Research article

Closure properties of generalized λ-Hadamard product for a class of meromorphic Janowski functions

  • Received: 26 August 2020 Accepted: 07 November 2020 Published: 27 November 2020
  • MSC : 30C65, 30C45

  • In this paper, we introduce a class of meromorphic starlike function by subordination relationship and generalized λ-Hadamard product. We obtain the necessary and sufficient conditions and closure properties of the class. In addition, some new results of the class are given.

    Citation: Tao He, Shu-Hai Li, Li-Na Ma, Huo Tang. Closure properties of generalized λ-Hadamard product for a class of meromorphic Janowski functions[J]. AIMS Mathematics, 2021, 6(2): 1715-1726. doi: 10.3934/math.2021102

    Related Papers:

    [1] Tao He, Shu-Hai Li, Li-Na Ma, Huo Tang . Closure properties for second-order $ \lambda $-Hadamard product of a class of meromorphic Janowski function. AIMS Mathematics, 2023, 8(5): 12133-12142. doi: 10.3934/math.2023611
    [2] Muhammad Bilal Khan, Hakeem A. Othman, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman . Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities. AIMS Mathematics, 2023, 8(3): 6777-6803. doi: 10.3934/math.2023345
    [3] Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On $ q $-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185
    [4] Bo Wang, Rekha Srivastava, Jin-Lin Liu . Certain properties of multivalent analytic functions defined by $ q $-difference operator involving the Janowski function. AIMS Mathematics, 2021, 6(8): 8497-8508. doi: 10.3934/math.2021493
    [5] Cai-Mei Yan, Jin-Lin Liu . On second-order differential subordination for certain meromorphically multivalent functions. AIMS Mathematics, 2020, 5(5): 4995-5003. doi: 10.3934/math.2020320
    [6] Ying Yang, Jin-Lin Liu . Some geometric properties of certain meromorphically multivalent functions associated with the first-order differential subordination. AIMS Mathematics, 2021, 6(4): 4197-4210. doi: 10.3934/math.2021248
    [7] Hadjer Belbali, Maamar Benbachir, Sina Etemad, Choonkil Park, Shahram Rezapour . Existence theory and generalized Mittag-Leffler stability for a nonlinear Caputo-Hadamard FIVP via the Lyapunov method. AIMS Mathematics, 2022, 7(8): 14419-14433. doi: 10.3934/math.2022794
    [8] Hao Fu, Yu Peng, Tingsong Du . Some inequalities for multiplicative tempered fractional integrals involving the $ \lambda $-incomplete gamma functions. AIMS Mathematics, 2021, 6(7): 7456-7478. doi: 10.3934/math.2021436
    [9] Serap Özcan . Some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions. AIMS Mathematics, 2020, 5(2): 1505-1518. doi: 10.3934/math.2020103
    [10] Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407
  • In this paper, we introduce a class of meromorphic starlike function by subordination relationship and generalized λ-Hadamard product. We obtain the necessary and sufficient conditions and closure properties of the class. In addition, some new results of the class are given.


    Let Σ(a,k) be the class of meromorphic functions f of the form

    f(z)=az+n=kanzn(a>0,k2,kN), (1.1)

    which is analytic in the punctured open unit disk U={zC:0<|z|<1}=U{0}.

    In 2009, El-Ashwah [1] introduced the subclass ΣSk(a,β) of generalized meromorphically starlike of order β as follows,

    ΣSk(a,β)={f(z)Σ(a,k):Rezf(z)f(z)>β,β[0,1)}.

    An analytic function g:U={z:|z|<1}C is subordinate to an analytic function h:UC, if there is a function ω satisfying ω(0)=0and|ω(z)|<1(zU), such that g(z)=h(ω(z))(zU). Note that g(z)h(z). Especially, if h is univalent in U, then the following conclusion is true (see [2]):

    g(z)h(z)g(0)=h(0)andg(U)h(U).

    Using the subordinate relationship, we introduce the following subclass of generalized meromorphic Janowski functions (see [3,5,6]).

    Definition 1. Let f(z)Σ(a,k),a>0,A,BR,|A|1,|B|1 and AB. The function fΣSk(a,A,B) if and only if

    zf(z)f(z)1+Az1+Bz(zU).

    It is obvious that

    ΣSk(a,A,B)ΣSk(a,1A1B)(1B<A1).

    According to the subordination relationship, the function f(z)ΣSk(a,A,B) if and only if there exists an analytic function ω(z) in the open unit dick U satisfying ω(0)=0 and |ω(z)|<1, such that

    zf(z)f(z)=1+Aw(z)1+Bw(z)(zU),

    which is equivalent to

    |zf(z)+f(z)Af(z)+Bzf(z)|<1(zU). (1.2)

    Let T(a,k) be the subclass of Σ(a,k), the function f belonging to T(a,k) of the following form

    f(z)=azn=k|an|zn. (1.3)

    Let

    ¯ΣSk(a,A,B)=T(a,k)ΣSk(a,A,B).

    Next, we introduce the generalized λ-Hadamard product of the class T(a,k).

    Definition 2. Let a>0,p>0,q>0,λ0,kN,k2,fi(z)=azn=k|an,j|znT(a,k)(i=1,2). The generalized λ-Hadamard product (f1˜f2)λ(p,q,a;z) of the function f1 and f2 is defined by

    (f1˜Δf2)λ(p,q,a;z)=(1λ)(f1Δf2)(p,q,a;z)λz(f1Δf2)(p,q,a;z), (1.4)

    where

    (f1Δf2)(p,q,a;z)=a2zn=k|an,1|p|an,2|qzn. (1.5)

    From (1.4) and (1.5), we get

    (f1˜Δf2)λ(p,q,a;z)=a2zn=k[1(n+1)λ]|an,1|p|an,2|qzn.

    Selecting different parameters a,λ,p and q, we can obtain the following three special convolutions:

    (ⅰ) For λ=0, (f1˜Δf2)0(p,q,a;z) is the generalized Hadamard product:

    (f1˜Δf2)0(p,q,a;z)=:(f1Δf2)(p,q,a;z)=a2zn=k|an,1|p|an,2|qzn.

    In particular, for a=1, the Hadamard product (f1Δf2)(p,q,1;z)=1zn=k|an,1|p|an,2|qzn was studied by Janowski [3] and Tang et al. [6].

    (ⅱ) For λ=0,p=q=1, (f1˜Δf2)0(1,1,a;z) is the general Hadamard product:

    (f1˜Δf2)0(1,1,a;z)=:(f1f2)(a;z)=a2zn=k|an,1||an,2|zn.

    In particular, for a=1, (f1f2)(1;z) is the well-known Hadamard product (see [1,4,7]):

    (f1f2)(1;z)=(f1f2)(z)=1zn=k|an,1||an,2|zn.

    For a=1,k=1, f1(z)=z1+n=1(a)n(c)nzn,f2(z)=azn=1|an,2|zn, (a)n=a(a+1)(a+n1)(nN), (f1f2)(1;z)=1zn=1(a)n(c)n|an,2|zn was studied by Liu et al. [8] (see also [9]).

    (ⅲ) For p=q=1, (f1˜Δf2)λ(1,1,a;z)=(f1¯f2)λ(z) is λHadamard product:

    (f1¯f2)λ(z)=(1λ)(f1f2)+λz(f1f2)(z)=a2zn=k[1(n+1)λ]|an,1||an,2|zn.

    In 1996, Choi et al. [4] studied the closure properties of the generalized λ-Hadamard product for univalent functions. In 2001, Liu et al. [8] investigated two new classes of meromorphically multivalent functions by using a linear operator. Based on this, in this paper, we mainly consider the closure properties of the generalized λ-Hadamard product for meromorphic functions. Firstly, we obtain the necessary and sufficient conditions of the class ¯ΣSk(a,A,B) by using subordination relationship. Secondly, we discuss the closure properties of the general Hadamard product, the generalized Hadamard product and λ-Hadamard product for functions of the class ¯ΣSk(a,A,B). Finally, we discuss the closure properties of the generalized λ-Hadamard product and generalize the known conclusions.

    Unless otherwise noted, the parameters a,k,A and B satisfy the condition: a>0,kN,k2,A,BR,|A|1,|B|1 and AB.

    In order to establish our results, we need the following lemmas.

    Lemma 1. Let f be of the form (1.1). If

    n=k[(n+1)+|A+nB|]|an|a|AB|, (2.1)

    then f(z)ΣSk(a,A,B).

    Proof. Let |z|=1. By (2.1), we obtain

    |zf(z)+f(z)||Af(z)+Bzf(z)||n=k(n+1)|an|zn||az(AB)|+|n=k(A+nB)|an|zn|n=k(n+1)|an|a|AB|+n=k|A+nB||an|=n=k[(n+1)+|A+nB|]|an|a|AB|0.

    Using the principle of maximum modulus, we get

    |zf(z)+f(z)||Af(z)+Bzf(z)|<0(zU).

    Then we conclude that f(z)ΣSk(a,A,B). Therefore, we complete the proof of Lemma 1.

    Lemma 2. Let the function f be of the form (1.3).

    (ⅰ) If 0B<A1. Then the function f(z)¯ΣSk(a,A,B) if and only if

    n=k[(n+1)+(A+nB)]|an|a(AB). (2.2)

    (ⅱ) If 1A<B0. Then the function f(z)¯ΣSk(a,A,B) if and only if

    n=k[(n+1)(A+nB)]|an|a(BA). (2.3)

    Proof. It appears from (1.3) that ¯ΣSk(a,A,B)ΣSk(a,A,B). In view of Lemma 1, we just need prove the necessity part of Lemma 2. Let f(z)¯ΣSk(a,A,B). By (1.2), we have

    |zf(z)+f(z)Af(z)+Bzf(z)|=|n=k(n+1)|an|zn1a(AB)n=k(A+nB)|an|zn1|<1.

    Since |Rez||z| holds true for all zC. If 0B<A1, then

    Re{n=k(1+n)|an|zn1a(AB)n=k(A+nB)|an|zn1}<1. (2.4)

    Let z=r1. From (2.4), we can get (2.2). Using the same method, we can obtain the result of (ⅱ). The estimates of (ⅰ) and (ⅱ) are sharp for the function f given by

    f(z)=aza|AB|(k+1)+|A+kB|zk,k2. (2.5)

    So, we complete the proof of Lemma 2.

    First of all, we discuss the closure properties of the general Hadamard product of the class ¯ΣSk(a,A,B).

    Theorem 1. Let fi(z)=azn=k|an|zn¯ΣSk(a,A,B)(i=1,2). If A and B satisfy the condition

    0B<A1or1A<B0,

    then 1a(f1f2)(a;z)¯ΣSk(a,A,B).

    Proof. Let 0B<A1. If fi(z)¯ΣSk(a,A,B)(i=1,2), from (2.2), we obtain

    n=k[(n+1)+(A+nB)]|an,1|a(AB) (3.1)

    and

    n=k[(n+1)+(A+nB)]|an,2|a(AB). (3.2)

    To obtain 1a(f1f2)(a;z)¯ΣSk(a,A,B), we just prove

    n=k1a[(n+1)+(A+nB)]|an,1||an,2|a(AB). (3.3)

    By using Cauchy-Schwarz inequality, from (3.1) and (3.2), we have

    n=k[(n+1)+(A+nB)]|an,1||an,2|a(AB). (3.4)

    According to (3.3) and (3.4), we only need to prove

    |an,1||an,2|a.

    From (3.4) and the condition 0B<A1, we have

    |an,1||an,2|a(AB)(n+1)+(A+nB)a.

    Therefore, we conclude that 1a(f1f2)(a;z)¯ΣSk(a,A,B).

    For 1A<B0, using the same method above, we get 1a(f1f2)(a;z)¯ΣSk(a,A,B). Therefore, we complete the proof of Theorem 1.

    Next, we prove the closure properties of the generalized Hadamard product.

    Theorem 2. Let fi(z)=azn=k|an|zn¯ΣSk(a,A,B)(i=1,2) and p>1. If anyone of the following conditions holds true:

    (ⅰ) For 0B<A1, ˆB and a satisfy

    {0ˆBaA[(k+1)+(A+kB)](AB)(k+1+A)a[(k+1)+(A+kB)]+(AB)k,0<a<1,ˆBaA(1+B)(AB)a(1+B)+(AB),a>1.

    (ⅱ) For 1A<B0, 1A<ˆB0 and a satisfies a>0. Then 1a(f1Δf2)(1p,p1p;a,z)¯ΣSk(a,A,ˆB).

    Proof. (ⅰ) For 0B<A1, by Lemma 2, we can get

    n=k(n+1)+(A+nB)a(AB)|an,i|1(i=1,2).

    We deduce that

    {n=k(n+1)+(A+nB)a(AB)|an,1|}1p1 (3.5)

    and

    {n=k(n+1)+(A+nB)a(AB)|an,2|}p1p1. (3.6)

    According to (1.5), we have

    (f1Δf2)(1p,p1p)=a2zn=k|an,1|1p|an,2|p1pzn.

    To prove 1a(f1f2)(1p,p1p,a;z)¯ΣSk(a,A,ˆB), we only need to show

    n=k(n+1)+(A+nˆB)a2(AˆB)|an,1|1p|an,2|p1p1. (3.7)

    Applying Hölder inequality, from (3.5) and (3.6), we obtain

    n=k(n+1)+(A+nB)a(AB)|an,1|1p|an,2|p1p1.

    Thus, (3.7) holds if

    (n+1)+(A+nˆB)a2(AˆB)(n+1)+(A+nB)a(AB)(nN,nk),

    that is,

    ˆB[a[(n+1)+(A+nB)]AB+n]aA[(n+1)+(A+nB)]AB(n+1+A). (3.8)

    Let

    F1(n)=a[(n+1)+(A+nB)]AB+n

    and

    G1(n)=aA[(n+1)+(A+nB)]AB(n+1+A).

    It is easy to see F1(n)>0 holds true for nk. To obtain (3.8), we only need to prove

    ˆBG1(n)F1(n)=aA[(n+1)+(A+nB)](AB)(n+1+A)a[(n+1)+(A+nB)]+(AB)n.

    Because G1(n)F1(n) is an increasing function with respect to n and the condition (i) holds true, so we have

    ˆBaA[(k+1)+(A+kB)](AB)(k+1+A)a[(k+1)+(A+kB)]+(AB)k=G(k)F(k)G(n)F(n).

    Therefore, we conclude that 1a(f1Δf2)(1p,p1p;a,z)¯ΣSk(a,A,ˆB).

    (ⅱ) It is similar to the proof of (ⅰ). For 1A<B0, we only need to show

    (n+1)(A+nˆB)a2(ˆBA)(n+1)(A+nB)a(BA)(nN,nk),

    that is,

    ˆB[a[(n+1)(A+nB)]BA+n]aA[(n+1)(A+nB)]BA+(n+1A). (3.9)

    Let

    F2(n)=a[(n+1)(A+nB)]BA+n

    and

    G2(n)=aA[(n+1)(A+nB)]BA+(n+1A).

    It is easy to see F2(n)>0 holds true for nk. To make (3.9) establish, we only need to prove

    ˆBG2(n)F2(n)=aA[(n+1)(A+nB)]+(BA)(n+1A)a[(n+1)+(A+nB)]+(BA)n. (3.10)

    It is clear that G2(n)F2(n) is an decreasing function with respect to n for 0<a<1 and

    A>aA[(k+1)(A+kB)](BA)(k+1A)a[(k+1)(A+kB)]+(BA)k,

    then we have

    ˆBaA[(k+1)(A+kB)](BA)(k+1A)a[(k+1)(A+kB)]+(BA)k=G2(k)F2(k)G2(n)F2(n).

