Research article

Ricci curvature of contact CR-warped product submanifolds in generalized Sasakian space forms admitting nearly Sasakian structure

  • Received: 27 September 2020 Accepted: 04 December 2020 Published: 10 December 2020
  • MSC : 53C25, 53C40, 53C42, 53D15

  • The objective of this paper is to achieve the inequality for Ricci curvature of a contact CR-warped product submanifold isometrically immersed in a generalized Sasakian space form admitting a nearly Sasakian structure in the expressions of the squared norm of mean curvature vector and warping function. In addition, the equality case is likewise discussed. Later, we proved that under a certain condition the base manifold $N_T^{n_1}$ is isometric to a $n_1$-dimensional sphere $S^{n_1}(\frac{\lambda_1}{n_1})$ with constant sectional curvature $\frac{\lambda_1}{n_1}.$

    Citation: Ibrahim Al-Dayel, Meraj Ali Khan. Ricci curvature of contact CR-warped product submanifolds in generalized Sasakian space forms admitting nearly Sasakian structure[J]. AIMS Mathematics, 2021, 6(3): 2132-2151. doi: 10.3934/math.2021130

    Related Papers:

  • The objective of this paper is to achieve the inequality for Ricci curvature of a contact CR-warped product submanifold isometrically immersed in a generalized Sasakian space form admitting a nearly Sasakian structure in the expressions of the squared norm of mean curvature vector and warping function. In addition, the equality case is likewise discussed. Later, we proved that under a certain condition the base manifold $N_T^{n_1}$ is isometric to a $n_1$-dimensional sphere $S^{n_1}(\frac{\lambda_1}{n_1})$ with constant sectional curvature $\frac{\lambda_1}{n_1}.$



    加载中


    [1] P. Alegre, D. E. Blair, A. Carriazo, Generalized Sasakian space forms, Isr. J. Math., 141 (2004), 157–183. doi: 10.1007/BF02772217
    [2] A. Ali, L. I. Piscoran, A. H. Alkhalidi, Ricci curvature on warped product submanifolds in spheres with geometric applications, J. Geom. Phys., 146 (2019), 1–17.
    [3] R. Ali, F. Mofarreh, N. Alluhaibi, A. Ali, I. Ahmad, On differential equations characterizing Legendrian submanifolds of Sasakian space forms, Mathematics, 8 (2020), 150. doi: 10.3390/math8020150
    [4] H. Alodan, S. Deshmukh, N. B. Turki, G. E. Vilcu, Hypersurfaces of a Sasakian space forms, Mathematics, 8 (2020), 877. doi: 10.3390/math8060877
    [5] M. Atceken, Contact CR-warped product submanifolds in Sasakian space forms, Hacet. J. Math. Stat., 44 (2015), 23–32.
    [6] M. Aquib, J. W. Lee, G. E. Vilcu, W. Yoon, Classification of Casorati ideal Lagrangian submanifolds in complex space forms, Differ. Geom. Appl., 63 (2019), 30–49. doi: 10.1016/j.difgeo.2018.12.006
    [7] D. E. Blair, S. I. Goldberg, Topology of almost contact manifolds, J. Differ. Geom., 1 (1967), 347–354.
    [8] D. E. Blair, Contact manifolds in Riemannian geometry, Berlin-New York: Springer-Verlag, 1976.
    [9] D. E. Blair, D. K. Showers, K. Yano, Nearly Sasakian structures, Kodai Mathematical Seminar Report, 27 (1976), 175–180.
    [10] J. K. Beem, P. Ehrlich, T. G. Powell, Warped product manifolds in relativity Selected studies, Amsterdam-New York: North-Holland, 1982.
    [11] R. L. Bishop, B. O. Neill, Manifolds of negative curvature, T. Am. Math. Soc., 145 (1969), 1–9. doi: 10.1090/S0002-9947-1969-0251664-4
    [12] D. Cioroboiu, B.-Y. Chen inequalities for semislant submanifolds in Sasakian space forms, Int. J. Math. Math. Sci., 27 (2003), 1731–1738.
    [13] B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds I, Monatsh Mathematics, 133 (2001), 177–195. doi: 10.1007/s006050170019
    [14] B. Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimension, Glasgow Math. J., 41 (1999), 33–41. doi: 10.1017/S0017089599970271
    [15] B. Y. Chen, Differential geometry of warped product manifolds and submanifolds, Singapore: World Scientific Publishing Company, 2017.
    [16] B. Y. Chen, F. Dillen, L. Verstraelen, L. OzgurVrancken, Characterization of Riemannian space forms, Einstein spaces and conformally flate spaces, P. Am. Math. Soc., 128 (2000), 589–598.
    [17] B. Y. Chen, Geometry of warped product submanifolds a survey, Journal of Advanced Mathematical Studies, 6 (2013), 143.
    [18] S. Deshmukh, I. Aldayel, A note on nearly Sasakian and nearly cosymplectic structures of 5-dimensional spheres, Int. Electron. J. Geom., 11 (2018), 90–95. doi: 10.36890/iejg.545110
    [19] I. Hasegawa, I. Mihai, Contact CR-warped product submanifolds in Sasakian manifolds, Geometriae Dedicata, 102 (2003), 143–150. doi: 10.1023/B:GEOM.0000006582.29685.22
    [20] A. A. Ishan, M. A. Khan, Contact CR-warped product submanifolds of a generalized Sasakian space form admitting a nearly Sasakian structure, J. Nonlinear Sci. Appl., 12 (2009), 440–449.
    [21] A. Mihai, C. Ozgur, Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection, Taiwan. J. Math., 14 (2010), 1465–1477.
    [22] I. Mihai, Contact CR-warped product submanifolds in Sasakian space forms, Geometriae Dedicata, 109 (2004), 165–173. doi: 10.1007/s10711-004-5459-z
    [23] I. Mihai, Ricci curvature of submanifolds in Sasakian space forms, J. Aust. Math. Soc., 72 (2002), 247–256. doi: 10.1017/S1446788700003888
    [24] K. Matsumoto, On contact CR-submanifolds of Sasakian manifolds, Int. J. Math. Math. Sci., 6 (1993), 313–326.
    [25] N. Ginoux, G. Habib, M. Pilca, U. Semmelmann, An Obata-type characterization of doubly warped product Kaehler manifolds, arXiv: 2002.08808.
    [26] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. JPN, 14 (1962), 333–340.
    [27] B. O'Neill, Semi-Riemannian geometry with application to relativity, Academic Press, 1983.
    [28] S. Sular, C. Ozgur, Contact CR-warped product submanifolds in generalized Sasakian space forms, Turk. J. Math., 36 (2012), 485–497.
    [29] D. W. Yoon, Inequality for Ricci curvature of slant submanifolds in cosymplectic space forms, Turk. J. Math., 30 (2006), 43–56.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1505) PDF downloads(38) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog