Research article

A certain new Gauss sum and its fourth power mean

  • Received: 13 April 2020 Accepted: 01 June 2020 Published: 09 June 2020
  • MSC : 11L03, 11L07

  • The main purpose of this paper is using the elementary methods and the properties of the Legendre symbol to study the computational problem of the fourth power mean of a certain generalized quadratic Gauss sum, and give two exact calculating formulae for it.

    Citation: Yan Zhao, Wenpeng Zhang, Xingxing Lv. A certain new Gauss sum and its fourth power mean[J]. AIMS Mathematics, 2020, 5(5): 5004-5011. doi: 10.3934/math.2020321

    Related Papers:

  • The main purpose of this paper is using the elementary methods and the properties of the Legendre symbol to study the computational problem of the fourth power mean of a certain generalized quadratic Gauss sum, and give two exact calculating formulae for it.


    加载中


    [1] Tom M. Apostol, Introduction to Analytic Number Theory, Springer Science & Business Media, 1976.
    [2] A. Weil, On some exponential sums, P. Natl. Acad. Sci. USA., 34 (1948), 204-207. doi: 10.1073/pnas.34.5.204
    [3] W. P. Zhang, X. Lin, On the fourth power mean of the generalized quadratic Gauss sums, Acta Math. Sin., 34 (2018), 1037-1049. doi: 10.1007/s10114-017-7188-x
    [4] X. X. Li, Z. F. Xu, The fourth power mean of the generalized two-term exponential sums and its upper and lower bound estimates, J. Inequal. Appl., 504 (2013), 1-8.
    [5] X. X. Lv, W. P. Zhang, A new hybrid power mean involving the generalized quadratic Gauss sums and sums analogous to Kloosterman sums, Lith. Math. J., 57 (2017), 359-366. doi: 10.1007/s10986-017-9366-z
    [6] S. Chern, On the power mean of a sum analogous to the Kloosterman sum, Bull. Math. Soc. Sci. Math. Roumanie, 62 (2019), 77-92.
    [7] W. P. Zhang, Moments of generalized quadratic Gauss sums weighted by L-functions, J. Number Theory, 92 (2002), 304-314. doi: 10.1006/jnth.2001.2715
    [8] H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 19 (2017), 75-81.
    [9] H. Di, A Hybrid mean value involving two-term exponential sums and polynomial character sums, Czech. Math. J., 64 (2014), 53-62. doi: 10.1007/s10587-014-0082-0
    [10] W. P. Zhang, On the fourth and sixth power mean of the classical Kloosterman sums, J. Number Theory, 131 (2011), 228-238. doi: 10.1016/j.jnt.2010.08.008
    [11] W. P. Zhang, On the fourth power mean of the general Kloosterman sums, Indian J. Pure Ap. Mat., 35 (2004), 237-242.
    [12] W. P. Zhang, On the fourth power mean of the general Kloosterman sums, J. Number Theory, 169 (2016), 315-326. doi: 10.1016/j.jnt.2016.05.018
    [13] W. P. Zhang, S. M. Shen, A note on the fourth power mean of the generalized Kloosterman sums, J. Number Theory, 174 (2017), 419-426. doi: 10.1016/j.jnt.2016.11.020
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3708) PDF downloads(375) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog