Citation: Sizhao Li, Xinyu Han, Dapeng Lang, Songsong Dai. On the stability of two functional equations for $ (S, N) $-implications[J]. AIMS Mathematics, 2021, 6(2): 1822-1832. doi: 10.3934/math.2021110
[1] | B. Jayaram, On the law of importation $(x\wedge y) \rightarrow z \equiv (x \rightarrow (y \rightarrow z))$ in fuzzy logic, IEEE Trans. Fuzzy Syst., 16 (2008), 130-144. doi: 10.1109/TFUZZ.2007.895969 |
[2] | E. Kerre, M. Nachtegael, Fuzzy techniques in image processing, New York: Springer-Verlag, 2000. |
[3] | Y. Shi, D. Ruan, E. E. Kerre, On the characterization of fuzzy implications satisfying I(x, y) = I(x, I(x, y)), Inf. Sci., 177 (2007), 2954-2970. |
[4] | A. Xie, F. Qin, Solutions to the function equation I(x, y) = I(x, I(x, y)) for a continuous Doperation, Inf. Sci., 180 (2010), 2487-2497. |
[5] | S. Massanet, J. Torrens, Some remarks on the solutions to the functional equation I(x, y) = I(x, I(x, y)) for D-operations, In: E. Hüllermeier, R. Kruse, F. Hoffmann, Eds., Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Methods, In: Commun. Comput. Inf. Sci., vol. 80, Springer, Berlin/Heidelberg, 2010,666-675. |
[6] | A. Xie, F. Qin, Solutions to the functional equation I(x, y) = I(x, I(x, y)) for three types of fuzzy implications derived from uninorms, Inf. Sci., 186 (2012), 209-221. |
[7] | M. Mas, M. Monserrat, J. Torrens, The law of importation for discrete implications, Inf. Sci., 179 (2009), 4208-4218. doi: 10.1016/j.ins.2009.08.028 |
[8] | M. Mas, M. Monserrat, A characterization of (U, N), RU, QL and D-implications derived from uninorms satisfying the law of importation, Fuzzy Sets Syst., 161 (2010), 1369-1387. |
[9] | S. Massanet, J. Torrens, Characterization of fuzzy implication functions with a continuous natural negation satisfying the law of importation with a fixed t-Norm, IEEE Trans. Fuzzy Syst., 25 (2017), 100-113. doi: 10.1109/TFUZZ.2016.2551285 |
[10] | S. Massanet, D. Ruiz-Aguilera, J. Torrens, Characterization of a class of fuzzy implication functions satisfying the law of importation with respect to a fixed uninorm-Part I. IEEE Trans. Fuzzy Syst., 26 (2018), 1983-1994. |
[11] | S. Massanet, D. Ruiz-Aguilera, J. Torrens, Characterization of a class of fuzzy implication functions satisfying the law of importation with respect to a fixed uninorm-Part Ⅱ. IEEE Trans. Fuzzy Syst., 26 (2018), 1995-2003. |
[12] | S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964. |
[13] | D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222 |
[14] | N. R. Vemuri, B. Jayaram, Fuzzy implications: Novel generation process and the consequent algebras, In: Advances on Computational Intelligence-14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2012, Catania, Italy, July 9-13, 2012. Proceedings, Part Ⅱ, 365-374. |
[15] | A. K. Mirmostafaee, M. Mirzavaziri, M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets Syst., 159 (2008), 730-738. |
[16] | A. K. Mirmostafaee, M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets Syst., 159 (2008), 720-729. doi: 10.1016/j.fss.2007.09.016 |
[17] | H. Zhou, Characterizations of fuzzy implications generated by continuous multiplicative generators of T-norms, IEEE Trans. Fuzzy Syst., 2020, doi: 10.1109/TFUZZ.2020.3010616. doi: 10.1109/TFUZZ.2020.3010616 |
[18] | C. I. Kim, G. Han, Fuzzy stability for a class of cubic functional equations, J. Intell. Fuzzy Syst., 33 (2017), 3779-3787. doi: 10.3233/JIFS-17674 |
[19] | J. R. Wu, Z. Y. Jin, A note on Ulam stability of some fuzzy number-valued functional equations, Fuzzy Sets Syst., 375 (2019), 191-195, . doi: 10.1016/j.fss.2018.10.018 |
[20] | H. Koh, D. Kang, On the fuzzy stability problem of generalized cubic mappings, J. Intell. Fuzzy Syst., 32 (2017), 2477-2484. doi: 10.3233/JIFS-16460 |
[21] | T. Z. Xu, On fuzzy approximately cubic type mapping in fuzzy Banach spaces, Inf. Sci., 278 (2014), 56-66. doi: 10.1016/j.ins.2014.03.019 |
[22] | Y. H. Shen, On the Ulam stability of first order linear fuzzy differential equations under generalized differentiability, Fuzzy Sets Syst., 280 (2015), 27-57. doi: 10.1016/j.fss.2015.01.002 |
[23] | M. Baczyński, B. Jayaram, Fuzzy Implications, Springer, Berlin Heidelberg, 2008. |
[24] | E. P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Publishers, Dordrecht, 2000 |