Research article

On distributional finite continuous Radon transform in certain spaces

  • Received: 27 June 2020 Accepted: 11 October 2020 Published: 15 October 2020
  • MSC : 44A20, 44A45, 46F10, 46F12

  • The classical finite continuous Radon transform is extended to generalized functions on certain spaces. The inversion formula by the kernel method is shown in a weak distributional sense. In the concluding section, its application in Mathematical Physics is discussed.

    Citation: Nitu Gupta, V. R. Lakshmi Gorty. On distributional finite continuous Radon transform in certain spaces[J]. AIMS Mathematics, 2021, 6(1): 378-389. doi: 10.3934/math.2021023

    Related Papers:

  • The classical finite continuous Radon transform is extended to generalized functions on certain spaces. The inversion formula by the kernel method is shown in a weak distributional sense. In the concluding section, its application in Mathematical Physics is discussed.



    加载中


    [1] R. S. Pathak, Orthogonal series representations for generalized functions, J. Math. Anal. Appl., 130 (1988), 316-333. doi: 10.1016/0022-247X(88)90308-3
    [2] J. Radon, On the determination of functions from their integrals along certain manifolds, Ber. Verh, Sachs Akad Wiss., 69 (1917), 262-277.
    [3] J. N. Pandey, R. S. Pathak, Eigenfunction expansion of generalized functions, Nagoya Math. J., 72 (1978), 1-25. doi: 10.1017/S0027763000018171
    [4] R. P. Kanwal, Generalized Functions Theory and Technique: Theory and Technique, Springer Science & Business Media, 2012.
    [5] R. S. Pathak, Integral Transforms of Generalized Functions and Their Applications, Routledge, 2017.
    [6] V. R. Lakshmi Gorty, Nitu Gupta, Finite continuous Radon transforms with applications, communicated.
    [7] S. R. Deans, Applications of the Radon Transform, Wiley Interscience Publications, New York, 1983.
    [8] L. S. Dube, On finite Hankel transformation of generalized functions, Pac. J. Math., 62 (1976), 365-378. doi: 10.2140/pjm.1976.62.365
    [9] P. Daras, D. Zarpalas, D. Tzovaras, M. G. Strintzis, Efficient 3-D model search and retrieval using generalized 3-D radon transforms, IEEE T. Multimedia, 8 (2006), 101-114. doi: 10.1109/TMM.2005.861287
    [10] A. G. Katsevich, A. I. Ramm, The Radon Transform and Local Tomography, CRC press, 1996.
    [11] I. M. Gel'fand, N. Y. Vilenkin, Generalized Functions, Applications of Harmonic Analysis, Academic Press, 2014.
    [12] M. Giertz, On the expansion of certain generalized functions in series of orthogonal functions, P. Lond. Math. Soc., 3 (1964), 45-52.
    [13] J. Hu, S. Fomel, L. Demanet, L. Ying, A fast butterfly algorithm for generalized Radon transforms, Geophysics, 78 (2013), 41-51.
    [14] G. G. Walter, Expansions of distributions, T. Am. Math. Soc., 116 (1965), 492-510.
    [15] A. H. Zemanian, Generalized Integral Transformations, 1968.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2350) PDF downloads(98) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog