoelastic effects is studied. We state and prove the well-posedness of problem. The global existence and uniqueness of solution is proved by using the classical Faedo-Galerkin approximations along with two a priori estimates. We prove an exponential stability estimate under assumption $ (2.3)_{1} $ and polynomial decay rate for solution under $ (2.3)_{2} $, by using a multiplier technique combined with an appropriate Lyapuniv functions.
[1] | D. S. A. Junior, A. J. A. Ramos, On the nature of dissipative Timoshenko systems at light of the second spectrum, Z. Angew. Math. Phys., 68 (2017), 1–31. doi: 10.1007/s00033-016-0745-9 |
[2] | D. S. A. Junior, A. J. A. Ramos, M. L. Santos, R. M. L. Gutemberg, Asymptotic behavior of weakly dissipative Bresse-Timoshenko system on influence of the second spectrum of frequency, Z. Angew. Math. Mech., 98 (2018), 1320–1333. doi: 10.1002/zamm.201700211 |
[3] | D. S. A. Junior, I. Elishakoff, A. J. A. Ramos, R. M. L. Gutemberg, The hypothesis of equal wave speeds for stabilization of Bresse-Timoshenko system is not necessary anymore: The time delay cases, IMA J. Appl. Math., 84 (2019), 763–796. doi: 10.1093/imamat/hxz014 |
[4] | D. Andrade, M. A. Jorge Silva, T. F. Ma, Exponential stability for a plate equation with p-Laplacian and memory terms, Math. Methods Appl. Sci., 4 (2012), 417–426. |
[5] | M. Aouadi, A. Castejon, Properties of global and exponential attractors for nonlinear thermo-diffusion Timoshenko system, J. Math. Phys., 60 (2019), 081503. doi: 10.1063/1.5066224 |
[6] | T. EL Arwadi, M. I. M. Copetti, W. Youssef, On the theoretical and numerical stability of the thermoviscoelastic Bresse system, Z. Angew. Math. Mech., 99 (2019), 1–20. |
[7] | J. Awrejcewicz, A. V. Krysko, V. Soldatov, V. A. Krysko, Analysis of the nonlinear dynamics of the Timoshenko flexible beams using wavelets, J. Comput. Nonlinear Dyn., 7 (2012), 1–14. |
[8] | J. Awrejcewicz, A. V. Krysko, S. P. Pavlov, M. V. Zhigalov, V. A. Krysko, Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness, Mech. Syst. Signal Process., 93 (2017), 415–430. doi: 10.1016/j.ymssp.2017.01.047 |
[9] | J. A. C. Bresse, Cours de Mécaniques Appliquée, Mallet-Bachelier, Paris, 1859. |
[10] | A. Choucha, D. Ouchenane, K. Zennir, B. Feng, Global well‐posedness and exponential stability results of a class of Bresse‐Timoshenko‐type systems with distributed delay term, Math. Methods Appl. Sci., (2020), 1–26. Available from: https://doi.org/10.1002/mma.6437. |
[11] | I. Elishakoff, An equation both more consistent and simpler than the Bresse-Timoshenko equation, In: Advances in mathematical modeling and experimental methods for materials and structures, SMIA, Springer, Berlin, 168 (2010), 249–254. |
[12] | B. Feng, Global well-posedness and stability for a viscoelastic plate equation with a time delay, Math. Probl. Eng., 2015 (2015), 1–10. |
[13] | B. Feng, D. S. A Junior, M. J. dos Santos, L. G. R. Miranda, A new scenario for stability of nonlinear Bresse-Timoshenko type systems with time dependent delay, Z. Angew. Math. Mech., 100 (2020), 1–17. |
[14] | M. A. J. Silva, T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of p-Laplacian type, IMA J. Appl. Math., 78 (2013), 1130–1146. doi: 10.1093/imamat/hxs011 |
[15] | J. U. Kim, A boundary thin obstacle problem for a wave equation, Commun. Part. Differ. Equ., 14 (1989), 1011–1026. doi: 10.1080/03605308908820640 |
[16] | A. V. Krysko, J. Awrejcewicz, O. A. Saltykova, M. V. Zhigalov, V. A. Krysko, Investigations of chaotic dynamics of multi-layer beams taking into account rotational inertial effects, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2568–2589. doi: 10.1016/j.cnsns.2013.12.013 |
[17] | V. A. Krysko, J. Awrejcewicz, V. M. Bruk, On the solution of a coupled thermo-mechanical problem for non-homogeneous Timoshenko-type shells, J. Math. Anal. Appl., 273 (2002), 409–416. doi: 10.1016/S0022-247X(02)00247-0 |
[18] | J. L. Lions, Quelques méthodes de résolution des problemes aux limites non linéaires, Dunod Gauthier-Villars, Paris, France, 1969. |
[19] | A. J. A. Ramos, D. S. A. Junior, L. G. R. Miranda, An inverse inequality for a Bresse-Timoshenko system without second spectrum of frequency, Arch. Math., 114 (2020), 709–719. doi: 10.1007/s00013-020-01452-5 |
[20] | S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismaticbars, Philisophical Mag., 41 (1921), 744–746. |