The classical finite continuous Radon transform is extended to generalized functions on certain spaces. The inversion formula by the kernel method is shown in a weak distributional sense. In the concluding section, its application in Mathematical Physics is discussed.
Citation: Nitu Gupta, V. R. Lakshmi Gorty. On distributional finite continuous Radon transform in certain spaces[J]. AIMS Mathematics, 2021, 6(1): 378-389. doi: 10.3934/math.2021023
The classical finite continuous Radon transform is extended to generalized functions on certain spaces. The inversion formula by the kernel method is shown in a weak distributional sense. In the concluding section, its application in Mathematical Physics is discussed.
[1] | R. S. Pathak, Orthogonal series representations for generalized functions, J. Math. Anal. Appl., 130 (1988), 316-333. doi: 10.1016/0022-247X(88)90308-3 |
[2] | J. Radon, On the determination of functions from their integrals along certain manifolds, Ber. Verh, Sachs Akad Wiss., 69 (1917), 262-277. |
[3] | J. N. Pandey, R. S. Pathak, Eigenfunction expansion of generalized functions, Nagoya Math. J., 72 (1978), 1-25. doi: 10.1017/S0027763000018171 |
[4] | R. P. Kanwal, Generalized Functions Theory and Technique: Theory and Technique, Springer Science & Business Media, 2012. |
[5] | R. S. Pathak, Integral Transforms of Generalized Functions and Their Applications, Routledge, 2017. |
[6] | V. R. Lakshmi Gorty, Nitu Gupta, Finite continuous Radon transforms with applications, communicated. |
[7] | S. R. Deans, Applications of the Radon Transform, Wiley Interscience Publications, New York, 1983. |
[8] | L. S. Dube, On finite Hankel transformation of generalized functions, Pac. J. Math., 62 (1976), 365-378. doi: 10.2140/pjm.1976.62.365 |
[9] | P. Daras, D. Zarpalas, D. Tzovaras, M. G. Strintzis, Efficient 3-D model search and retrieval using generalized 3-D radon transforms, IEEE T. Multimedia, 8 (2006), 101-114. doi: 10.1109/TMM.2005.861287 |
[10] | A. G. Katsevich, A. I. Ramm, The Radon Transform and Local Tomography, CRC press, 1996. |
[11] | I. M. Gel'fand, N. Y. Vilenkin, Generalized Functions, Applications of Harmonic Analysis, Academic Press, 2014. |
[12] | M. Giertz, On the expansion of certain generalized functions in series of orthogonal functions, P. Lond. Math. Soc., 3 (1964), 45-52. |
[13] | J. Hu, S. Fomel, L. Demanet, L. Ying, A fast butterfly algorithm for generalized Radon transforms, Geophysics, 78 (2013), 41-51. |
[14] | G. G. Walter, Expansions of distributions, T. Am. Math. Soc., 116 (1965), 492-510. |
[15] | A. H. Zemanian, Generalized Integral Transformations, 1968. |