Research article

On second-order differential subordination for certain meromorphically multivalent functions

  • Received: 18 April 2020 Accepted: 22 May 2020 Published: 09 June 2020
  • MSC : Primary 30C45; Secondary 30C80

  • A new class Rn(A,B,λ) of meromorphically multivalent functions defined by the second-order differential subordination is introduced. Several geometric properties of this new class are studied. The sharp upper bound on |z|=r<1 for the functional Re{(λ1)zp+1f(z)+λp+1zp+2f(z)} over the class Rn(A,B,0) is obtained.

    Citation: Cai-Mei Yan, Jin-Lin Liu. On second-order differential subordination for certain meromorphically multivalent functions[J]. AIMS Mathematics, 2020, 5(5): 4995-5003. doi: 10.3934/math.2020320

    Related Papers:

    [1] Ying Yang, Jin-Lin Liu . Some geometric properties of certain meromorphically multivalent functions associated with the first-order differential subordination. AIMS Mathematics, 2021, 6(4): 4197-4210. doi: 10.3934/math.2021248
    [2] Shuhai Li, Lina Ma, Huo Tang . Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015
    [3] Erhan Deniz, Hatice Tuǧba Yolcu . Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order. AIMS Mathematics, 2020, 5(1): 640-649. doi: 10.3934/math.2020043
    [4] Ekram E. Ali, Rabha M. El-Ashwah, R. Sidaoui . Application of subordination and superordination for multivalent analytic functions associated with differintegral operator. AIMS Mathematics, 2023, 8(5): 11440-11459. doi: 10.3934/math.2023579
    [5] Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan . Sharp inequalities for q-starlike functions associated with differential subordination and q-calculus. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379
    [6] Yu-Qin Tao, Yi-Hui Xu, Rekha Srivastava, Jin-Lin Liu . Geometric properties of a certain class of multivalent analytic functions associated with the second-order differential subordination. AIMS Mathematics, 2021, 6(1): 390-403. doi: 10.3934/math.2021024
    [7] Sarem H. Hadi, Maslina Darus, Choonkil Park, Jung Rye Lee . Some geometric properties of multivalent functions associated with a new generalized q-Mittag-Leffler function. AIMS Mathematics, 2022, 7(7): 11772-11783. doi: 10.3934/math.2022656
    [8] Pinhong Long, Xing Li, Gangadharan Murugusundaramoorthy, Wenshuai Wang . The Fekete-Szegö type inequalities for certain subclasses analytic functions associated with petal shaped region. AIMS Mathematics, 2021, 6(6): 6087-6106. doi: 10.3934/math.2021357
    [9] Mohammad Faisal Khan, Ahmad A. Abubaker, Suha B. Al-Shaikh, Khaled Matarneh . Some new applications of the quantum-difference operator on subclasses of multivalent q-starlike and q-convex functions associated with the Cardioid domain. AIMS Mathematics, 2023, 8(9): 21246-21269. doi: 10.3934/math.20231083
    [10] Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan . Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Mathematics, 2021, 6(6): 5421-5439. doi: 10.3934/math.2021320
  • A new class Rn(A,B,λ) of meromorphically multivalent functions defined by the second-order differential subordination is introduced. Several geometric properties of this new class are studied. The sharp upper bound on |z|=r<1 for the functional Re{(λ1)zp+1f(z)+λp+1zp+2f(z)} over the class Rn(A,B,0) is obtained.


    Throughout our present investigation, we assume that

    n, pN, 1B<1, B<A  and λ<0. (1.1)

    Let Σn(p) denote the class of functions of the form

    f(z)=zp+k=nakzkp (1.2)

    which are analytic in the punctured open unit disk U={z:0<|z|<1} with a pole at z=0. The class Σn(p) is closed under the Hadamard product (or convolution)

    (f1f2)(z)=zp+k=nak,1ak,2zkp=(f2f1)(z),

    where

    fj(z)=zp+k=nak,jzkpΣn(p)(j=1,2).

    For functions f(z) and g(z) analytic in U={z:|z|<1}, we say that f(z) is subordinate to g(z) and write f(z)g(z) (zU), if there exists an analytic function w(z) in U such that

    |w(z)||z|andf(z)=g(w(z))(zU).

    Furthermore, if the function g(z) is univalent in U, then

    f(z)g(z)(zU)f(0)=g(0)andf(U)g(U).

    In this paper we introduce and investigate the following subclass of Σn(p).

    Definition. A function f(z)Σn(p) is said to be in the class Rn(A,B,λ) if it satisfies the second-order differential subordination:

    (λ1)zp+1f(z)+λp+1zp+2f(z)p1+Az1+Bz(zU). (1.3)

    Recently, several authors (see, e.g., [1,2,3,4,5,6,7,8,9,11,12,13,14,15] and the references cited therein) introduced and investigated various subclasses of meromorphically multivalent functions. Some properties such as distortion bounds, inclusion relations and coefficient estimates were given. In this note we obtain inclusion relation and coefficient estimate for functions f(z) in the class Rn(A,B,λ). Furthermore, we investigate a new problem. It is to find

    max|z|=r<1Re{(λ1)zp+1f(z)+λp+1zp+2f(z)},

    where f(z) varies in the class:

    Rn(A,B,0)={f(z)Σn(p):zp+1f(z)p1+Az1+Bz}. (1.4)

    We need the following lemma in order to derive our main results for the class Rn(A,B,λ).

    Lemma [10]. Let g(z) be analytic in U and h(z) be analytic and convex univalent in U with h(0)=g(0). If

    g(z)+1μzg(z)h(z),

    where Reμ0 and μ0, then g(z)h(z).

    Theorem 1. Let λ2<λ1<0. Then

    Rn(A,B,λ2)Rn(A,B,λ1).

    Proof. Suppose that

    g(z)=zp+1f(z) (2.1)

    for f(z)Rn(A,B,λ2). Then g(z) is analytic in U with g(0)=p. By using (1.3) and (2.1), we have

    (λ21)zp+1f(z)+λ2p+1zp+2f(z)=g(z)λ2p+1zg(z)p1+Az1+Bz. (2.2)

    Hence an application of Lemma with μ=p+1λ2>0 yields

    g(z)p1+Az1+Bz. (2.3)

    Note that 0<λ1λ2<1 and that the function 1+Az1+Bz is convex univalent in U, then it follows from (2.1), (2.2) and (2.3) that

    (λ11)zp+1f(z)+λ1p+1zp+2f(z)=λ1λ2((λ21)zp+1f(z)+λ2p+1zp+1f(z))+(1λ1λ2)g(z)p1+Az1+Bz.

    Thus f(z)Rn(A,B,λ1). The proof of Theorem 1 is completed.

    Theorem 2. Let

    f(z)=zp+k=nakzkpRn(A,B,λ). (2.4)

    Then

    |ak|p(p+1)(AB)(p+1λk)|kp|(kn and kp). (2.5)

    The result is sharp for each kn (kp).

    Proof. It is known that, if

    φ(z)=j=1cjzjψ(z)(zU),

    where φ(z) is analytic in U and ψ(z)=z+ is analytic and convex univalent in U, then |cj|1 (jN).

    By (2.4) we have

    (λ1)zp+1f(z)+λp+1zp+1f(z)pp(AB)=k=n(kp)(λkp1)p(p+1)(AB)akzkz1+Bz(zU). (2.6)

    Because the function z1+Bz is analytic and convex univalent in U, it follows from (2.6) that

    |kp|(p+1λk)p(p+1)(AB)|ak|1(kn and kp),

    which gives (2.5).

    Next we consider the function fk(z) defined by

    fk(z)=zp+p(p+1)(AB)m=1(B)m1zkmp(kmp)(λkmp1)(zU; kn, kp).

    Since

    (λ1)zp+1fk(z)+λp+1zp+2fk(z)=p1+Azk1+Bzkp1+Az1+Bz(zU)

    and

    fk(z)=zp+p(p+1)(AB)(kp)(λkp1)zkp+

    for each kn (kp), the proof of Theorem 2 is completed.

    Theorem 3. Let f(z)Rn(A,B,λ), g(z)Σn(p) and

    Re(zpg(z))>12(zU). (2.7)

    Then (fg)(z)Rn(A,B,λ).

    Proof. For f(z)Rn(A,B,λ) and g(z)Σn(p), we have

    (λ1)zp+1(fg)(z)+λp+1zp+2(fg)(z)=(λ1)(zp+1f(z))(zpg(z))+λp+1(zp+2f(z))(zpg(z))=h(z)(zpg(z)), (2.8)

    where

    h(z)=(λ1)zp+1f(z)+λp+1zp+2f(z)p1+Az1+Bz(zU). (2.9)

    From (2.7), we can see that the function zpg(z) has Herglotz representation:

    zpg(z)=|x|=1dμ(x)1xz(zU), (2.10)

    where μ(x) is a probability measure on the unit circle |x|=1 and |x|=1dμ(x)=1.

    Because the function 1+Az1+Bz is convex univalent in U, it follows from (2.8)–(2.10) that

    (λ1)zp+1(fg)(z)+λp+1zp+2(fg)(z)=|x|=1h(xz)dμ(x)p1+Az1+Bz(zU).

    This shows that (fg)(z)Rn(A,B,λ). The proof of Theorem 3 is completed.

    Theorem 4. Let f(z)Rn(A,B,0). Then for |z|=r<1,

    (ⅰ) if Mn(A,B,λ,r)0, we have

    Re{(λ1)zp+1f(z)+λp+1zp+2f(z)}p[p+1+((p+1)(A+B)λn(AB))rn+(p+1)ABr2n](p+1)(1+Brn)2; (2.11)

    (ⅱ) if Mn(A,B,λ,r)0, we have

    Re{(λ1)zp+1f(z)+λp+1zp+2f(z)}p(4λ2KAKBL2n)4λ(p+1)(AB)rn1(1r2)KB, (2.12)

    where

    {KA=1A2r2n+nArn1(1r2),KB=1B2r2n+nBrn1(1r2),Ln=2λ(1ABr2n)+λn(A+B)rn1(1r2)(p+1)(AB)rn1(1r2),Mn(A,B,λ,r)=2λKB(1+Arn)Ln(1+Brn). (2.13)

    The results are sharp.

    Proof. Equality in (2.11) occurs for z=0. Thus we assume that 0<|z|=r<1.

    For f(z)Rn(A,B,0), we can write

    zp+1f(z)p=1+Aznφ(z)1+Bznφ(z)(zU), (2.14)

    where φ(z) is analytic and |φ(z)|1 in U. It follows from (2.14) that

    (λ1)zp+1f(z)+λp+1zp+2f(z)=zp+1f(z)λp(AB)(nznφ(z)+zn+1φ(z))(p+1)(1+Bznφ(z))2=zp+1f(z)+λnp(p+1)(AB)(zp+1f(z)p+1)(A+Bzp+1f(z)p)λp(AB)zn+1φ(z)(p+1)(1+Bznφ(z))2. (2.15)

    Using the Carathéodory inequality:

    |φ(z)|1|φ(z)|21r2,

    we have

    Re{zn+1φ(z)(1+Bznφ(z))2}rn+1(1|φ(z)|2)(1r2)|1+Bznφ(z)|2r2n|A+Bpzp+1f(z)|2|1pzp+1f(z)+1|2(AB)2rn1(1r2). (2.16)

    Put zp+1f(z)p=u+iv(u,vR). Note that λ<0, then (2.15) and (2.16) provide

    Re{(λ1)zp+1f(z)+λp+1zp+2f(z)}p(1λn(A+B)(p+1)(AB))u+λnpA(p+1)(AB)+λnpB(p+1)(AB)(u2v2)λp[r2n((ABu)2+(Bv)2)((u1)2+v2)](p+1)(AB)rn1(1r2)=p(1λn(A+B)(p+1)(AB))u+λnp(p+1)(AB)(A+Bu2)λp(r2n(ABu)2(u1)2)(p+1)(AB)rn1(1r2)+λp(p+1)(AB)(1B2r2nrn1(1r2)nB)v2. (2.17)

    Further, we can see that

    1B2r2nrn1(1r2)1r2nrn1(1r2)=1rn1(1+r2+r4++r2(n2)+r2(n1))=12rn1[(1+r2(n1))+(r2+r2(n2))++(r2(n1)+1)]nnB. (2.18)

    Combining (2.17) and (2.18), we have

    Re{(λ1)zp+1f(z)+λp+1zp+2f(z)}p(1λn(A+B)(p+1)(AB))u+λnp(p+1)(AB)(A+Bu2)+λp((u1)2r2n(ABu)2)(p+1)(AB)rn1(1r2)=:ψn(u). (2.19)

    It is known that for |ξ|σ (σ<1),

    1Aσ1BσRe(1+Aξ1+Bξ)1+Aσ1+Bσ. (2.20)

    From (2.20) and(2.14) we have

    1Arn1Brnu=Re(zp+1f(z)p)1+Arn1+Brn.

    Now we calculate the maximal value of ψn(u) on the segment [1Arn1Brn,1+Arn1+Brn]. Obviously,

    ψn(u)=p(1λn(A+B)(p+1)(AB))+2λnpB(p+1)(AB)u+2λp((1B2r2n)u(1ABr2n))(p+1)(AB)rn1(1r2),
    ψn(u)=2λp(p+1)(AB)(1B2r2nrn1(1r2)+nB)2λnp(1+B)(p+1)(AB)0(see (2.18) and (1.1)) (2.21)

    and ψn(u)=0 if and only if

    u=un=2λ(1ABr2n)+λn(A+B)rn1(1r2)(p+1)(AB)rn1(1r2)2λ(1B2r2n+nBrn1(1r2))=Ln2λKB, (2.22)

    where Ln and KB are given by (2.13). From (2.13) and (2.18) one can see that KB>0 and Ln<0.

    Since

    2λKB(1Arn)Ln(1Brn)=2λ[(1Arn)(1B2r2n)(1Brn)(1ABr2n)]+λnrn1(1r2)[2B(1Arn)(A+B)(1Brn)]+(p+1)(AB)rn1(1r2)(1Brn)=2λ(AB)rn(1Brn)λn(AB)rn1(1r2)(1+Brn)+(p+1)(AB)rn1(1r2)(1Brn)>0(λ<0),

    we see that

    un>1Arn1Brn. (2.23)

    But un is not always less than 1+Arn1+Brn. The following two cases arise.

    (ⅰ) un1+Arn1+Brn, that is, Mn(A,B,λ,r)0 (see (2.13)). In view of ψn(un)=0 and (2.21), the function ψn(u) is increasing on the segment [1Arn1Brn,1+Arn1+Brn]. Thus we deduce from (2.19) that, if Mn(A,B,λ,r)0, then

    Re{(λ1)zp+1f(z)+λp+1zp+2f(z)}ψn(1+Arn1+Brn)=p(1λn(A+B)(p+1)(AB))(1+Arn1+Brn)+λnp(p+1)(AB)(A+B(1+Arn1+Brn)2)=p1+Arn1+Brn+λnp(p+1)(AB)(11+Arn1+Brn)(AB1+Arn1+Brn)=p[p+1+((p+1)(A+B)λn(AB))rn+(p+1)ABr2n](p+1)(1+Brn)2.

    This proves (2.11).

    Next we consider the function f(z)Rn(A,B,0) defined by

    zp+1f(z)p=1+Azn1+Bzn.

    It is easy to find that

    (λ1)rp+1f(r)+λp+1rp+2f(r)=p[p+1+((p+1)(A+B)λn(AB))rn+(p+1)ABr2n](p+1)(1+Brn)2,

    which shows that the inequality (2.11) is sharp.

    (ⅱ) un1+Arn1+Brn, that is, Mn(A,B,λ,r)0. In this case we easily obtain

    Re{(λ1)zp+1f(z)+λp+1zp+2f(z)}ψn(un). (2.24)

    In view of (2.13), ψn(u) in (2.19) can be written as

    ψn(u)=p(λKBu2Lnu+λKA)(p+1)(AB)rn1(1r2). (2.25)

    Therefore, if Mn(A,B,λ,r)0, then it follows from (2.22), (2.24) and (2.25) that

    Re{(λ1)zp+1f(z)+λp+1zp+2f(z)}p(λKBu2nLnun+λKA)(p+1)(AB)rn1(1r2)=p(4λ2KAKBL2n)4λ(p+1)(AB)rn1(1r2)KB.

    To show that the inequality (2.12) is sharp, we consider the function f(z) defined by

    zp+1f(z)p=1+Aznφ(z)1+Bznφ(z)andφ(z)=zcn1cnz(zU),

    where cnR is determined by

    rp+1f(r)p=1+Arnφ(r)1+Brnφ(r)=un(1Arn1Brn,1+Arn1+Brn].

    Clearly, 1<φ(r)1, 1cn<1, |φ(z)|1 (zU), and so f(z)Rn(A,B,0). Since

    φ(r)=1c2n(1cnr)2=1|φ(r)|21r2,

    from the above argument we obtain that

    (λ1)rp+1f(r)+λp+1rp+2f(r)=ψn(un).

    Now the proof of Theorem 4 is completed.

    The authors would like to express sincere thanks to the referee for careful reading and suggestions which helped us to improve the paper. This work was supported by National Natural Science Foundation of China (Grant No.11571299).

    The authors declare no conflicts of interest.



    [1] M. K. Aouf, J. Dziok, J. Sokól, On a subclass of strongly starlike functions, Appl. Math. Lett., 24 (2011), 27-32. doi: 10.1016/j.aml.2010.08.004
    [2] Y. R. Chen, R. Srivastava, J. L. Liu, A linear operator associated with a certain variation of the Bessel function Jν(z) and related conformal mappings, J. Pseudo-Differ. Oper. Appl., (2019), 1-14.
    [3] N. E. Cho, H. J. Lee, J. H. Park, et al. Some applications of the first-order differential subordinations, Filomat, 30 (2016), 1456-1474.
    [4] S. Devi, H. M. Srivastava, A. Swaminathan, Inclusion properties of a class of functions involving the Dziok-Srivastava operator, Korean J. Math., 24 (2016), 139-168. doi: 10.11568/kjm.2016.24.2.139
    [5] J. Dziok, Classes of meromorphic functions associated with conic regions, Acta Math. Sci., 32 (2012), 765-774. doi: 10.1016/S0252-9602(12)60056-3
    [6] Y. C. Kim, Mapping properties of differential inequalities related to univalent functions, Appl. Math. Comput., 187 (2007), 272-279.
    [7] J. L. Liu, Applications of differential subordinations for generalized Bessel functions, Houston J. Math., 45 (2019), 71-85.
    [8] J. L. Liu, R. Srivastava, Hadamard products of certain classes of p-valent starlike functions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat., 113 (2019), 2001-2015.
    [9] S. Mahmood, J. Sokól, New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Results Math., 71 (2017), 1345-1357. doi: 10.1007/s00025-016-0592-1
    [10] S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-171.
    [11] M. Nunokawa, H. M. Srivastava, N. Tuneski, Some Marx-Strohhäcker type results for a class of multivalent functions, Miskolc Math. Notes, 18 (2017), 353-364. doi: 10.18514/MMN.2017.1952
    [12] H. M. Srivastava, M. K. Aouf, A. O. Mostafa, et al. Certain subordination-preserving family of integral operators associated with p-valent functions, Appl. Math. Inform. Sci., 11 (2017), 951- 960.
    [13] H. M. Srivastava, R. M. El-Ashwah, N. Breaz, A certain subclass of multivalent functions involving higher-order derivatives, Filomat, 30 (2016), 113-124. doi: 10.2298/FIL1601113S
    [14] H. M. Srivastava, B. Khan, N. Khan, et al. Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407-425. doi: 10.14492/hokmj/1562810517
    [15] Y. Sun, Y. P. Jiang, A. Rasila, et al. Integral representations and coefficient estimates for a subclass of meromorphic starlike functions, Complex Anal. Oper. Theory, 11 (2017), 1-19. doi: 10.1007/s11785-016-0531-x
  • This article has been cited by:

    1. Layth T. Khudhuir, Ahmed M. Ali, Hiba F. Al-Janaby, 2022, 2398, 0094-243X, 060066, 10.1063/5.0095129
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3425) PDF downloads(217) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog