Research article

Well-posedness and stability for Bresse-Timoshenko type systems with thermodiffusion effects and nonlinear damping

  • Received: 28 September 2020 Accepted: 13 December 2020 Published: 04 January 2021
  • MSC : 35BXX, 93B05

  • Nonlinear Bresse-Timoshenko beam model with thermal, mass diffusion and theormoelastic effects is studied. We state and prove the well-posedness of problem. The global existence and uniqueness of solution is proved by using the classical Faedo-Galerkin approximations along with two a priori estimates. We prove an exponential stability estimate under assumption $ (2.3)_{1} $ and polynomial decay rate for solution under $ (2.3)_{2} $, by using a multiplier technique combined with an appropriate Lyapuniv functions.

    Citation: Khaled zennir, Djamel Ouchenane, Abdelbaki Choucha, Mohamad Biomy. Well-posedness and stability for Bresse-Timoshenko type systems with thermodiffusion effects and nonlinear damping[J]. AIMS Mathematics, 2021, 6(3): 2704-2721. doi: 10.3934/math.2021164

    Related Papers:

  • Nonlinear Bresse-Timoshenko beam model with thermal, mass diffusion and theormoelastic effects is studied. We state and prove the well-posedness of problem. The global existence and uniqueness of solution is proved by using the classical Faedo-Galerkin approximations along with two a priori estimates. We prove an exponential stability estimate under assumption $ (2.3)_{1} $ and polynomial decay rate for solution under $ (2.3)_{2} $, by using a multiplier technique combined with an appropriate Lyapuniv functions.



    加载中


    [1] D. S. A. Junior, A. J. A. Ramos, On the nature of dissipative Timoshenko systems at light of the second spectrum, Z. Angew. Math. Phys., 68 (2017), 1–31. doi: 10.1007/s00033-016-0745-9
    [2] D. S. A. Junior, A. J. A. Ramos, M. L. Santos, R. M. L. Gutemberg, Asymptotic behavior of weakly dissipative Bresse-Timoshenko system on influence of the second spectrum of frequency, Z. Angew. Math. Mech., 98 (2018), 1320–1333. doi: 10.1002/zamm.201700211
    [3] D. S. A. Junior, I. Elishakoff, A. J. A. Ramos, R. M. L. Gutemberg, The hypothesis of equal wave speeds for stabilization of Bresse-Timoshenko system is not necessary anymore: The time delay cases, IMA J. Appl. Math., 84 (2019), 763–796. doi: 10.1093/imamat/hxz014
    [4] D. Andrade, M. A. Jorge Silva, T. F. Ma, Exponential stability for a plate equation with p-Laplacian and memory terms, Math. Methods Appl. Sci., 4 (2012), 417–426.
    [5] M. Aouadi, A. Castejon, Properties of global and exponential attractors for nonlinear thermo-diffusion Timoshenko system, J. Math. Phys., 60 (2019), 081503. doi: 10.1063/1.5066224
    [6] T. EL Arwadi, M. I. M. Copetti, W. Youssef, On the theoretical and numerical stability of the thermoviscoelastic Bresse system, Z. Angew. Math. Mech., 99 (2019), 1–20.
    [7] J. Awrejcewicz, A. V. Krysko, V. Soldatov, V. A. Krysko, Analysis of the nonlinear dynamics of the Timoshenko flexible beams using wavelets, J. Comput. Nonlinear Dyn., 7 (2012), 1–14.
    [8] J. Awrejcewicz, A. V. Krysko, S. P. Pavlov, M. V. Zhigalov, V. A. Krysko, Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness, Mech. Syst. Signal Process., 93 (2017), 415–430. doi: 10.1016/j.ymssp.2017.01.047
    [9] J. A. C. Bresse, Cours de Mécaniques Appliquée, Mallet-Bachelier, Paris, 1859.
    [10] A. Choucha, D. Ouchenane, K. Zennir, B. Feng, Global well‐posedness and exponential stability results of a class of Bresse‐Timoshenko‐type systems with distributed delay term, Math. Methods Appl. Sci., (2020), 1–26. Available from: https://doi.org/10.1002/mma.6437.
    [11] I. Elishakoff, An equation both more consistent and simpler than the Bresse-Timoshenko equation, In: Advances in mathematical modeling and experimental methods for materials and structures, SMIA, Springer, Berlin, 168 (2010), 249–254.
    [12] B. Feng, Global well-posedness and stability for a viscoelastic plate equation with a time delay, Math. Probl. Eng., 2015 (2015), 1–10.
    [13] B. Feng, D. S. A Junior, M. J. dos Santos, L. G. R. Miranda, A new scenario for stability of nonlinear Bresse-Timoshenko type systems with time dependent delay, Z. Angew. Math. Mech., 100 (2020), 1–17.
    [14] M. A. J. Silva, T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of p-Laplacian type, IMA J. Appl. Math., 78 (2013), 1130–1146. doi: 10.1093/imamat/hxs011
    [15] J. U. Kim, A boundary thin obstacle problem for a wave equation, Commun. Part. Differ. Equ., 14 (1989), 1011–1026. doi: 10.1080/03605308908820640
    [16] A. V. Krysko, J. Awrejcewicz, O. A. Saltykova, M. V. Zhigalov, V. A. Krysko, Investigations of chaotic dynamics of multi-layer beams taking into account rotational inertial effects, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2568–2589. doi: 10.1016/j.cnsns.2013.12.013
    [17] V. A. Krysko, J. Awrejcewicz, V. M. Bruk, On the solution of a coupled thermo-mechanical problem for non-homogeneous Timoshenko-type shells, J. Math. Anal. Appl., 273 (2002), 409–416. doi: 10.1016/S0022-247X(02)00247-0
    [18] J. L. Lions, Quelques méthodes de résolution des problemes aux limites non linéaires, Dunod Gauthier-Villars, Paris, France, 1969.
    [19] A. J. A. Ramos, D. S. A. Junior, L. G. R. Miranda, An inverse inequality for a Bresse-Timoshenko system without second spectrum of frequency, Arch. Math., 114 (2020), 709–719. doi: 10.1007/s00013-020-01452-5
    [20] S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismaticbars, Philisophical Mag., 41 (1921), 744–746.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1530) PDF downloads(62) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog