This paper gives several properties and characterization of non-null rectifying curves in dual Lorentzian 3-space $\mathbb{D% }_{1}^{3}$. In considering a causal character of a dual curve we give some parameterization of rectifying dual curves, and a dual differential equation of third order is constructed for every non-null dual curve. Then several well-known characterizations of spherical, normal and rectifying dual curves are consequences of this differential equation.
Citation: Roa Makki. Some characterizations of non-null rectifying curves in dual Lorentzian 3-space $\mathbb{D}_{1}^{3}$[J]. AIMS Mathematics, 2021, 6(3): 2114-2131. doi: 10.3934/math.2021129
This paper gives several properties and characterization of non-null rectifying curves in dual Lorentzian 3-space $\mathbb{D% }_{1}^{3}$. In considering a causal character of a dual curve we give some parameterization of rectifying dual curves, and a dual differential equation of third order is constructed for every non-null dual curve. Then several well-known characterizations of spherical, normal and rectifying dual curves are consequences of this differential equation.
[1] | O. Bottema, B. Roth, Theoretical Kinematics, North-Holland Press, New York, 1979. |
[2] | A. Karger, J. Novak, Space Kinematics and Lie Groups, Gordon and Breach Science Publishers, New York, 1985. |
[3] | H. Pottman, J. Wallner, Computational Line Geometry, Springer-Verlag, Berlin, Heidelberg, 2001. |
[4] | Y. Li, D. Pe, Evolutes of dual spherical curves for ruled surfaces, Math. Meth. Appl. Sci., 39 (2016), 3005–3015. doi: 10.1002/mma.3748 |
[5] | R. A. Abdel-Baky, Evolutes of hyperbolic dual spherical curve in dual Lorentzian 3-space, Int. J. Anal. Appl., 15 (2017), 114–124. |
[6] | F. Tas, R. A. Abdel-Baky, On a spacelike line congruence which has the parameter ruled surfaces as principal ruled surfaces, Inter. Elect. J. Geom., 12 (2019), 135–143. |
[7] | R. A. Abdel-Baky, Time-like line congruence in the dual Lorentzian 3-space D3 1, Inter. J. Geom. Methods Mod. Phys., 16 (2019), 201–211. |
[8] | B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Mounthly, 110 (2003), 147–152. doi: 10.1080/00029890.2003.11919949 |
[9] | D. S. Kim, Chung, K. H. Cho, Space curves satisfying τ/κ = as + b, Honam Math. J., 15 (1993) 5–9. |
[10] | S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk. J. Math., 28 (2004), 153–163. |
[11] | M. Turgut, S. Yilmaz, Contributions to classical differential geometry of the curves in E3, Magna, 4 (2008), 5–9. |
[12] | S. Deshmukh, B. Y. Chen, N. B. Turki, A differential equations for Frenet curves in Euclidean 3-space and its applications, Rom. J. Math. Comput. Sci., 8 (2018), 1–6. |
[13] | K. Ilarslan, Ő. Boyacoğlu, Position vectors of a timelike and a null helix in Minkowski 3-space, Chaos, Solitons Fractals, 38 (2008), 1383–1389. |
[14] | K. Ilarslan, Spacelike normal curves in Minkowski space E3 1, Turkish J. Math., 29 (2005), 53–63. |
[15] | K. Ilarslan, E. Nesovic, M. Petrovic'-Torgasev, Some characterizations of rectifying curves in the Minkowski 3-space, Novi. Sad. J. Math., 33 (2003), 23–32. |
[16] | A. Ucum, C. Camc, K. Ilarslan, General helices with spacelike slope axis in Minkowski 3-space, Asian-Eur. J. Math., 12 (2019), 1950076. doi: 10.1142/S1793557119500761 |
[17] | B. Ylmaz, I. Gok, Y. Yayl, Extended rectifying curves in Minkowski 3-space, Adv. Appl. Clifford Algebras, 26 (2016), 861–872. doi: 10.1007/s00006-015-0637-7 |
[18] | A. Uçum, C. Camci, K. Ilarslan, General helices with timelike slope axis in Minkowski 3-Space, Adv. Appl. Clifford Algebras, 26 (2016), 793–807. doi: 10.1007/s00006-015-0610-5 |
[19] | C. Camci, K. Ilarslan, A. Uçum, General helices with lightlike slope axis, Filomat, 32 (2018), 355–367. doi: 10.2298/FIL1802355C |
[20] | N. Ayyıldız, A. C. Coken, A. Yucesan, On the dual Darboux rotation axis of the spacelike dual space curve, Demonstratio Math., 37 (2004), 197–202. |
[21] | N. Ayyıldız, A. C. Coken, A. Yucesan, A characterization of dual Lorentzian spherical curves in the dual Lorentzian space, Taiwanese J. Math., 11 (2007), 999–1018. |
[22] | E. Ozbey, M. Oral, A study on rectifyng curves in the dual Lorentzian space, Bull. Korean Math. Soc., 46 (2009), 967–978. |
[23] | M. Onder, Z. Ekinci, On closed timelike and spacelike ruled surfaces, Math. Methods Appl. Sci., 40 (2017), 786–795. doi: 10.1002/mma.4011 |
[24] | Y. Li, Z. Wang, T. Zhao, Slant helix of order n and sequence of Darboux developable of principaldirectional curves, Math. Methods Appl. Sci., 43 (2020), 1–16. doi: 10.1002/mma.5729 |