Citation: Cai-Mei Yan, Jin-Lin Liu. On second-order differential subordination for certain meromorphically multivalent functions[J]. AIMS Mathematics, 2020, 5(5): 4995-5003. doi: 10.3934/math.2020320
[1] | Ying Yang, Jin-Lin Liu . Some geometric properties of certain meromorphically multivalent functions associated with the first-order differential subordination. AIMS Mathematics, 2021, 6(4): 4197-4210. doi: 10.3934/math.2021248 |
[2] | Shuhai Li, Lina Ma, Huo Tang . Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015 |
[3] | Erhan Deniz, Hatice Tuǧba Yolcu . Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order. AIMS Mathematics, 2020, 5(1): 640-649. doi: 10.3934/math.2020043 |
[4] | Ekram E. Ali, Rabha M. El-Ashwah, R. Sidaoui . Application of subordination and superordination for multivalent analytic functions associated with differintegral operator. AIMS Mathematics, 2023, 8(5): 11440-11459. doi: 10.3934/math.2023579 |
[5] | Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan . Sharp inequalities for q-starlike functions associated with differential subordination and q-calculus. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379 |
[6] | Yu-Qin Tao, Yi-Hui Xu, Rekha Srivastava, Jin-Lin Liu . Geometric properties of a certain class of multivalent analytic functions associated with the second-order differential subordination. AIMS Mathematics, 2021, 6(1): 390-403. doi: 10.3934/math.2021024 |
[7] | Sarem H. Hadi, Maslina Darus, Choonkil Park, Jung Rye Lee . Some geometric properties of multivalent functions associated with a new generalized q-Mittag-Leffler function. AIMS Mathematics, 2022, 7(7): 11772-11783. doi: 10.3934/math.2022656 |
[8] | Pinhong Long, Xing Li, Gangadharan Murugusundaramoorthy, Wenshuai Wang . The Fekete-Szegö type inequalities for certain subclasses analytic functions associated with petal shaped region. AIMS Mathematics, 2021, 6(6): 6087-6106. doi: 10.3934/math.2021357 |
[9] | Mohammad Faisal Khan, Ahmad A. Abubaker, Suha B. Al-Shaikh, Khaled Matarneh . Some new applications of the quantum-difference operator on subclasses of multivalent q-starlike and q-convex functions associated with the Cardioid domain. AIMS Mathematics, 2023, 8(9): 21246-21269. doi: 10.3934/math.20231083 |
[10] | Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan . Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Mathematics, 2021, 6(6): 5421-5439. doi: 10.3934/math.2021320 |
Throughout our present investigation, we assume that
n, p∈N, −1≤B<1, B<A and λ<0. | (1.1) |
Let Σn(p) denote the class of functions of the form
f(z)=z−p+∞∑k=nakzk−p | (1.2) |
which are analytic in the punctured open unit disk U∗={z:0<|z|<1} with a pole at z=0. The class Σn(p) is closed under the Hadamard product (or convolution)
(f1∗f2)(z)=z−p+∞∑k=nak,1ak,2zk−p=(f2∗f1)(z), |
where
fj(z)=z−p+∞∑k=nak,jzk−p∈Σn(p)(j=1,2). |
For functions f(z) and g(z) analytic in U={z:|z|<1}, we say that f(z) is subordinate to g(z) and write f(z)≺g(z) (z∈U), if there exists an analytic function w(z) in U such that
|w(z)|≤|z|andf(z)=g(w(z))(z∈U). |
Furthermore, if the function g(z) is univalent in U, then
f(z)≺g(z)(z∈U)⇔f(0)=g(0)andf(U)⊂g(U). |
In this paper we introduce and investigate the following subclass of Σn(p).
Definition. A function f(z)∈Σn(p) is said to be in the class Rn(A,B,λ) if it satisfies the second-order differential subordination:
(λ−1)zp+1f′(z)+λp+1zp+2f″(z)≺p1+Az1+Bz(z∈U). | (1.3) |
Recently, several authors (see, e.g., [1,2,3,4,5,6,7,8,9,11,12,13,14,15] and the references cited therein) introduced and investigated various subclasses of meromorphically multivalent functions. Some properties such as distortion bounds, inclusion relations and coefficient estimates were given. In this note we obtain inclusion relation and coefficient estimate for functions f(z) in the class Rn(A,B,λ). Furthermore, we investigate a new problem. It is to find
max|z|=r<1Re{(λ−1)zp+1f′(z)+λp+1zp+2f″(z)}, |
where f(z) varies in the class:
Rn(A,B,0)={f(z)∈Σn(p):−zp+1f′(z)≺p1+Az1+Bz}. | (1.4) |
We need the following lemma in order to derive our main results for the class Rn(A,B,λ).
Lemma [10]. Let g(z) be analytic in U and h(z) be analytic and convex univalent in U with h(0)=g(0). If
g(z)+1μzg′(z)≺h(z), |
where Reμ≥0 and μ≠0, then g(z)≺h(z).
Theorem 1. Let λ2<λ1<0. Then
Rn(A,B,λ2)⊂Rn(A,B,λ1). |
Proof. Suppose that
g(z)=−zp+1f′(z) | (2.1) |
for f(z)∈Rn(A,B,λ2). Then g(z) is analytic in U with g(0)=p. By using (1.3) and (2.1), we have
(λ2−1)zp+1f′(z)+λ2p+1zp+2f″(z)=g(z)−λ2p+1zg′(z)≺p1+Az1+Bz. | (2.2) |
Hence an application of Lemma with μ=−p+1λ2>0 yields
g(z)≺p1+Az1+Bz. | (2.3) |
Note that 0<λ1λ2<1 and that the function 1+Az1+Bz is convex univalent in U, then it follows from (2.1), (2.2) and (2.3) that
(λ1−1)zp+1f′(z)+λ1p+1zp+2f″(z)=λ1λ2((λ2−1)zp+1f′(z)+λ2p+1zp+1f″(z))+(1−λ1λ2)g(z)≺p1+Az1+Bz. |
Thus f(z)∈Rn(A,B,λ1). The proof of Theorem 1 is completed.
Theorem 2. Let
f(z)=z−p+∞∑k=nakzk−p∈Rn(A,B,λ). | (2.4) |
Then
|ak|≤p(p+1)(A−B)(p+1−λk)|k−p|(k≥n and k≠p). | (2.5) |
The result is sharp for each k≥n (k≠p).
Proof. It is known that, if
φ(z)=∞∑j=1cjzj≺ψ(z)(z∈U), |
where φ(z) is analytic in U and ψ(z)=z+⋯ is analytic and convex univalent in U, then |cj|≤1 (j∈N).
By (2.4) we have
(λ−1)zp+1f′(z)+λp+1zp+1f″(z)−pp(A−B)=∞∑k=n(k−p)(λk−p−1)p(p+1)(A−B)akzk≺z1+Bz(z∈U). | (2.6) |
Because the function z1+Bz is analytic and convex univalent in U, it follows from (2.6) that
|k−p|(p+1−λk)p(p+1)(A−B)|ak|≤1(k≥n and k≠p), |
which gives (2.5).
Next we consider the function fk(z) defined by
fk(z)=z−p+p(p+1)(A−B)∞∑m=1(−B)m−1zkm−p(km−p)(λkm−p−1)(z∈U; k≥n, k≠p). |
Since
(λ−1)zp+1f′k(z)+λp+1zp+2f″k(z)=p1+Azk1+Bzk≺p1+Az1+Bz(z∈U) |
and
fk(z)=z−p+p(p+1)(A−B)(k−p)(λk−p−1)zk−p+⋯ |
for each k≥n (k≠p), the proof of Theorem 2 is completed.
Theorem 3. Let f(z)∈Rn(A,B,λ), g(z)∈Σn(p) and
Re(zpg(z))>12(z∈U). | (2.7) |
Then (f∗g)(z)∈Rn(A,B,λ).
Proof. For f(z)∈Rn(A,B,λ) and g(z)∈Σn(p), we have
(λ−1)zp+1(f∗g)′(z)+λp+1zp+2(f∗g)″(z)=(λ−1)(zp+1f′(z))∗(zpg(z))+λp+1(zp+2f″(z))∗(zpg(z))=h(z)∗(zpg(z)), | (2.8) |
where
h(z)=(λ−1)zp+1f′(z)+λp+1zp+2f″(z)≺p1+Az1+Bz(z∈U). | (2.9) |
From (2.7), we can see that the function zpg(z) has Herglotz representation:
zpg(z)=∫|x|=1dμ(x)1−xz(z∈U), | (2.10) |
where μ(x) is a probability measure on the unit circle |x|=1 and ∫|x|=1dμ(x)=1.
Because the function 1+Az1+Bz is convex univalent in U, it follows from (2.8)–(2.10) that
(λ−1)zp+1(f∗g)′(z)+λp+1zp+2(f∗g)″(z)=∫|x|=1h(xz)dμ(x)≺p1+Az1+Bz(z∈U). |
This shows that (f∗g)(z)∈Rn(A,B,λ). The proof of Theorem 3 is completed.
Theorem 4. Let f(z)∈Rn(A,B,0). Then for |z|=r<1,
(ⅰ) if Mn(A,B,λ,r)≥0, we have
Re{(λ−1)zp+1f′(z)+λp+1zp+2f″(z)}≤p[p+1+((p+1)(A+B)−λn(A−B))rn+(p+1)ABr2n](p+1)(1+Brn)2; | (2.11) |
(ⅱ) if Mn(A,B,λ,r)≤0, we have
Re{(λ−1)zp+1f′(z)+λp+1zp+2f″(z)}≤p(4λ2KAKB−L2n)4λ(p+1)(A−B)rn−1(1−r2)KB, | (2.12) |
where
{KA=1−A2r2n+nArn−1(1−r2),KB=1−B2r2n+nBrn−1(1−r2),Ln=2λ(1−ABr2n)+λn(A+B)rn−1(1−r2)−(p+1)(A−B)rn−1(1−r2),Mn(A,B,λ,r)=2λKB(1+Arn)−Ln(1+Brn). | (2.13) |
The results are sharp.
Proof. Equality in (2.11) occurs for z=0. Thus we assume that 0<|z|=r<1.
For f(z)∈Rn(A,B,0), we can write
−zp+1f′(z)p=1+Aznφ(z)1+Bznφ(z)(z∈U), | (2.14) |
where φ(z) is analytic and |φ(z)|≤1 in U. It follows from (2.14) that
(λ−1)zp+1f′(z)+λp+1zp+2f″(z)=−zp+1f′(z)−λp(A−B)(nznφ(z)+zn+1φ′(z))(p+1)(1+Bznφ(z))2=−zp+1f′(z)+λnp(p+1)(A−B)(zp+1f′(z)p+1)(A+Bzp+1f′(z)p)−λp(A−B)zn+1φ′(z)(p+1)(1+Bznφ(z))2. | (2.15) |
Using the Carathéodory inequality:
|φ′(z)|≤1−|φ(z)|21−r2, |
we have
Re{zn+1φ′(z)(1+Bznφ(z))2}≤rn+1(1−|φ(z)|2)(1−r2)|1+Bznφ(z)|2≤r2n|A+Bpzp+1f′(z)|2−|1pzp+1f′(z)+1|2(A−B)2rn−1(1−r2). | (2.16) |
Put −zp+1f′(z)p=u+iv(u,v∈R). Note that λ<0, then (2.15) and (2.16) provide
Re{(λ−1)zp+1f′(z)+λp+1zp+2f″(z)}≤p(1−λn(A+B)(p+1)(A−B))u+λnpA(p+1)(A−B)+λnpB(p+1)(A−B)(u2−v2)−λp[r2n((A−Bu)2+(Bv)2)−((u−1)2+v2)](p+1)(A−B)rn−1(1−r2)=p(1−λn(A+B)(p+1)(A−B))u+λnp(p+1)(A−B)(A+Bu2)−λp(r2n(A−Bu)2−(u−1)2)(p+1)(A−B)rn−1(1−r2)+λp(p+1)(A−B)(1−B2r2nrn−1(1−r2)−nB)v2. | (2.17) |
Further, we can see that
1−B2r2nrn−1(1−r2)≥1−r2nrn−1(1−r2)=1rn−1(1+r2+r4+⋯+r2(n−2)+r2(n−1))=12rn−1[(1+r2(n−1))+(r2+r2(n−2))+⋯+(r2(n−1)+1)]≥n≥−nB. | (2.18) |
Combining (2.17) and (2.18), we have
Re{(λ−1)zp+1f′(z)+λp+1zp+2f″(z)}≤p(1−λn(A+B)(p+1)(A−B))u+λnp(p+1)(A−B)(A+Bu2)+λp((u−1)2−r2n(A−Bu)2)(p+1)(A−B)rn−1(1−r2)=:ψn(u). | (2.19) |
It is known that for |ξ|≤σ (σ<1),
1−Aσ1−Bσ≤Re(1+Aξ1+Bξ)≤1+Aσ1+Bσ. | (2.20) |
From (2.20) and(2.14) we have
1−Arn1−Brn≤u=Re(−zp+1f′(z)p)≤1+Arn1+Brn. |
Now we calculate the maximal value of ψn(u) on the segment [1−Arn1−Brn,1+Arn1+Brn]. Obviously,
ψ′n(u)=p(1−λn(A+B)(p+1)(A−B))+2λnpB(p+1)(A−B)u+2λp((1−B2r2n)u−(1−ABr2n))(p+1)(A−B)rn−1(1−r2), |
ψ″n(u)=2λp(p+1)(A−B)(1−B2r2nrn−1(1−r2)+nB)≤2λnp(1+B)(p+1)(A−B)≤0(see (2.18) and (1.1)) | (2.21) |
and ψ′n(u)=0 if and only if
u=un=2λ(1−ABr2n)+λn(A+B)rn−1(1−r2)−(p+1)(A−B)rn−1(1−r2)2λ(1−B2r2n+nBrn−1(1−r2))=Ln2λKB, | (2.22) |
where Ln and KB are given by (2.13). From (2.13) and (2.18) one can see that KB>0 and Ln<0.
Since
2λKB(1−Arn)−Ln(1−Brn)=2λ[(1−Arn)(1−B2r2n)−(1−Brn)(1−ABr2n)]+λnrn−1(1−r2)[2B(1−Arn)−(A+B)(1−Brn)]+(p+1)(A−B)rn−1(1−r2)(1−Brn)=−2λ(A−B)rn(1−Brn)−λn(A−B)rn−1(1−r2)(1+Brn)+(p+1)(A−B)rn−1(1−r2)(1−Brn)>0(λ<0), |
we see that
un>1−Arn1−Brn. | (2.23) |
But un is not always less than 1+Arn1+Brn. The following two cases arise.
(ⅰ) un≥1+Arn1+Brn, that is, Mn(A,B,λ,r)≥0 (see (2.13)). In view of ψ′n(un)=0 and (2.21), the function ψn(u) is increasing on the segment [1−Arn1−Brn,1+Arn1+Brn]. Thus we deduce from (2.19) that, if Mn(A,B,λ,r)≥0, then
Re{(λ−1)zp+1f′(z)+λp+1zp+2f″(z)}≤ψn(1+Arn1+Brn)=p(1−λn(A+B)(p+1)(A−B))(1+Arn1+Brn)+λnp(p+1)(A−B)(A+B(1+Arn1+Brn)2)=p1+Arn1+Brn+λnp(p+1)(A−B)(1−1+Arn1+Brn)(A−B1+Arn1+Brn)=p[p+1+((p+1)(A+B)−λn(A−B))rn+(p+1)ABr2n](p+1)(1+Brn)2. |
This proves (2.11).
Next we consider the function f(z)∈Rn(A,B,0) defined by
−zp+1f′(z)p=1+Azn1+Bzn. |
It is easy to find that
(λ−1)rp+1f′(r)+λp+1rp+2f″(r)=p[p+1+((p+1)(A+B)−λn(A−B))rn+(p+1)ABr2n](p+1)(1+Brn)2, |
which shows that the inequality (2.11) is sharp.
(ⅱ) un≤1+Arn1+Brn, that is, Mn(A,B,λ,r)≤0. In this case we easily obtain
Re{(λ−1)zp+1f′(z)+λp+1zp+2f″(z)}≤ψn(un). | (2.24) |
In view of (2.13), ψn(u) in (2.19) can be written as
ψn(u)=p(λKBu2−Lnu+λKA)(p+1)(A−B)rn−1(1−r2). | (2.25) |
Therefore, if Mn(A,B,λ,r)≤0, then it follows from (2.22), (2.24) and (2.25) that
Re{(λ−1)zp+1f′(z)+λp+1zp+2f″(z)}≤p(λKBu2n−Lnun+λKA)(p+1)(A−B)rn−1(1−r2)=p(4λ2KAKB−L2n)4λ(p+1)(A−B)rn−1(1−r2)KB. |
To show that the inequality (2.12) is sharp, we consider the function f(z) defined by
−zp+1f′(z)p=1+Aznφ(z)1+Bznφ(z)andφ(z)=z−cn1−cnz(z∈U), |
where cn∈R is determined by
−rp+1f′(r)p=1+Arnφ(r)1+Brnφ(r)=un∈(1−Arn1−Brn,1+Arn1+Brn]. |
Clearly, −1<φ(r)≤1, −1≤cn<1, |φ(z)|≤1 (z∈U), and so f(z)∈Rn(A,B,0). Since
φ′(r)=1−c2n(1−cnr)2=1−|φ(r)|21−r2, |
from the above argument we obtain that
(λ−1)rp+1f′(r)+λp+1rp+2f″(r)=ψn(un). |
Now the proof of Theorem 4 is completed.
The authors would like to express sincere thanks to the referee for careful reading and suggestions which helped us to improve the paper. This work was supported by National Natural Science Foundation of China (Grant No.11571299).
The authors declare no conflicts of interest.
[1] |
M. K. Aouf, J. Dziok, J. Sokól, On a subclass of strongly starlike functions, Appl. Math. Lett., 24 (2011), 27-32. doi: 10.1016/j.aml.2010.08.004
![]() |
[2] | Y. R. Chen, R. Srivastava, J. L. Liu, A linear operator associated with a certain variation of the Bessel function Jν(z) and related conformal mappings, J. Pseudo-Differ. Oper. Appl., (2019), 1-14. |
[3] | N. E. Cho, H. J. Lee, J. H. Park, et al. Some applications of the first-order differential subordinations, Filomat, 30 (2016), 1456-1474. |
[4] |
S. Devi, H. M. Srivastava, A. Swaminathan, Inclusion properties of a class of functions involving the Dziok-Srivastava operator, Korean J. Math., 24 (2016), 139-168. doi: 10.11568/kjm.2016.24.2.139
![]() |
[5] |
J. Dziok, Classes of meromorphic functions associated with conic regions, Acta Math. Sci., 32 (2012), 765-774. doi: 10.1016/S0252-9602(12)60056-3
![]() |
[6] | Y. C. Kim, Mapping properties of differential inequalities related to univalent functions, Appl. Math. Comput., 187 (2007), 272-279. |
[7] | J. L. Liu, Applications of differential subordinations for generalized Bessel functions, Houston J. Math., 45 (2019), 71-85. |
[8] | J. L. Liu, R. Srivastava, Hadamard products of certain classes of p-valent starlike functions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat., 113 (2019), 2001-2015. |
[9] |
S. Mahmood, J. Sokól, New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Results Math., 71 (2017), 1345-1357. doi: 10.1007/s00025-016-0592-1
![]() |
[10] | S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-171. |
[11] |
M. Nunokawa, H. M. Srivastava, N. Tuneski, Some Marx-Strohhäcker type results for a class of multivalent functions, Miskolc Math. Notes, 18 (2017), 353-364. doi: 10.18514/MMN.2017.1952
![]() |
[12] | H. M. Srivastava, M. K. Aouf, A. O. Mostafa, et al. Certain subordination-preserving family of integral operators associated with p-valent functions, Appl. Math. Inform. Sci., 11 (2017), 951- 960. |
[13] |
H. M. Srivastava, R. M. El-Ashwah, N. Breaz, A certain subclass of multivalent functions involving higher-order derivatives, Filomat, 30 (2016), 113-124. doi: 10.2298/FIL1601113S
![]() |
[14] |
H. M. Srivastava, B. Khan, N. Khan, et al. Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407-425. doi: 10.14492/hokmj/1562810517
![]() |
[15] |
Y. Sun, Y. P. Jiang, A. Rasila, et al. Integral representations and coefficient estimates for a subclass of meromorphic starlike functions, Complex Anal. Oper. Theory, 11 (2017), 1-19. doi: 10.1007/s11785-016-0531-x
![]() |
1. | Layth T. Khudhuir, Ahmed M. Ali, Hiba F. Al-Janaby, 2022, 2398, 0094-243X, 060066, 10.1063/5.0095129 |