    It can be concluded that 1a(f1Δf2)(1p,p1p;a,z)¯ΣSk(a,A,ˆB). Clearly, G2(n)F2(n) is an increasing function with respect to n for a>1 and

    limn+G2(n)F2(n)=aA(1B)+(BA)a(1B)+(BA).

    Since A>aA(1B)+(BA)a(1B)+(BA), we have

    ˆB>A>aA(1B)+(BA)a(1B)+(BA)=limn+G2(n)F2(n)G2(n)F2(n).

    Thus, we conclude that 1a(f1Δf2)(1p,p1p;a,z)¯ΣSk(a,A,ˆB). The proof of Theorem 2 is completed.

    Putting A=1,B=0 in Theorem 2, we obtain the following corollary.

    Corollary 1. Let fi(z)=azn=k|an,i|zn¯ΣSk(a,1,0)(i=1,2) and p>1. If ˆB and a satisfy

    {0ˆB(a1)(k+2)a(k+2)+k,0<a<1,ˆBa1a+1,a>1.

    Then 1a(f1f2)(1p,p1p;a,z)¯ΣSk(a,A,ˆB). Finally, we consider the closure properties of λ-Hadamard product (f1¯f2)λ(z) and the generalized λ-Hadamard product (f1˜Δf2)λ(p.q,a;z) as follows.

    Theorem 3. Let fi(z)=azn=k|an,i|zn¯ΣSk(a,A,B)(i=1,2). If A,B and λ satisfy

    {(AB)(k+1AnB)(AB)(k+1)<λ<1k+1,0B<A1,λ<1k+1,1A<B0.

    Then 1a(f1¯f2)λ(z)¯ΣSk(a,A,B).

    Proof. Let fi(z)¯ΣSk(a,A,B)(i=1,2). If 0B<A1, from Lemma 2, we obtain

    n=k((n+1)+(A+nB))|an,1|a(AB), (3.11)

    and

    n=k((n+1)+(A+nB))|an,2|a(AB). (3.12)

    By Definition 2, we have

    1a(f1ˉf2)λ(z)=azn=k1a(1(n+1)λ|an,1||an,2|zn.

    To show 1a(f1ˉf2)λ(z)¯ΣSk(a,A,B), we just prove

    n=k1a(1(n+1)λ)((n+1)+(A+nB))|an,1||an,2|a(AB). (3.13)

    Applying Cauchy-Schwarz inequality to (3.11) and (3.12), we get

    n=k((n+1)+(A+nB))|an,1||an,2|a(AB). (3.14)

    According to (3.13) and (3.14), we only need to prove

    |an,1||an,2|a1(n+1)λ.

    Since |an,1||an,2|a(AB)(n+1)+(A+nB), we only need to prove

    AB(n+1)+(A+nB)1(n+1)λ,nk. (3.15)

    Let

    M(n)=(n+1)+(A+nB)1(n+1)λ.

    Clearly, M(n) is an increasing function for nk. This implies that (3.15) holds true if

    k+1+A+nB1(k+1)λAB.

    For λ<1k+1, the above formula can be expressed as λ(AB)(k+1AnB)(AB)(k+1).

    To summarize, we conclude that 1a(f1¯f2)λ(z)¯ΣSk(a,A,B) for (AB)(k+1AnB)(AB)(k+1)<λ<1k+1. Using the same method, we can get 1a(f1¯f2)λ(z)¯ΣSk(a,A,B) for

    λ<min{(BA)(k+1AnB)(BA)(k+1),1k+1}=1k+1.

    Thus, we complete the proof of Theorem 3.

    Theorem 4. Let fi(z)=azn=k|an|zn¯ΣSk(a,A,B)(i=1,2) and p>1.

    (1) For 0B<A1,0ˆB<A. If anyone of the following conditions holds true.

    (ⅰ) a<1,λ<min{12(n+1),a(1+B)+(AB)(2n+1)(AB),k(AB)+a(k+1+A+kB)k(k+1)(AB)},

    (ⅱ) a>1,12(k+1)<λ<min{a(1+B)+(AB)(2n+1)(AB),k(AB)+a(k+1+A+kB)k(k+1)(AB)},

    (ⅲ) a<1,max{a(1+B)+(AB)(2k+1)(AB),k(AB)+a(k+1+A+kB)k(k+1)(AB)}<λ<12(n+1),

    (ⅳ) a>1,max{12(k+1),a(1+B)+(AB)(2k+1)(AB),k(AB)+a(k+1+A+kB)k(k+1)(AB)}<λ.

    Then the generalized λ-Hadamard product: 1a(f1˜Δf2)λ(1p,p1p,a;z)¯ΣSk(a,A,B).

    (2) For 1A<B0. If anyone of the following conditions holds true.

    (ⅴ) a<1,λ<min{12(n+1),(BA)+a(1B)(2k1)(BA),k(BA)+a(k+1AkB)k(k+1)(BA)},

    max(A,aA[(k+1)(A+kB)]+[1(k+1)λ](k+1+A)(BA)a[(k+1)(A+kB)]k[1(k+1)λ](BA))ˆB0,

    (ⅵ) a>1,12(k+1)<λ<min{(BA)+a(1B)(2k1)(BA),k(BA)+a(k+1AkB)k(k+1)(BA)},

    max(A,aA[(k+1)(A+kB)]+[1(k+1)λ](k+1+A)(BA)a[(k+1)(A+kB)]k[1(k+1)λ](BA))ˆB0,

    (ⅶ) a<1,max{(BA)+a(1B)(2k1)(BA),k(BA)+a(k+1AkB)k(k+1)(BA)}<λ<12(n+1),AˆB<0,

    (ⅷ) a>1,max{12(k+1),(BA)+a(1B)(2k1)(BA),k(BA)+a(k+1AkB)k(k+1)(BA)}<λ,AˆB<0.

    Then the generalized λ-Hadamard product: 1a(f1˜Δf2)λ(1p,p1p,a;z)¯ΣSk(a,A,B).

    Proof. Let fi(z)¯ΣSk(a,A,B)(i=1,2). The method for the proof of Theorem 4 is similar to that of Theorem 2. If 1A<B0, we just need to prove

    [1(n+1)λ][(n+1)(A+nˆB)]a2(AˆB)(n+1)(AnB)a(BA), (3.16)

    that is

    ˆB[a[(n+1)(A+nB)]BA+n(1(n+1)λ)]aA[(n+1)(A+nB)]BA+[1(n+1)λ](n+1A).

    Let

    P(n)=a[(n+1)(A+nB)]BA+n[1(n+1)λ]

    and

    Q(n)=aA[(n+1)+(A+nB)]BA+[1(n+1)λ](n+1A).

    The following discussion can be divided into two cases:

    (a) It is easy to see that P(n)>0 if λ<(BA)+a(1B)(BA)(2n1). To prove that (3.16) holds true, we need only to prove the following inequality

    ˆBQ(n)P(n)=aA[(n+1)(A+nB)]BA+[1(n+1)λ](n+1A)a[(n+1)(A+nB)]BA+n[1(n+1)λ]. (3.17)

    Clearly, Q(n)P(n) is an increasing function with respect to n for a<1,λ<12(n+1) or a>1,λ>12(k+1). If λ<k(BA)+a(k+1AkB)k(k+1)(BA), then we have

    ˆBaA[(k+1)(A+kB)]+[1(k+1)λ](k+1A)(BA)a[(k+1)(A+kB)]+k[1(k+1)λ](BA)=Q(k)P(k)Q(n)P(n).

    Therefore, 1a(f1˜f2)λ(1p,p1p,a,z)¯ΣSk(a,A,B) if the conditions (v) or (vi) are satisfied.

    (b) It is easy to see that P(n)<0 if λ>(BA)+a(1B)(BA)(2n1) and P(k)=a[(k+1)(A+kB)]BA+k[1(k+1)λ]>0. To prove that (3.16) holds true, we need only to prove the following inequality

    ˆBQ(n)P(n)=aA[(n+1)(A+nB)]AB[1(n+1)λ])(n+1A)a[(n+1)(A+nB)]BA+n[1(n+1)λ]. (3.18)

    Clearly, Q(n)P(n) is a decreasing function with respect to n for a<1,λ<12(n+1) or a>1,λ>12(k+1).

    ˆBlimn+Q(n)P(n)Q(n)P(n).

    Therefore, 1a(f1˜f2)λ(1p,p1p,a,z)¯ΣSk(a,A,B) if the conditions (vii) or (viii) are satisfied.

    To summarize, we conclude that the conclusion (2) is established. Using the same method to that in the proof of (2), the conclusion (1) holds true. Thus, we complete the proof of Theorem 4.

    Let A=1 and B=0 in Theorem 4, we have the following corollary.

    Corollary 2. Let fi(z)¯ΣSk(a,1,0)(i=1,2) and p>1. If anyone of the following conditions is satisfied.

    (ⅰ) a<1,λ<min{12(n+1),a+1(2n+1),k+a(k+2)k(k+1)},

    (ⅱ) a>1,12(k+1)<λ<min{a+1(2n+1),k+a(k+2)k(k+1)},

    (ⅲ) a<1,max{a+1(2k+1),k+a(k+2)k(k+1)}<λ<12(n+1),

    (ⅳ) a>1,max{12(k+1),a+1(2k+1),k+a(k+2)k(k+1)}<λ.

    Then the generalized λ-Hadamard product (f1˜Δf2)λ(1p,p1p,a;z) ¯ΣSk(a,12β,ˆB).

    This work is supported by the Natural Science Foundation of the People's Republic of China under Grant 11561001, the Natural Science Foundation of Inner Mongolia of the People's Republic of China under Grants 2018MS01026, 2019MS01023 and 2020MS01011, the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region under Grant NJYT-18-A14 and the Higher-School Science Foundation of Inner Mongolia of the People's Republic of China under Grants NJZY20198 and NJZY20200.

    All authors declare no conflict of interest in this paper.



    [1] R. M. El-Ashwah, M. K. Aouf, Hadamard product of certain meromorphic starlike and convex function, Comput. Math. Appl., 57 (2009), 1102-1106. doi: 10.1016/j.camwa.2008.07.044
    [2] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Vol. 259, Springer-Verlag, New York, Berlin Heidelbergr Tokyo, 1983.
    [3] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28 (1973), 297-326. doi: 10.4064/ap-28-3-297-326
    [4] J. H. Choi, Y. C. Kim, S. Owa, Generalizations of hadamard products of functions with negative coefficients, J. Math. Anal. Appl., 199 (1996), 495-501. doi: 10.1006/jmaa.1996.0157
    [5] S. Mahmood, Q. Z. Ahmad, H. M. Srivastava, N. Khan, B. Khan, M. Tahir, A certain subclass of meromorphically q-starlike functions associated with the Janowski functions, J. Inequal. Appl., 2019 (2019), 1-11. doi: 10.1186/s13660-019-1955-4
    [6] H. Tang, G.-T. Deng, S.-H. Li, Quasi-Hadamard product of meromorphic univalent functions at infinity, J. Math., 34 (2014), 51-57.
    [7] R. M. El-Ashwah, M. K. Aouf, A. M. Hassan, A. H. Attia, Generalizations of hadamard product of certain meromorphic multivalent functions with positive coefficients, European Journal of Mathematical Sciences, 2 (2013), 41-50.
    [8] J.-L. Liu, H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl., 259 (2001), 566-581. doi: 10.1006/jmaa.2000.7430
    [9] F. Ghanim, M. Darus, New subclass of multivalent hypergeometric meromorphic functions, J. Pure Appl. Math., 61 (2010), 269-280.
  • This article has been cited by:

    1. Tao He, Shu-Hai Li, Li-Na Ma, Huo Tang, Closure properties for second-order λ-Hadamard product of a class of meromorphic Janowski function, 2023, 8, 2473-6988, 12133, 10.3934/math.2023611
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2418) PDF downloads(208) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog