This paper introduces a family of shape-preserving binary approximating subdivision schemes by applying a shape-preserving variant on the Lane-Riesenfeld algorithm. Using the symbols of subdivision schemes, we determine convergence and smoothness, Hölder continuity, and support size of the limit curves. Furthermore, these schemes produce monotonic and convex curves under the certain conditions imposed on the initial data.
Citation: Pakeeza Ashraf, Ghulam Mustafa, Husna A. Khan, Dumitru Baleanu, Abdul Ghaffar, Kottakkaran Sooppy Nisar. A shape-preserving variant of Lane-Riesenfeld algorithm[J]. AIMS Mathematics, 2021, 6(3): 2152-2170. doi: 10.3934/math.2021131
This paper introduces a family of shape-preserving binary approximating subdivision schemes by applying a shape-preserving variant on the Lane-Riesenfeld algorithm. Using the symbols of subdivision schemes, we determine convergence and smoothness, Hölder continuity, and support size of the limit curves. Furthermore, these schemes produce monotonic and convex curves under the certain conditions imposed on the initial data.
[1] | P. Ashraf, G. Mustafa, J. Deng, A six-point variant on the Lane-Riesenfeld algorithm, J. Appl. Math., 2014 (2014), 1–7. |
[2] | P. Ashraf, M. Sabir, A. Ghaffar, K. S. Nisar, I. Khan, Shape-preservation of ternary four-point interpolating non-stationary subdivision scheme, Front. Phys., 7 (2020), 1–10. |
[3] | P. Ashraf, B. Nawaz, D. Baleanu, K. S. Nisar, A. Ghaffar, M. A. A. Khan, et al., Analysis of geometric properties of ternary four-point rational interpolating subdivision scheme, Mathematics, 8 (2020), 338. |
[4] | P. Ashraf, A. Ghaffar, D. Baleanu, I. Sehar, K. S. Nisar, F. Khan, Shape-preserving properties of a relaxed four-point interpolating subdivision scheme, Mathematics, 8 (2020), 806. doi: 10.3390/math8050806 |
[5] | T. J. Cashman, K. Hormann, U. Reif, Generalized Lane-Riesenfeld algorithms, Comput. Aided Geom. Des., 30 (2013), 398–409. doi: 10.1016/j.cagd.2013.02.001 |
[6] | N. Dyn, D. Levin, J. Gregory, A 4-point interpolatory subdivision scheme for curve design, Comput. Aided Geom. Des., 4 (1987), 257–268. doi: 10.1016/0167-8396(87)90001-X |
[7] | N. Dyn, D. Levin, Subdivision scheme in the geometric modling, Acta Numerica, 11 (2002), 73–144. doi: 10.1017/S0962492902000028 |
[8] | A. Ghaffar, M. Bari, Z. Ullah, M. Iqbal, K. S. Nisar, D. Baleanu, A new class of 2q-point nonstationary subdivision schemes and their applications, Mathematics, 7 (2019), 639. doi: 10.3390/math7070639 |
[9] | K. Hormann, M. A. Sabin, A family of subdivision schemes with cubic precision, Comput. Aided Geom. Des., 25 (2008), 41–52. doi: 10.1016/j.cagd.2007.04.002 |
[10] | G. Mustafa, R. Hameed, Families of univariate and bivariate subdivision schemes originated from quartic B-spline, Adv. Comput. Math., 43 (2017), 1131–1161. doi: 10.1007/s10444-017-9519-y |
[11] | I. P. Ivrissimtzis, M. A. Sabin, N. A. Dodgson, On the support of recursive subdivision, ACM Trans. Graphics (TOG), 23 (2014), 1043–1060. |
[12] | G. Mustafa, P. Ashraf, M. Aslam, Binary univariate dual and primal subdivision schemes, SeMA J., 65 (2014), 23–35. doi: 10.1007/s40324-014-0017-6 |
[13] | O. Rioul, Simple regularity criteria for subdivision schemes, SIAM J. Math. Anal., 23 (1992), 1544–1576. doi: 10.1137/0523086 |
[14] | J. Tan, X. Zhuang, L. Zhang, A new four-point shapepreserving C3 subdivision scheme, Comput. Aided Geom. Des., 31 (2014), 57–62. doi: 10.1016/j.cagd.2013.12.003 |
[15] | L. Romani, A Chaikin-based variant of Lane-Riesenfeld algorithm and its non-tensor product extension, Comput. Aided Geom. Des., 32 (2015), 22–49. doi: 10.1016/j.cagd.2014.11.002 |
[16] | J. M. Lane, R. F. Riesenfeld, A theoretical development for the computer generation and display of piecewise polynomial surfaces, IEEE Trans. Pattern Anal. Machine Intell., PAMI-2 (1980), 35–46. |
[17] | J. Shi, J. Tan, Z. Liu, L. Zhang, A new variant of Lane-Riesenfeld algorithm with two tension parameters, Comput. Aided Geom. Des., 64 (2018), 27–36. doi: 10.1016/j.cagd.2018.06.004 |
[18] | S. Schaefer, E. Vouga, R. Goldman, Non-linear subdivision through non-linear averaging, Comput. Aided Geom. Des., 25 (2008), 162–180. doi: 10.1016/j.cagd.2007.07.003 |
[19] | M. A. Sabin, U. Augsdörfer, N. A. Dodgson, Artifacts in box-spline surfaces, Mathematics of Surfaces XI, Springer, Berlin, Heidelberg, 2005. |