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1. Introduction and position of problem

In the present paper, a nonlinear Bresse-Timoshenko system with thermodiffusion effects is
considered. The beam is modeled by the following system

ρ1∂ttϕ − κ∂x(∂xϕ + ψ) + σ1∂tϕ = 0
−ρ2∂ttϕx − bψxx + κ(ϕx + ψ) − γθx − βCx + σ2G(∂tψ) = 0
ρ3∂tθ +$∂tC − κθxx − γ∂tψx = 0
∂tC − h(βψx + ρC −$θ)xx = 0,

(1.1)

where
(x, t) ∈ (0, L) × (0,∞),

here L is the distance between the ends of the center line of the beam. The function C denotes the
concentration of diffusive material in the elastic body. The constant h > 0 is the diffusion coefficient,
$ is a measure of the thermo-diffusion effect. To simplify the system, we use the next relation between
chemical potential P and the concentration of the diffusion material C

C =
1
%

(P − βψx +$θ).

Here % is a measure of the diffusive effect, we put

α = b −
β2

%
, ξ1 = γ +

β$

%
, ξ2 =

β

%
, c = ρ3 +

$

%
, r =

1
%
.

Substitute in (1.1), the problem becomes
ρ1∂ttϕ − κ(ϕx + ψ)x + σ1∂tϕ = 0
−ρ2∂ttϕx − αψxx + κ(ϕx + ψ) − ξ1θx − ξ2Px + σ2G(∂tψ) = 0
c∂tθ + d∂tP − κθxx − ξ1∂tψx = 0
d∂tθ + r∂tP − hPxx − ξ2∂tψx = 0.

(1.2)

The aim of this paper is to study the system (1.2) with following initial data
ϕ (x, 0) = ϕ0 (x) , ∂tϕ (x, 0) = ϕ1 (x) , ∂ttϕ (x, 0) = ϕ2 (x)
ψ (x, 0) = ψ0 (x) , ∂tψ (x, 0) = ψ1 (x)
θ(x, 0) = θ0(x), P (x, 0) = P0 (x) , x ∈ (0, L) ,

(1.3)

where ϕ0, ϕ1, ψ0, ψ1, θ0, P0 are given functions, and the Dirichlet boundary conditions

ϕ (x, t) = ψ (x, t) = θ (x, t) = P(x, t) = 0, x = 0, L, t > 0. (1.4)

In engineering practice, when solving problems of the dynamics of composite mechanical structures,
which are various kinds of connections, questions arise on determining the characteristics of natural
vibrations of such coupled systems. Note that problems related to the category of non-classical
problems of mathematical physics, when we talk about the combination of elements, the behavior of
which is described by equations of different type. This causes certain difficulties in solving them,
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therefore, in practice, models of real structures are used, simplified by introducing additional
hypotheses and assumptions into consideration. We mention som references dealing with dynamics of
engineering structures and non-classical problems of mathematical physics [7, 8, 16, 17].

This new kind of problem is due to a mixture of Timoshenko system [20] and Bresse system or the
curved beam [9]. The coupled system from where one gets the Bresse-Timoshenko comes from
Elishakoff [11] by combining d’Alembert’s principle for dynamic equilibrium from Timoshenko
hypothesis, resulting the coupled system{

ρ1∂ttϕ − κ(ϕx + ψ)x = 0
−ρ2∂ttϕx − bψxx + κ(ϕx + ψ) = 0.

(1.5)

One most famous thermoelasticity is the Cattaneo’s law, which is unable to account for some physical
properties and it cannot answer all questions, its uses are limited, this let us think to couple the fields
of strain, temperature, and mass diffusion according to the Gurtin-Pinkin model. The stabilization of
the Bresse-Timoshenko model is studied only by few authors.

When G ≡ 0, the problem (1.2) has been studied in [5], where a new Timoshenko system with
thermal and mass diffusion effects according to the Gurtin-Pinkin model is proposed. The authors
proved global well-posedness of system by using the semigroup theory and also the quasistability.
Despite the fact that a sufficient number of works have been devoted to the study of natural vibrations
of a Breese-Timoshenko beam, the problem of determining qualitative properties with thermal, mass
diffusion and theormoelastic effects remains unsolved. [2, 3, 10, 13, 19].

In [6], the authors studied stability of thermoviscoelastic Bresse beam system. The exponential
decay of energy is proved and implicit Euler type scheme based on finite differences in time and
finite elements in spaces is introduced to show that the discrete energy decreases in time and an error
estimates are obtained.

Without thermodiffusion effects, in [13], Feng and al., considered a Bresse-Timoshenko type system
with time-dependent delay terms{

ρ1∂tty − κ(yx + ψ)x = 0
−ρ2∂ttyx − bψxx + κ(yx + ψ) + µ1∂tψ + µ2∂tψ(t − τ(t)) = 0,

(1.6)

and {
ρ1∂tty − κ(yx + ψ)x + µ1∂ty + µ2∂ty(t − τ(t)) = 0
−ρ2∂ttyx − bψxx + κ(yx + ψ) = 0.

(1.7)

In both systems (1.6) and (1.7), the authors used an appropriate Lyapunov functional to prove
an exponential decay results. (See [1–3, 19]). The present article is a logical continuation
of works [5, 10, 13] for nonlinear case with thermal, mass diffusion and thermoelastic effects.

The rest of work is organized as follows: In section 2, we recall some preliminaries and assumptions.
In section 3, we state and prove the well-posedness of solution. In section 4, we prove the main stability
result in both cases whereH is linear and nonlinear.

2. Preliminary

We assume that the symmetric matrix

Λ =

(
c d
d r

)
, (2.1)
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is positive definite, and thus for all θ, P

rP2 + cθ2 + 2dPθ > 0. (2.2)

In recent years, there has been an increase in interest in the use of nonlinear properties. The value of
the nonlinearity is influenced by nonlinear damping. It is associated with the development of a wave
process of diffusion of the fundamental wave by waves that are far from it in frequency. To date, such
nonlinear processes have not been studied fairly well in thermodiffusion effects.

The function G ∈ C1(R,R) is assumed to be a non-decreasing function (can be taken as G(y) =

|y|m−2y,m ≥ 2) such that there exist ε, c1, c2 > 0 and a convex increasing function H ∈ C2(R+,R+)
satisfying

1)H(0) = 0 andH is linear on [0, ε] or
2)∂tH(0) = 0 and ∂ttH > 0 on [0, ε] such that

G(s)| ≤ c2|s| if |s| > ε
s2 + G2(s) ≤ H−1(sG(s)) if |s| ≤ ε

|∂sG(s)| ≤ τ.

(2.3)

The energy of solution is defined as

2E (t) =

∫ L

0

[
ρ1∂tϕ

2 + αψ2
x + κ(ϕx + ψ)2 +

ρ1ρ2

κ
∂ttϕ

2 + ρ2∂tϕ
2
x

]
dx

+

∫ L

0

[
τ0θ

2 + rP2 + 2dθP
]

dx. (2.4)

Lemma 2.1. The functional (2.4) satisfies

E′ (t) = −δ

∫ L

0
θ2

xdx − h
∫ L

0
P2

xdx − σ1

∫ L

0
∂tϕ

2dx

−
σ1ρ2

κ

∫ L

0
∂ttϕ

2dx − σ2

∫ L

0
∂tψG(∂tψ)dx

≤ 0. (2.5)

Proof. Multiplying the equations of (1.2) by ∂tϕ, ∂tψ, θ, P respectively, using integration by parts,
and (1.4), we get

ρ1

2
∂t

∫ L

0
∂tϕ

2dx + κ

∫ L

0
(ϕx + ψ)∂tϕxdx + σ1

∫ L

0
∂tϕ

2dx = 0

+ρ2

∫ L

0
∂ttϕ∂tψxdx +

α

2
∂t

∫ L

0
ψ2

xdx + κ

∫ L

0
(ϕx + ψ)∂tψdx

−ξ1

∫ L

0
θx∂tψdx − ξ2

∫ L

0
Px∂tψdx + σ2

∫ L

0
∂tψG(∂tψ)dx = 0

τ0

2
∂t

∫ L

0
θ2dx + d

∫ L

0
∂tPθdx + δ

∫ L

0
θ2

xdx − ξ1

∫ L

0
∂tψxθdx = 0

r
2
∂t

∫ L

0
P2dx + d

∫ L

0
∂tθPdx + h

∫ L

0
P2

xdx − ξ2

∫ L

0
∂tψxPdx = 0.

(2.6)
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Then, taking the derivative (1.2)1, we get

∂tψx = ρ1
∂t (∂ttϕ)

κ
− ∂t (ϕx)x +

σ1

κ
∂ttϕ. (2.7)

Now substituting (2.7) in (1.2)2 using integration by parts and summing, then by using (2.3), we
obtain E is decreasing. �

We introduce the following Hilbert spaces

H = H1
0(0, L) × L2(0, L) × L2(0, L) × L2(0, L) × H1

0(0, L). (2.8)

3. Well-posedness of problem

In this section, we prove the existence and the uniqueness of global solution for system (1.2)–(1.4)
by using the Faedo-Galerkin method.

Theorem 3.1. Assume the assumption (2.1), (2.2) hold. If the initial data
(ϕ0, ϕ1, ϕ2, ϕ3, ψ0) ∈ H, θ0, P0 ∈ L2(0, L), then problem (1.2)–(1.4) has a weak solution such that

ϕ, ψ ∈ C(R+,H1
0(0, L)) ∩C1(R+, L2(0, L)),

∂tϕ, ∂ttϕ, θ, P ∈ C(R+, L2(0, L)).

In addition, the solution (ϕ, ∂tϕ, ∂ttϕ, ψ, θ, P) depends continuously on the initial data in
H × L2(0, L) × L2(0, L). In particular, problem (1.2)–(1.4) has a unique weak solution.

Proof. By Using Faedo-Galerkin approximations, we prove the existence of unique global solution of
(1.2)–(1.4). For more detail, we refer the reader to see [4, 12, 14].

3.1. Approximate problem

Let {u j}, {v j}, {θ j}, {P j} be the Galerkin basis, For n ≥ 1, let

Wn = span{u1, u2, ...., un}

Kn = span{v1, v2, ...., vn}

Θn = span{θ1, θ2, ...., θn}

Γn = span{P1, P2, ...., Pn}.

Given initial data (ϕ0, ψ0) ∈ H1
0(0, L) × H1

0(0, L), ϕ1, ϕ2, ϕ3 ∈ L2(0, L), and θ0, P0 ∈ L2(0, L), we define
the approximations
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ϕn =

n∑
j=1

g jn(t)u j(x)

ψn =

n∑
j=1

ζ jn(t)v j(x)

θn =

n∑
j=1

f jn(t)θ j(x)

Pn =

n∑
j=1

k jn(t)P j(x), (3.1)

which satisfy the following approximate problem

ρ1(∂ttϕn, u j) + κ((ϕnx + ψn), u jx) − σ1(∂tϕn, u j) = 0
α(ψnx, v jx) + ρ2(∂ttϕn, v jx) + κ((ϕnx + ψn), v j)

+ξ1(θn, v jx) + ξ2(Pn, v jx) + σ2(G(∂tψn), v j) = 0
τ0(∂tθn, θ j) + d(∂tPn, θ j) + δ(θnx, θ jx) + ξ1(∂tψn, θ jx) = 0
d(∂tθn, P j) + r(∂tPn, P j) + h(Pnx, P jx) + ξ2(∂tψn, P jx) = 0,

(3.2)

with initial conditions

ϕn(0) = ϕn
0, ∂tϕn(0) = ϕn

1, ∂ttϕn(0) = ϕn
2

∂tttϕn(0) = ϕn
3, ψn(0) = ψn

0, ∂tψn(0) = ψn
1,

θn(0) = θn
0, Pn(0) = Pn

0, (3.3)

which satisfies

ϕn
0 → ϕ0, strongly in H1

0(0, L)
ϕn

1 → ϕ1, strongly in L2(0, L)
ϕn

2 → ϕ2, strongly in L2(0, L)
ϕn

3 → ϕ3, strongly in L2(0, L)
ψn

0 → ψ0, strongly in H1
0(0, L)

ψn
1 → ψ1, strongly in L2(0, L)
θn

0 → θ0, strongly in L2(0, L)
Pn

0 → P0, strongly in L2(0, L). (3.4)

By using the Caratheodory Theorem for standard ordinary differential equations theory, the problem
(3.2) and (3.3) has a solutions (g jn, ζ jn, f jn, k jn) j=1,n ∈ (H3[0,T ])4 and by using the embedding
Hm[0,T ] → Cm[0,T ], we deduce that the solution (g jn, ζ jn, f jn, k jn) j=1,n ∈ (C2[0,T ])4. In turn, this
gives a unique (ϕn, ψn, θn, Pn) defined by (3.1) and satisfying (3.2).

AIMS Mathematics Volume 6, Issue 3, 2704–2721.



2710

3.2. The first a priori estimate

Multiplying equations of (3.2) by ∂tg jn, ∂th jn, ∂t f jn and ∂tk jn respectively and using

κ

∫ L

0
∂ttϕ∂tψxdx = ρ1

∫ L

0
∂tttϕ∂ttϕdx − κ

∫ L

0
∂tϕxx∂ttϕdx + σ1

∫ L

0
∂ttϕ

2dx,

we get

∂t
1
2

[
ρ1

∫ L

0
∂tϕ

2
ndx +

ρ1ρ2

κ

∫ L

0
∂ttϕ

2
ndx + ρ2

∫ L

0
∂tϕ

2
nxdx + κ

∫ L

0
(ϕnx + ψn)2dx

+α

∫ L

0
ψ2

nxdx + τ0

∫ L

0
θ2

ndx + r
∫ L

0
P2

ndx + 2d
∫ L

0
θnPndx

]
+δ

∫ L

0
θ2

nxdx + h
∫ L

0
P2

nxdx + σ1

∫ L

0
∂tϕ

2
ndx +

σ1ρ2

κ

∫ L

0
∂ttϕ

2
ndx

+σ2

∫ L

0
∂tψnG(∂tψn)dx = 0. (3.5)

Now integrating (3.5) and by using (2.3)1, we have

En(t) + δ

∫ t

0

∫ L

0
θ2

nx(s)dxds + h
∫ t

0

∫ L

0
P2

nx(s)dxds

+σ1

∫ t

0

∫ L

0
∂tϕ

2
n(s)dxds +

σ1ρ2

κ

∫ t

0

∫ L

0
∂tϕ

2
n(s)dxds

+σ2

∫ t

0

∫ L

0
∂tψnG(∂tψn)(s)dxds = En(0), (3.6)

with

En(t) =
1
2

[
ρ1

∫ L

0
∂tϕ

2
ndx +

ρ1ρ2

κ

∫ L

0
∂tϕ

2
ndx + ρ2

∫ L

0
∂tϕ

2
nxdx

+κ

∫ L

0
(ϕnx + ψn)2dx + α

∫ L

0
ψ2

nxdx

+τ0

∫ L

0
θ2

ndx + r
∫ L

0
P2

ndx + 2d
∫ L

0
θnPndx

]
. (3.7)

Then

En(t) ≤ En(0). (3.8)

Thus, there exists a positive constant C independent on n such that

En(t) ≤ C, t ≥ 0. (3.9)

By (2.1) and (3.9), we have∫ L

0
∂tϕ

2
ndx +

∫ L

0
∂ttϕ

2
ndx + ρ2

∫ L

0
∂tϕ

2
nxdx +

∫ L

0
(ϕnx + ψn)2dx

+

∫ L

0
ψ2

nxdx + τ0

∫ L

0
θ2

ndx + r
∫ L

0
P2

ndx + 2d
∫ L

0
θnPndx ≤ C. (3.10)

Then tn = T , for all T > 0.

AIMS Mathematics Volume 6, Issue 3, 2704–2721.



2711

3.3. The second a priori estimate

Differentiating (3.2)1 and multiplying by ∂ttϕn, integrating the result over (0, L), we get

ρ1

2
∂t

∫ L

0
∂ttϕ

2
ndx + κ

∫ L

0
∂t(ϕnx + ψn)∂ttϕnxdx + σ1

∫ L

0
∂ttϕ

2
ndx = 0.

(3.11)

Differentiating (3.2)2, and multiplying by ∂ttψn, using the fact that

∂ttψnx =
1
κ

(ρ1∂ttttϕn − κ∂ttϕnxx + σ1∂tttϕn) ,

then integrating the result over (0, L), using (2.3)2, we get

ρ1ρ2

2κ
∂t

∫ L

0
∂tttϕ

2
ndx +

ρ2

2
∂t

∫ L

0
∂ttϕ

2
nxdx + κ

∫ L

0
(∂tϕnx + ∂tψn)∂ttψndx

+
α

2
∂t

∫ L

0
∂tψ

2
nxdx + ξ1

∫ L

0
∂tθn∂ttψnxdx + ξ2

∫ L

0
∂tPn∂ttψnxdx

+
σ1ρ2

κ

∫ L

0
∂ttϕ

2
ndx + σ2

∫ L

0
∂tG(∂tψn)∂ttψ

2
ndx = 0. (3.12)

Differentiating the equations of (3.2), multiplying by ∂tθn, ∂tPn, and then integrating the result
over (0, L), we get

τ0

2
∂t

∫ L

0
∂tθ

2
ndx +

r
2
∂t

∫ L

0
∂tP2

ndx + d∂t

∫ L

0
∂tθn∂tPndx

+ξ1

∫ L

0
∂tθnx∂ttψndx + ξ2

∫ L

0
∂tPnx∂ttψndx

+δ

∫ L

0
∂tθ

2
nxdx + h

∫ L

0
∂tP2

nxdx = 0. (3.13)

Combining (3.11) and (3.12), we get

Rn(t) + δ

∫ t

0

∫ L

0
∂tθ

2
nxdxds + h

∫ t

0

∫ L

0
∂tP2

nxdxds + σ1

∫ t

0

∫ L

0
∂tϕ

2
ndxds

+
σ1ρ2

κ

∫ t

0

∫ L

0
∂ttϕ

2
ndxds + σ2

∫ t

0

∫ L

0
G(∂tψn)∂ttψndxds

= Rn(0),

where

Rn(t) =
1
2

[
ρ1

∫ L

0
∂ttϕ

2
ndx +

ρ1ρ2

κ

∫ L

0
∂tttϕ

2
ndx + ρ2

∫ L

0
∂ttϕ

2
nxdx

+κ

∫ L

0
(∂tϕnx + ∂tψn)2dx + α

∫ L

0
∂tψ

2
nxdx

+τ0

∫ L

0
∂tθ

2
ndx + r

∫ L

0
∂tP2

ndx + 2d
∫ L

0
∂tθn∂tPndx

]
. (3.14)

As in the fist a priori estimate, there exists C > 0 independent on n such that

Rn(t) ≤ C, t ≥ 0. (3.15)
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Passage to limit

From (3.10) and (3.14), we conclude that for any n ∈ N,

ϕn is bounded in L∞(R+,H1
0(0, L))

∂tϕn is bounded in L∞(R+, L2(0, L))
∂ttϕn is bounded in L∞(R+, L2(0, L))
ψn is bounded in L∞(R+,H1

0(0, L))
∂tψn is bounded in L∞(R+, L2(0, L))
θn is bounded in L∞(R+, L2(0, L))

∂tθn is bounded in L∞(R+, L2(0, L))
Pn is bounded in L∞(R+, L2(0, L))

∂tPn is bounded in L∞(R+, L2(0, L)).
(3.16)

Thus we get

ϕn weakly star in L2(R+,H1
0(0, L))

∂tϕn weakly star in L2(R+, L2(0, L))
∂ttϕn weakly star in L2(R+, L2(0, L))
ψn weakly star in L2(R+,H1

0(0, L))
∂tψn weakly star in L2(R+, L2(0, L))
θn weakly star in L2(R+, L2(0, L))

∂tθn weakly star in L2(R+, L2(0, L))
Pn weakly star in L2(R+, L2(0, L))

∂tPn weakly star in L2(R+, L2(0, L)). (3.17)

By (3.17), we deduce that ϕn, ψn is bounded in L2(R+,H1
0(0, L)) and ∂tϕn, ∂ttϕn are bounded in

L2(R+, L2(0, L)), and ∂tθn, ∂tPn are bounded in L2(R+, L2(0, L)). Then from Aubin-Lions theorem [18],
we infer that for and, T > 0,

ϕn strongly in L∞(0,T,H1
0(0, L))

ψn strongly in L∞(0,T,H1
0(0, L))

θn strongly in L∞(0,T, L2(0, L))
Pn strongly in L∞(0,T, L2(0, L)). (3.18)

We also obtain by Lemma 1.4 in Kim [15] that
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ϕn strongly in C(0,T,H1
0(0, L))

ψn strongly in C(0,T,H1
0(0, L))

θn strongly in C(0,T, L2(0, L))
Pn strongly in C(0,T, L2(0, L)). (3.19)

Then we can pass to limit the approximate problem (3.2) and (3.3) in order to get a weak solution of
problem (1.2)–(1.4).

3.4. Continuous dependence and uniqueness

We prove the continuous dependence of unique solution of (1.2)–(1.4).
Let (ϕ, ∂tϕ, ∂ttϕ, ψ,Υ,Ψ), and (Γ, ∂tΓ, ∂ttΓ,Ξ,Π,Ω) be two global solutions of (1.2)–(1.4) with respect
to initial data (ϕ0, ϕ1, ϕ2, ψ0,Θ0,Ψ0), and (Γ0,Γ1,Γ2,Ξ0,Φ0,Ω0).
Let

Λ(t) = ϕ − Γ

Σ(t) = ψ − Ξ

χ(t) = Π − Φ

M(t) = Ψ −Ω. (3.20)

Then (Λ,Σ, χ,M) verifies (1.2)–(1.4), and we have
ρ1∂ttΛ − κ(Λx + Σ)x + σ1∂tΛ = 0
−ρ2∂ttΛx − αΣxx + κ(Λx + Σ) − ξ1χx − ξ2Mx + σ2G(∂tΣ) = 0
τ0∂tχ + d∂tM − δχxx − ξ1∂tΣx = 0
d∂tχ + r∂tM − hMxx − ξ2∂tΣx = 0.

(3.21)

Multiplying (3.21)1 by ∂tΛ, (3.21)2 by ∂tΣ, integrating over (0, L), and since

κ

∫ L

0
∂ttΛ∂tΣxdx = ρ1

∫ L

0
∂tttΛ∂ttΛdx − κ

∫ L

0
∂tΛxx∂ttΛdx

+ σ1

∫ L

0
∂ttΛ

2dx, (3.22)

we get

∂t
1
2

[
ρ1

∫ L

0
∂tΛ

2dx +
ρ1ρ2

κ

∫ L

0
∂ttΛ

2dx + ρ2

∫ L

0
∂tΛ

2
xdx + κ

∫ L

0
(Λx + Σ)2dx

+α

∫ L

0
Σ2

xdx + τ0

∫ L

0
χ2dx + r

∫ L

0
M2dx + 2d

∫ L

0
χMdx

]
+δ

∫ L

0
χ2

xdx + h
∫ L

0
M2

xdx + σ1

∫ L

0
∂tΛ

2dx +
σ1ρ2

κ

∫ L

0
∂ttΛ

2dx

+σ2

∫ L

0
∂tΣG(∂tΣ)dx = 0. (3.23)
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Then

∂tE(t) ≤ 0

≤ c
( ∫ L

0
∂tΛ

2dx +

∫ L

0
∂ttΛ

2dx +

∫ L

0
∂tΛ

2
xdx +

∫ L

0
Σ2

xdx +

∫ L

0
(Λx + Σ)2dx

+

∫ L

0
χ2dx +

∫ L

0
M2dx

)
,

where

E(t) =
1
2

[
ρ1

∫ L

0
∂tΛ

2dx +
ρ1ρ2

β

∫ L

0
∂ttΛ

2dx + ρ2

∫ L

0
∂tΛ

2
xdx + β

∫ L

0
(Λx + Σ)2dx

+α

∫ L

0
Σ2

xdx + τ0

∫ L

0
χ2dx + r

∫ L

0
M2dx + 2d

∫ L

0
χMdx

]
. (3.24)

By integrating (3.23), we get

E(t) ≤ E(0) + C1

∫ t

0

(
‖∂tΛ‖

2 + ‖∂ttΛ‖
2 + ‖∂tΛx‖

2 + ‖Σx‖
2 + ‖(Λx + Σ)‖2

+‖χ‖2 + ‖M‖2
)
ds. (3.25)

On the other hand, we have

E(t) ≥ c0

(
‖∂tΛ‖

2 + ‖∂ttΛ‖
2 + ‖∂tΛx‖

2 + ‖Σx‖
2 + ‖(Λx + Σ)‖2

+‖χ‖2 + ‖M‖2
)
. (3.26)

Owing to Gronwall’s inequality to (3.27), we have

(‖∂tΛ‖
2 + ‖∂ttΛ‖

2 + ‖∂tΛx‖
2 + ‖Σx‖

2 + ‖(Λx + Σ)‖2

+‖χ‖2 + ‖M‖2) ≤ eC2tE(0), (3.27)

which implies that solution of (1.2)–(1.4) depends continuously on the initial data. �

4. Asymptotic behavior

Using the multiplied techniques, we prove the stability result.

Theorem 4.1.

• Assume that (2.1), (2.2) and (2.3)1 hold. Then, there exist positive constants λ1 and λ2 such that
(2.4) satisfies

E(t) ≤ λ2e−λ1t,∀t ≥ 0. (4.1)

• Assume that (2.1), (2.2) and (2.3)2 hold. Then, there exist positive constants β and γ such that
(2.4) satisfies

E(t) ≤ βH−1
0 (

γ

t
). (4.2)

whereH0(t) = t∂tH(ε0t), ∀ε0 > 0.
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First, we need to introduce an auxiliary Lemmas.
Let

F1(t) = −
σ1

2

∫ L

0
∂tϕ

2dx − κ
∫ L

0
∂tϕxϕxdx, (4.3)

F2(t) = ρ1

∫ L

0
ϕ∂tϕdx +

σ1

2

∫ L

0
ϕ2dx

+
σ1ρ2

2κ

∫ L

0
∂tϕ

2dx + ρ2

∫ L

0
∂tϕxϕxdx. (4.4)

Lemma 4.2. The functional F1(t) satisfies

F′1 (t) ≤ −κ

∫ L

0
∂tϕ

2
xdx + ε1

∫ L

0
ψ2

xdx + c(1 +
1
ε1

)
∫ L

0
∂ttϕ

2dx. (4.5)

Proof. Direct computation using integration by parts, we get

F′1 (t) = ρ1

∫ L

0
∂ttϕ

2dx − κ
∫ L

0
ψx∂ttϕdx − κ

∫ L

0
∂tϕ

2
xdx.

Owing to Young and Poincare’s inequalities, we obtain (4.5). �

Lemma 4.3. The functional F2 (t) satisfies,

F2(t) ≤ −
κ

2

∫ L

0
(ϕx + ψ)2dx −

α

2

∫ L

0
ψ2

xdx + c
∫ L

0
∂ttϕ

2dx

+ρ2

∫ L

0
∂tϕ

2
xdx + ρ1

∫ L

0
∂tϕ

2dx + c
∫ L

0
θ2

xdx

+c
∫ L

0
P2

xdx + c
∫ L

0
P2

xdx + c
∫ L

0
G2(∂tψ)dx. (4.6)

Proof. Differentiating F2, by (1.4) and integration by parts, we have

F′2 (t) = ρ1

∫ L

0
∂tϕ

2dx − κ
∫ L

0
(ϕx + ψ)2dx − α

∫ L

0
ψ2

xdx (4.7)

−
ρ1ρ2

κ

∫ L

0
∂ttϕ

2dx + ξ1

∫ L

0
θxψdx − ρ2

∫ L

0
∂ttϕψxdx

+ρ2

∫ L

0
∂tϕ

2
xdx + ξ2

∫ L

0
Pxψdx + σ2

∫ L

0
ψG(∂tψ)dx. (4.8)

Owing to Young and Poincaré’s inequalities, we get (4.6). �

Proof. (Of Theorem 4.1). We define an appropriate Lyapunov functional as

L(t) = NE (t) + N1F1(t) + F2(t), (4.9)

where N,N1 > 0. By differentiating (4.9) and using (2.5), (4.5) and (4.6) we have

AIMS Mathematics Volume 6, Issue 3, 2704–2721.



2716

L′ (t) ≤ −
[
Nσ1 − ρ2

] ∫ L

0
∂tϕ

2dx −
[
α

2
− ε1N1

] ∫ L

0
ψ2

xdx

−

[
σ1ρ2

κ
N +

ρ1ρ2

κ
−

2ρ2
2

α
− cN1(1 +

1
ε1

)
] ∫ L

0
∂ttϕ

2dx

−κ

∫ L

0
(ϕx + ψ)2dx −

[
κN1 − ρ2

] ∫ L

0
∂tϕ

2
xdx + c

∫ L

0
G2(∂tψ)dx

− [Nh − c]
∫ L

0
P2

xdx − [Nδ − c]
∫ L

0
θ2

xdx − Nσ2

∫ L

0
∂tψG(∂tψ)dx.

By setting ε1 = α
4N1

, and we choose N1 large enough so that

α1 = κN1 − ρ2 > 0,

thus, we arrive at

L′ (t) ≤ −
[
Nσ1 − ρ1

] ∫ L

0
∂tϕ

2dx −
[
σ1ρ2

κ
N + α2 − c

] ∫ L

0
∂ttϕ

2dx

−α3

∫ L

0
ψ2

xdx − α4

∫ L

0
(ϕx + ψ)2dx − α1

∫ L

0
∂tϕ

2
xdx

− [Nh − c]
∫ L

0
P2

xdx − [Nδ − c]
∫ L

0
θ2

xdx

−Nσ2

∫ L

0
∂tψG(∂tψ)dx + c

∫ L

0
G2(∂tψ)dx, (4.10)

where α2 =
ρ1ρ2
κ
−

2ρ2
2
α
, α3 = α

4 , α4 = κ.
On the other hand, if we let

K (t) = N1F1(t) + F2(t),

then

|K (t)| ≤
σ1

2
N1

∫ L

0
∂tϕ

2dx + κN1

∫ L

0
|∂tϕxϕx|dx + ρ1

∫ L

0
|ϕ∂tϕ|dx

+
σ1

2

∫ L

0
ϕ2dx +

σ1ρ2

2κ

∫ L

0
∂tϕ

2dx + ρ2

∫ L

0
|∂tϕxϕx|dx.

By using Young, Poincaré’s inequalities, and the fact that∫ L

0
ϕ2dx ≤ 2c

∫ L

0
(ϕx + ψ)2dx + 2c

∫ L

0
ψ2

xdx,

we get
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|K (t)| ≤ c
∫ L

0

(
∂tϕ

2 + ∂tϕ
2
x + ψ2

x + ∂ttϕ
2 + (ϕx + ψ)2

)
dx

≤ cE (t) .

Consequently,

|H (t)| = |L (t) − NE (t)| ≤ cE (t) ,

which yield
(N − c)E (t) ≤ L (t) ≤ (N + c)E(t). (4.11)

By choosing N large enough such that

σ1ρ2

κ
N + α2 − c > 0,Nσ1 − ρ1 > 0,N − c > 0,Nδ − c > 0,Nh − c > 0,

we obtain
c1E(t) ≤ L (t) ≤ c2E(t),∀t ≥ 0. (4.12)

Using (2.5), estimates (4.10), (4.11), respectively, we get

L′ (t) ≤ −k1E (t) + k2

∫ L

0
G2(∂tψ)dx,∀t ≥ t0, (4.13)

for some k1, k2, c1, c2 > 0.
At this point, we distinguish two cases:

• IfH is linear on [0, ε], In this case, using the assumption (2.3)1, we can write

k2

∫ L

0
G2(∂tψ)dx ≤ k2

∫ L

0
(∂tψ

2 + G2(∂tψ))dx

≤ k2

∫ L

0
∂tψG(∂tψ))dx ≤ −k3∂tE(t), (4.14)

where k3 = k2
σ2

.
Inserting (4.14) in (4.13). Then, we have

L′1 (t) ≤ −k1E (t) , (4.15)

and
m1E(t) ≤ L1 (t) ≤ m2E(t), (4.16)

with

m1 = c1, m2 = c2 + k3E(0),

where

L1(t) = L(t) + k3E(t) ∼ E(t). (4.17)

AIMS Mathematics Volume 6, Issue 3, 2704–2721.



2718

A combination (4.15) with (4.17), gives

L′1 (t) ≤ −λ1L1 (t) , (4.18)

where λ1 = k1
m2

.
A simple integration of (4.18), we obtain (4.1).
• IfH is nonlinear on [0, ε], we choose 0 ≤ ε1 ≤ ε and let us consider

I1(t) = {x ∈ (0, L), |∂tψ| ≤ ε1}, I2 = {x ∈ (0, L), |∂tψ| > ε1},

we define

I =

∫
I1

∂tψG(∂tψ)dt.

Using Jensen’s inequality and the assumption (2.3)2, we have

k2

∫ L

0
(∂tψ

2 + G2(ψt))dx ≤ k2

∫ L

0
∂tψG(∂tψ))dx

≤ k4H
−1(I(t)) − k4∂tE(t). (4.19)

Inserting (4.19) in (4.13), ∂tE(t) ≤ 0, we obtain

L′2 (t) ≤ −k1E (t) + k4H
−1(I(t)), (4.20)

and
m3E(t) ≤ L2 (t) ≤ m4E(t), (4.21)

with

m3 = c1, m4 = c2 + k4E(0),

where

L2(t) = L(t) + k4E(t) ∼ E(t). (4.22)

Now, for ε0 < ε1 and by using ∂tE(t) ≤ 0, ∂tH > 0 and ∂ttH > 0 on (0, ε], we define the functional
L3(t) by

L3(t) = ∂tH(ε0E(t))L2(t) ∼ E(t),

satisfies

∂tL3(t) = ∂tE(t)(ε0∂tH(ε0E(t))L2(t)) + ∂tL2(t)∂tH(ε0E(t))
≤ −k1E(t)∂tH(ε0E(t)) + k4∂tH(ε0E(t))H−1(I(t)). (4.23)

To estimate the last term of (4.20), using the general Young’s inequality

AB ≤ H∗(A) +H(B), i f A ∈ (0, ∂tH(ε)), B ∈ (0, ε),
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where

H∗(A) = s(∂tH)−1(s) −H((∂tH)−1(s)), i f s ∈ (0, ∂tH(ε)),

satisfies

k4∂tH(ε0E(t))H−1(I(t)) ≤ k1ε0H0(E(t)) − k4∂tE(t). (4.24)

Inserting (4.24) in (4.20) and letting ε0 =
k1

2k4
, we get

∂tL3(t) + k4∂tE(t) ≤ −k1H0(E(t)). (4.25)

Then

∂tL4(t) ≤ −k1H0(E(t)), (4.26)

where

L4(t) = L3(t) + k4E(t) ∼ E(t).

Since H0(E(t)), ∂tH(ε0E(t)) are non-increasing functions. Then, by integrating (4.26) for any
T > 0, we get

k1H0(E(T )) ≤ L4(0),

which gives (4.2). The proof is completed.

�

5. Conclusions

Our research falls within the scope of the modern interests, it is considered among the issues that
have wide applications in modern science and engineering related to the energy systems. The
importance of this research, although it is theoretical, lies in the following:

1. There are several generalizations and contributions that are very important in terms of the system
itself. We proposed a system related to a large number of Bresse-Timoshenko type with the
presence of three different types of damping, each one has functionality and physical properties,
and we look at the overlapping of these three terms.

2. The great importance lies in the presence of a non-linear sources, which makes the problem have
a very wide applications and importan in terms of applications in modern science.

3. Qualitatively, we proposed a new tools to study the asymptotic behavior of solutions
commensurate with the existence of nonlinear term after proving the existence of the solution
using a usual method. We found a new decay rate of system’s energ, although the system’s
energy decreased according to a very general rate that includes all previous results and more than
that, so, to our knowledge, there is no generalization more than this.
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