Research article Special Issues

Geometric properties of a certain class of multivalent analytic functions associated with the second-order differential subordination

  • Received: 27 August 2020 Accepted: 12 October 2020 Published: 15 October 2020
  • MSC : Primary 30C45; Secondary 30C80

  • We investigate some geometric properties of the class $\mathcal{Q}_n(A, B, \alpha)$ which is defined by the second-order differential subordination and find the sharp lower bound on $|z| = r < 1$ for the following functional: $ \mathrm{Re}\left\{(1-\alpha)z^{1-p}f'(z) +\frac{\alpha}{p-1}z^{2-p}f''(z)\right\} $ over the class $\mathcal{Q}_n(A, B, 0)$.

    Citation: Yu-Qin Tao, Yi-Hui Xu, Rekha Srivastava, Jin-Lin Liu. Geometric properties of a certain class of multivalent analytic functions associated with the second-order differential subordination[J]. AIMS Mathematics, 2021, 6(1): 390-403. doi: 10.3934/math.2021024

    Related Papers:

  • We investigate some geometric properties of the class $\mathcal{Q}_n(A, B, \alpha)$ which is defined by the second-order differential subordination and find the sharp lower bound on $|z| = r < 1$ for the following functional: $ \mathrm{Re}\left\{(1-\alpha)z^{1-p}f'(z) +\frac{\alpha}{p-1}z^{2-p}f''(z)\right\} $ over the class $\mathcal{Q}_n(A, B, 0)$.


    加载中


    [1] M. K. Aouf, J. Dziok, J. Sokól, On a subclass of strongly starlike functions, Appl. Math. Lett., 24 (2011), 27-32. doi: 10.1016/j.aml.2010.08.004
    [2] N. E. Cho, H. J. Lee, J. H. Park, R. Srivastava, Some applications of the first-order differential subordinations, Filomat, 30 (2016), 1456-1474.
    [3] S. Devi, H. M. Srivastava, A. Swaminathan, Inclusion properties of a class of functions involving the Dziok-Srivastava operator, Korean J. Math., 24 (2016), 139-168. doi: 10.11568/kjm.2016.24.2.139
    [4] J. Dziok, Classes of meromorphic functions associated with conic regions, Acta Math. Sci. Ser. B Engl. Ed., 32 (2012), 765-774.
    [5] Y. C. Kim, Mapping properties of differential inequalities related to univalent functions, Appl. Math. Comput., 187 (2007), 272-279.
    [6] J. L. Liu, Applications of differential subordinations for generalized Bessel functions, Houston J. Math., 45 (2019), 71-85.
    [7] J. L. Liu, R. Srivastava, Hadamard products of certain classes of p-valent starlike functions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat., 113 (2019), 2001-2015. doi: 10.1007/s13398-018-0584-y
    [8] S. Mahmood, J. Sokól, New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Results Math., 71 (2017), 1345-1357. doi: 10.1007/s00025-016-0592-1
    [9] S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-172. doi: 10.1307/mmj/1029002507
    [10] M. Nunokawa, H. M. Srivastava, N. Tuneski, B. Jolevska-Tuneska, Some Marx-Ströhhacker type results for a class of multivalent functions, Miskolc Math. Notes, 18 (2017), 353-364.
    [11] H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327-344. doi: 10.1007/s40995-019-00815-0
    [12] H. M. Srivastava, M. K. Aouf, A. O. Mostafa, H. M. Zayed, Certain subordination-preserving family of integral operators associated with p-valent functions, Appl. Math. Inf. Sci., 11 (2017), 951-960. doi: 10.18576/amis/110401
    [13] H. M. Srivastava, R. M. El-Ashwah, N. Breaz, A certain subclass of multivalent functions involving higher-order derivatives, Filomat, 30 (2016), 113-124. doi: 10.2298/FIL1601113S
    [14] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407-425. doi: 10.14492/hokmj/1562810517
    [15] H. M. Srivastava, N. E. Xu, D. G. Yang, Inclusion relations and convolution properties of a certain class of analytic functions associated with the Ruscheweyh derivatives, J. Math. Anal. Appl., 331 (2007), 686-700. doi: 10.1016/j.jmaa.2006.09.019
    [16] L. Shi, Q. Khan, G. Srivastava, J. L. Liu, M. Arif, A study of multivalent q-starlike functions connected with circular domain, Mathematics, 7 (2019), 1-12.
    [17] Y. Sun, Y. P. Jiang, A. Rasila, H. M. Srivastava, Integral representations and coefficient estimates for a subclass of meromorphic starlike functions, Complex Anal. Oper. Theory, 11 (2017), 1-19. doi: 10.1007/s11785-016-0531-x
    [18] Q. Khan, M. Arif, M. Raza, G. Srivastava, H. Tang, S. U. Rehman, Some applications of a new integral operator in q-analog for multivalent functions, Mathematics, 7 (2019), 1-13.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3060) PDF downloads(140) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog