Citation: J. Vanterler da C. Sousa, E. Capelas de Oliveira, L. A. Magna. Fractional calculus and the ESR test[J]. AIMS Mathematics, 2017, 2(4): 692-705. doi: 10.3934/Math.2017.4.692
[1] | G. C. Sharma, M. Jain, R. N. Saral, A mathematical model for concentration of blood affecting erythrocyte sedimentation, Comput. Biol. Med. 26 (1996), 1-7. |
[2] | E. Kucharz, The forgotten contribution of dr. Edmund Faustyn Biernacki (1866-1911) to the discovery of the erythrocyte sedimentation rate, J. Lab. Clin. Med. 112 (1988), 279-280. |
[3] | E. J. Kucharz, Edmund Biernacki and erythrocyte sedimentation rate, J. Lab. Clin. Med. 329 (1987), 696. |
[4] | A. Grzybowski, J. J. Sak, Who discovered the erythrocyte sedimentation rate? J. Rheumatol. 38 (2011), 1521-1522. |
[5] | E. Biernacki, Die spontane blutsedimentirung als eine wissenschaftliche und praktischklinische untersuchungsmethode? Deut. Med. Wochenschr., Georg Thieme Verlag, Stuttgart, 23 (1897), 769-772. |
[6] | E. Biernacki, Samoistna sedymentacja krwi, jako naukowa i praktyczno-kliniczna metoda badania (spontaneous sedimentation of red blood cells in clinical practice), Gazeta Lekarska, 36 (1897), 962-968. |
[7] | A. Westergren, Studies of the suspension stability of the blood in pulmonary tuberculosis1, Acta Medica Scandinavica, Wiley Online Library, 54 (2009), 247-282. |
[8] | A. Westergren, The technique of the red cell sedimentation reaction, Am. Rev. Tuberc, 14 (1926), 94-101. |
[9] | R. Fahraeus, The suspension-stability of blood, Acta Med. Scand. 55 (1921), 1-228. |
[10] | R. Fahraeus, The suspension stability of the blood, Physiol. rev. 9 (1929), 241-274. |
[11] | M. Brigden, The erythrocyte sedimentation rate: still a helpful test when used judiciously, Postgrad. Med. Taylor and Francis, 103 (1998), 257-274. |
[12] | N. Van den Broek, E. Letsky, Pregnancy and the erythrocyte sedimentation rate, Brit. J. Obstet. Gynaec. Elsevier, 108 (2001), 1164-1167. |
[13] | J. S. Olshaker, D. A. Jerrard, Pregnancy and the erythrocyte sedimentation rate, J. Emerg. Med. Elsevier, 108 (1997), 869-874. |
[14] | S. E. Bedell, B. T. Bush, Erythrocyte sedimentation rate. from folklore to facts, Am. J. Med. Elsevier, 78 (1985), 1001-1009. |
[15] | M. Morris, F. Davey, Basic examination of blood, Clinical diagnosis and management by laboratory methods, WB Saunders Company Philadelphia, 20 (2001), 479-519. |
[16] | P. Chaturani, S. Narasimbham, R. Puniyani, et al. A comparative study of erythrocyte sedimentation rate of hypertension and normal controls, In: Physiol. Fluid Dynamics Ⅱ: Tata McGraw Hill New Delhi, 20 (1987), 265-280. |
[17] | I. Talstad, P. Scheie, H. Dalen, J. Roli, Influence of plasma proteins on erythrocyte morphology and sedimentation, Scand. J. Haematol. Wiley Online Library, 31 (1983), 478-484. |
[18] | S. Nayha, Normal variation in erythrocyte sedimentation rate in males over 50 years old, Scand. J. Prim. Health, Taylor and Francis, 5 (1987), 5-8. |
[19] | International Committee for Standardization in Haematology, for Standardization in. Reference method for the erythrocyte sedimentation rate (ESR) test on human blood, Brit. J. Haematol. 24 (1973), 671-673. |
[20] | International Committee for Standardization in Haematology, Recommendations for measurement of erythrocyte sedimentation rate, J. Clin. Pathol. 46 (1993), 198-203. |
[21] | K. V. Boroviczeny, L. Bottiger, B. Bull, et al. Recommendation for measurement of erythrocyte sedimentation rate of human blood: International Committee for Standardization in Haematology, Am. J. Clin. Pathol. The Oxford University Press, 68 (1977), 505-507. |
[22] | B. S. Bull, G. Brecher, An evaluation of the relative merits of the wintrobe and westergren sedimentation methods, including hematocrit correction, Am. J. Clin. Pathol. 62 (1974), 502-510. |
[23] | J. Whelan, C. R. Huang, A. L. Copley, Concentration profiles in erythrocyte sedimentation in human whole blood, Biorheology, 7 (1971), 205-212. |
[24] | C. R. Huang, J. Whelan, H. H. Wang, et al. A mathematical model of sedimentation analysis applied to human whole blood, Biorheology, 8 (1971), 157-163. |
[25] | W. K. Sartory, Prediction of concentration profiles during erythrocyte sedimentation by a hindered settling model, Biorheology, 11 (1974), 253-264. |
[26] | A. Reuben, A. Shannon, Some problems in the mathematical modelling of erythrocyte sedimentation, Math. Med. Biol. IMA, 11 (1990) 145-156. |
[27] | E. N. Lightfoot, Transport Phenomena in Living Systems, Wiley, New York, 1996. |
[28] | E. K. Lenzi, L. C. Malacarne, R. S. Mendes, et al. Anomalous diffusion, nonlinear fractional fokker-planck equation and solutions, Physica A, 319 (2003), 245-252. |
[29] | F. Mainardi, G. Pagnini, The Wright functions as solution of the time-fractional diffusion equation, Appl. Math. Comput. 141 (2003), 51-62. |
[30] | R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), 1-77. |
[31] | J. Vanterler da C. Sousa, Erythrocyte sedimentation: A fractional model, Phd Thesis, Imecc-Unicamp, Campinas, 2017. |
[32] | I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, San Diego, 198,1999. |
[33] | M. Caputo, F. Mainardi, Linear models of dissipation in anelastic solids, Riv. Nuovo Cimento, 1 (1971), 161-178. |
[34] | R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Springer, Wien and New York, 54 (2008), 223-276. |
[35] | L. Debnath, D. Bhatta, Integral Transforms and Their Applications, Second Edition, Chapman & Hall/CRC, Taylor and Francis Group, Boca Raton, 2007. |
[36] | P. Dyke, An Introduction to Laplace Transforms and Fourier Series, Springer, New York, 2001. |
[37] | M. El-Shahed, A. Salem, An extension of wright function and its properties, J. Math. Hindawi Publishing Corporation, 2015. |
[38] | R. Figueiredo Camargo, E. Capelas de Oliveira, J. Vaz Jr., On anomalous diffusion and the fractional generalized langevin equation for a harmonic oscillator, J. Math. Phys. 50 (2009), 123518. |
[39] | J. M. Harris, J. L. Hirst, M. J. Mossinghoff, Combinatorics and Graph Theory, Springer, New York, 2008. |
[40] | R. Gorenflo, A. A. Kilbas, F. Mainardi, et al. Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, 2014. |
[41] | W. N. Schirmer, H. de M. Lisboa, R. d. F. P. M. Moreira, et al. Modeling of adsorption of volatile organic compounds on the carbon nanotubes cup-stacked using the model linear driving force (in portuguese), Acta Scientiarum. Technology, 32 (2010), 159-166. |
[42] | J. Grote, R. Susskind, P. Vaupel, Oxygen diffusivity in tumor tissue ds-carcinosarcoma under temperature conditions within the range of 2040 c, Pflgers Archiv, Springer, 72 (1977), 37-42. |
[43] | D. Aksnes, J. Egge, A theoretical model for nutrient uptake in phytoplankton, Marine Ecology Progress Series, Oldendorf, 70 (1991), 65-72. |
[44] | F. Silva Costa, E. Capelas de Oliveira, J. Vaz Jr, On a class of inverse Laplace transform, not published. |