Research article

Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus

  • Received: 22 November 2020 Accepted: 13 March 2020 Published: 20 March 2020
  • MSC : Primary: 41A2, 41A36; Secondary: 33C45

  • We construct Jakimovski-Leviatan-Beta type q-integral operators and show that these positive linear operators are uniformly convergent to a continuous functions. We obtain the Korovkin type results, the rate of convergence as well as some direct theorems.

    Citation: Abdullah Alotaibi, M. Mursaleen. Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus[J]. AIMS Mathematics, 2020, 5(4): 3019-3034. doi: 10.3934/math.2020196

    Related Papers:

    [1] Mohra Zayed, Shahid Ahmad Wani, William Ramírez, Clemente Cesarano . Advancements in q-Hermite-Appell polynomials: a three-dimensional exploration. AIMS Mathematics, 2024, 9(10): 26799-26824. doi: 10.3934/math.20241303
    [2] Qing-Bo Cai, Melek Sofyalıoğlu, Kadir Kanat, Bayram Çekim . Some approximation results for the new modification of Bernstein-Beta operators. AIMS Mathematics, 2022, 7(2): 1831-1844. doi: 10.3934/math.2022105
    [3] B. B. Jena, S. K. Paikray, S. A. Mohiuddine, Vishnu Narayan Mishra . Relatively equi-statistical convergence via deferred Nörlund mean based on difference operator of fractional-order and related approximation theorems. AIMS Mathematics, 2020, 5(1): 650-672. doi: 10.3934/math.2020044
    [4] Nusrat Raza, Mohammed Fadel, Kottakkaran Sooppy Nisar, M. Zakarya . On 2-variable q-Hermite polynomials. AIMS Mathematics, 2021, 6(8): 8705-8727. doi: 10.3934/math.2021506
    [5] Waseem Ahmad Khan, Kottakkaran Sooppy Nisar, Dumitru Baleanu . A note on (p, q)-analogue type of Fubini numbers and polynomials. AIMS Mathematics, 2020, 5(3): 2743-2757. doi: 10.3934/math.2020177
    [6] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482
    [7] Zhongbin Zheng, Jinwu Fang, Wentao Cheng, Zhidong Guo, Xiaoling Zhou . Approximation properties of modified (p, q)-Szász-Mirakyan-Kantorovich operators. AIMS Mathematics, 2020, 5(5): 4959-4973. doi: 10.3934/math.2020317
    [8] Tabinda Nahid, Mohd Saif, Serkan Araci . A new class of Appell-type Changhee-Euler polynomials and related properties. AIMS Mathematics, 2021, 6(12): 13566-13579. doi: 10.3934/math.2021788
    [9] Khadeejah Rasheed Alhindi, Khalid M. K. Alshammari, Huda Ali Aldweby . Classes of analytic functions involving the q-Ruschweyh operator and q-Bernardi operator. AIMS Mathematics, 2024, 9(11): 33301-33313. doi: 10.3934/math.20241589
    [10] Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377
  • We construct Jakimovski-Leviatan-Beta type q-integral operators and show that these positive linear operators are uniformly convergent to a continuous functions. We obtain the Korovkin type results, the rate of convergence as well as some direct theorems.


    In 1880, Appell investigated the polynomials named as Appell polynomials (see [1]). Jakimovski and Leviatan introduced and modified the Appell polynomials [2] in 1969 by the identity defined bellow

    P(u)euy=k=0βk(y)uk, (1.1)

    where βk(y)=ki=0αiyni(ni)!(nN) and P(u)=k=0αkuk,P(1)0. Let E[0,) denote the set of functions defined on [0,) such that |f(x)|κeγx, where κ,γ are positive constants.

    We recall some basic notations on q-calculus (see [3,4,5]). For each non-negative integer j, the q-integer is defined as

    [j]q={1qj1q,q1j,q=1for jNand[0]q=0,

    For |q|<1, the q-factorial [j]q! is defined by

    [j]q!={1(j=0)jk=1[k]q(jN). (1.2)

    In the standard approach the exponential functions for q-calculus:

    eq(x)=k=0xk[k]q!. (1.3)

    The improper integral of function f is defined by:

    /A0f(x)dqx=(1q)nNf(qnA)qnA, AR{0}. (1.4)

    Al-Salam (see [6,7]) introduced the family of q-Appell polynomials through the generating functions Pq(t)=n=0Pn,qtn[n]q!,Pq(1)0. We have

    Pn,q(x)=nk=0[nk]qAnk,qxk,(nN)

    and q-differential, Dq,x(Pn,q(x))=[n]qPn1,q(x),n=1,2,, where P0,q(x) is a non zero constant let say P0,q and Dq,x(P1,q(x))=[1]qP0,q(x)=P0,q. Also Pq(t)eq(tx)=n=0Pn,q(x)tn[n]q!,0<q<1.

    Recently in [8], authors studied the q-analogue of Jakimovski-Levitian operators involving q-Appell polynomials; and in [9], Stacu type Jakimovski-Levitian-Durmeyer operators have been studied. Recently such q-analogues operators have also been studied in [10,11,12,13]. Our aim is to construct Jakimovski-Leviatan-Beta type qintegral operators and show that these positive linear operators are uniformly convergent to a continuous functions. Further, we obtain the Korovkin type results, the rate of convergence as well as some direct theorems.

    Let x[0,),Pr,q(x)0 and Pq(1)0. For every fCζ[0,)={fC[0,):f(t)=O(tζ), t}, and mN,0<q<1, we define

    Jm,q(f;x)=eq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)/A0tr(1+t)qr+m+1f(qrt)dqt, (1.5)

    where ζ>m and

    Bq(r,m)=K(A,r)/A0xr1(1+x)r+mqdqx=[r1]q[m]qBq(r1,m+1),r>1, m>0,

    with

    K(A,r+1)=qrK(A,r),
    K(A,r)=qr(r1)2,K(A,0)=1

    Lemma 1. Take ei=ti1 for i=1,2,3,4,5. Then

    (1)Jm,q(e1;x)=1;(2)Jm,q(e2;x)=1q[m1]q+1[m1]q([m]qx+Pq(1)Pq(1));(3)Jm,q(e3;x)=(1+q)q3[m1]q[m2]q+(1+2q)q2[m1]q[m2]q(([m]qx+Pq(1)Pq(1))+1[m1]q[m2]q([m]2qx2+2[m]qPq(1)Pq(1)x+Pq(1)Pq(1));(4)Jm,q(e4;x)=1+2q+2q2+q3q4[m1]q[m2]q[m3]q+(1+3q+4q2+3q3q3[m1]q[m2]q[m3]q(([m]qx+Pq(1)Pq(1))+(1+2q+3q2)q[m1]q[m2]q[m3]q([m]2qx2+2[m]qPq(1)Pq(1)x+Pq(1)Pq(1))+q2[m1]q[m2]q[m3]q([m]3qx3+3[m]2qPq(1)Pq(1)x2+3[m]qPq(1)Pq(1)x+Pq(1)Pq(1));(5)Jm,q(e5;x)=1+3q+5q2+6q3+5q4+3q5+q6q5[m1]q[m2]q[m3]q[m4]q+(1+5q+10q2+13q3+12q4+7q5+2q6)q3[m1]q[m2]q[m3]q[m4]q([n]qx+Pq(1)Pq(1))+(1+3q+7q2+9q3+9q4+6q5)q[m1]q[m2]q[m3]q[m4]q([m]2qx2+2[m]qPq(1)Pq(1)x+Pq(1)Pq(1))+(q2+2q3+2q4+2q5+q6+2q7)[m1]q[m2]q[m3]q[m4]q([m]3qx3+3[m]2qPq(1)Pq(1)x2+3[m]qPq(1)Pq(1)x+Pq(1)Pq(1))+q6[m1]q[m2]q[m3]q[m4]q([m]4qx4+4[m]3qPq(1)Pq(1)x3+6[m]2qPq(1)Pq(1)x2+4[m]qPq(1)Pq(1)x+P(4)q(1)Pq(1)).

    Proof of Lemma 1.

    r=0Pr,q([m]qx)[r]q!=Pq(1)eq([m]qx),r=0rPr,q([m]qx)[r]q!=[[m]qPq(1)x+Pq(1)]eq([m]qx),r=0r2Pr,q([m]qx)[r]q!=[[m]2qPq(1)x2+2[m]qPq(1)x+Pq(1)]eq([m]qx),r=0r3Pr,q([m]qx)[r]q!=[[m]3qPq(1)x3+3[m]2qPq(1)x2+3[m]qPq(1)x+Pq(1)]eq([m]qx),

    r=0r4Pr,q([m]qx)[r]q!

    =[[m]4qPq(1)x4+4[m]3qPq(1)x3+6[m]2qPq(1)x2+4[m]qPq(1)x+P(4)q(1)]eq([m]qx).

    Take f(t)=e1, then

    Jm,q(e1;x)=eq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)/A0tr(1+t)r+m+1dqt=eq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q!Bq(r+1,m)Bq(r+1,m)=1.

    Take f(t)=e2, then

    Jm,q(e2;x)=eq([m]qx)Pq(1)r=0Pr,q([n]qx)[r]q!qrK(A,r+1)Bq(r+1,m)/A0tr+1(1+t)r+m+1dqt=eq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q!qrK(A,r+1)Bq(r+1,m)Bq(r+2,m1)K(A,r+2)=1q[m1]qeq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q![r+1]q.

    By applying,

    [r+1]q=1+q[r]q, (2.1)
    Jm,q(e2;x)=1q[m1]qeq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q!+1[m1]qeq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q![r]q=1q[m1]q+1[m1]q([m]qx+Pq(1)Pq(1))

    Take f(t)=e3, then

    Jm,q(e3;x)=eq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q!q2rK(A,r+1)Bq(r+1,m)/A0tr+2(1+t)r+m+1dqt=eq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q!q2rK(A,r+1)K(A,r+3)Bq(r+3,m2)Bq(r+1,m)=1q3[m1]q[m2]qeq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q![r+2]q[r+1]q.

    By applying (2.1) and [r+2]q=1+q+q2[r]q,

    Jm,q(e3;x)=1q3[m1]q[m2]qeq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q!×((1+q)+q(1+2q)[r]q+q3[r]2q)=(1+q)q3[m1]q[m2]q+(1+2q)q2[m1]q[m2]q(([m]qx+Pq(1)Pq(1))+1[m1]q[m2]q([m]2qx2+2[m]qPq(1)Pq(1)x+Pq(1)Pq(1))

    Take f(t)=e4, then

    Jm,q(e4;x)=1q4[m1]q[m2]q[m3]qeq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q![r+3]q[r+2]q[r+1]q

    By a simple calculation we have

    [r+3]q[r+2]q[r+1]q

    =(1+q)(1+q+q2)+{q(1+2q)(1+q+q2)+q3(1+q)}[r]q+{q3(1+q+q2)+q4(1+2q)}[r]2q+q6[r]3q.

    If f(t)=e5, then

    Jm,q(e5;x)=1q5[m1]q[m2]q[m3]q[m4]q×eq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q![r+4]q[r+3]q[r+2]q[r+1]q

    A simple calculation leads to

    [r+4]q[r+3]q[r+2]q[r+1]q

    =(1+q)(1+2q+3q2+3q3+2q4+q5)+{q(1+2q)(1+2q+3q2+3q3+2q4+q5)+q3(1+q)(1+2q+2q2+2q3)}[r]q+{q3(1+2q+3q2+3q3+2q4+q5)+q4(1+2q)(1+2q+2q2+2q3)+q7(1+q)}[r]2q+{q6(1+2q+2q2+2q3)+q8(1+2q)}[r]3q+q10[r]4q.

    Lemma 2.

    Let μj=(e2x)j for j=1,2. For all x[0,),0<q<1,Pr,q(x)0 and Pq(1)0, we have:

    (δm,q)2 =Jm,q(μ2;x) for j=2,m>2;and (δm,q)2 =Jm,q(μ1;x) for j=1,m>1. (2.2)

    That is,

    (δm,q)2 ={([m]2q[m1]q[m2]q+12[m]q[m1]q)x2+1[m1]q((1+2q)[m]qq2[m2]q+2[m]q[m2]qPq(1)Pq(1)2Pq(1)Pq(1)2q)x+1q2[m1]q[m2]q((1+q)q+(1+2q)Pq(1)Pq(1))for  j=2,m>2([m]q[m1]q1)x+1[m1]q(1q+Pq(1)Pq(1))for  j=1,m>1.

    We write CB(R+) for the set of all bounded and continuous { functions with

    fCB=supx0f(x).

    Let

    E:={f:x[0,),f(x)1+x2isconvergentasx}.

    We choose q=qm where 0<qm<1 such that

    limmqm1,limνqmmα (3.1)

    Theorem 1. For any function fC[0,)E, we have

    limνJm,qm(f;x)f(x)

    uniformly on each compact subset of [0,).

    Proof of Theorem 1. From the well-known Korovkin's theorem [14] (see [15,16]), it is enough to show

    limmJm,qm(ej;x)=xj1,j=1,2,3

    uniformly on [0,1].

    Using (3.1), 1[m]qm0 and [m]qm[m1]qm1(ν), we have

    limνJm,qm(e2;x)=x,limmJm,qm(e3;x)=x2.

    Which complete the proof.

    Let ϱ(x)=1+ϕ2(x),limxϱ(x)=, where ϕ(x) is a continuous and strictly increasing function. Let Bϱ(R+) be a set of functions defined on R+ such that there is a constant Mf,

    |f(x)|Mfϱ(x),

    Its subset of continuous functions is denoted by Cϱ(R+). Note that

    fϱ=supx0|f(x)|ϱ(x)

    is the usual norm on Bϱ(R+). Let C0ϱ(R+) be a subset of Cϱ(R+) such that

    limxf(x)ϱ(x)=Kf

    exists and is finite.

    Theorem 2. Let {Jm,q}m1 be the sequence of linear positive operators (1.5) from Cϱ(R+) into Bϱ(R+) such that

    limmJm,q(φi1(t);x)φi1(x)ϱ=0 (i=1,2,3).

    Then for fC0ϱ(R+),

    limmJm,q(f(t);x)fϱ=0.

    Proof of Theorem 2. Consider φ(x)=x,ϱ(x)=1+x2, and

    Jm,q(ei;x)xi1ϱ=supx0Jm,q(ei;x)xi11+x2.

    Then for i=1,2,3 it is easily proved (by Theorem 1) that

    limmJm,q(ei;x)xi1ϱ=0.

    Using Korovkin's theorem, we get

    limmJm,q(f(t);x)fϱ=0.

    Theorem 3.

    Let x[0,),fC0ϱ(R+) with ϱ(x)=1+x2. Then for Pr,q(x)0,Pq(1)0, the operators Jm,q(;) defined by (1.5) satisfying

    limmJm,q(f;x)fϱ0.

    Proof of Theorem 3. Using Theorem 2, consider

    Jm,q(ei;x)xi1ϱ=supx0Jm,q(ei;x)xi11+x2,

    for i=1,2,3.

    From Lemma 1, for i=1, we have Jm,q(e1;x)1∣→0, and therefore

    limmJm,q(e1;x)1ϱ=0.

    For i=2

    supx0Jm,q(e2;x)x1+x2|[m]q[m1]q1|supx0x1+x2+|1[m1]q(Pq(1)Pq(1)+1q)|supx011+x2.

    Therefore

    limmJm,q(e2;x)xϱ=0.

    For i=3

    supx0Jm,q(e3;x)x21+x2|[m]2q[m2]q[m1]q1|supx0x21+x2+|[m]q[m2]q[m1]q(2Pq(1)Pq(1)+1+2qq2)|supx0x1+x2+|1[m2]q[m1]q(Pq(1)Pq(1)+(1+2q)q2Pq(1)Pq(1)+(1+q)q3)|supx011+x2.

    Hence we have

    limmJm,q(e3;x)x2ϱ=0.

    The Korovkin's theorem completes the proof.

    We recall the following spaces:

    Pσ(R+)={f:∣f(x)∣≤Mfσ(x)},Qσ(R+)={f:fPσ(R+)C[0,)},Qkσ(R+)={f:fQσ(R+)andlimxf(x)σ(x)=k (a constant)},

    where σ(x)=1+x2. Note that fσ=supx0f(x)σ(x) is the usual norm on Qσ(R+).

    Theorem 4. Let 0<qm<1 and Jm,q(;) be the operators defined by (1.5) with m>2. Then for fQkσ(R+), we have

    limmJm,qm(f;x)fσ=0.

    Proof of Theorem 4. Take j=1, then Lemma 1, yields the first condition. If we take j=2,3, then from Lemma 1, we get

    limmJm,qm(ej;x)xj1σ=0.

    The modulus of continuity of fC[0,) is defined by

    ϖ(f;δ)=supy1y2∣≤δf(y1)f(y2),y1,y2[0,), δ>0. (4.1)

    Note that limδ0+ϖ(f;δ)=0 for fC[0,) and (see ([17], p. 378)

    f(y1)f(y2)∣≤(y1y2δ+1)ϖ(f;δ). (4.2)

    Theorem 5. For f˜C[0,),x0,0<q<1 and Pq(1)0, we have

    Jm,q(f;x)f(x)∣≤2ϖ(f;δm,q),

    where ˜C[0,) is the space of uniformly continuous functions on R+ and δm,q is defined in Lemma 2.

    Proof of Theorem 5. Using Cauchy-Schwarz inequality and (4.1), (4.2), we get

    Jm,q(f;x)f(x)

    eq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)/A0tr(1+t)qr+m+1f(t)f(x)dqteq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)×/A0tr(1+t)r+m+1(1+1δtx)dq(t)ϖ(f;δ)={1+1δ(eq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)×/A0tr(1+t)r+m+1txdqt)}ϖ(f;δ){1+1δ(eq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)×/A0tr(1+t)r+m+1(tx)2dq(t))12(Jm,q(1;x))12}ϖ(f;δ)={1+1δ(Jm,q(μ2;x))12}ϖ(f;δ).

    Choosing δ=δm,q=Jm,q((tx)2;x), then we get our result.

    For fC[0,), M>0 and 0<ν1, we define

    LipM(ν)={f:∣f(ς1)f(ς2)∣≤Mς1ς2ν(ς1,ς2[0,))} (5.1)

    Theorem 6. For each fLipM(ν),M>0,0<ν1 and 0<q<1, we have

    Jm,q(f;x)f(x)∣≤M(λm,q(x))ν2

    where λm,q(x)=Jm,q(μ2;x).

    Proof of Theorem 6. Hölder inequality and (5.1) imply that

    Jm,q(f;x)f(x)Jm,q(f(t)f(x);x)Jm,q(f(t)f(x);x)MJm,q(txν;x).

    So that

    Jm,q(f;x)f(x)

    Meq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)/A0tr(1+t)r+m+1txνdqtMeq([m]qx)Pq(1)r=0(Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m))2ν2×(Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m))ν2/A0tr(1+t)r+m+1txνdqtM(eq([m]qx)Pq(1)r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)/A0tr(1+t)r+m+1dqt)2ν2×(eq([n]qx)Pq(1)r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)/A0tr(1+t)r+m+1tx2dqt)ν2=M(Jm,q(μ2;x))ν2.

    Which complete the proof.

    Denote

    C2B(R+)={ψCB(R+):ψ,ψCB(R+)}, (5.2)

    with

    ψC2B(R+)=∥ψCB(R+)+ψCB(R+)+ψCB(R+), (5.3)

    also

    ψCB(R+)=supxR+ψ(x). (5.4)

    Theorem 7. For any ψC2B(R+), we have

    Jm,q(ψ;x)ψ(x)∣≤{1[m1]q(1q+Pq(1)Pq(1))+([m]q[m1]q1)x+λm,q(x)2}ψC2B(R+)

    where λm,q(x) is given in Theorem 6.

    Proof of Theorem 7. We applying the generalized mean value theorem in the Taylor series expansion, then

    ψ(t)=ψ(x)+ψ(x)(tx)+ψ(c)(tx)22,x<c<t.

    By linearity, we have

    Jm,q(ψ;x)ψ(x)=ψ(x)Jm,q(tx;x)+12Jm,q(ψ(c)(tx)2;x)

    which gives

    Jm,q(ψ;x)ψ(x)

    supxR+ψ(x)∣∣Jm,q(tx;x)+12Jm,q((supcR+ψ(c))(tx)2;x)=ψCB(R+)Jm,q(tx;x)+12ψCB(R+)Jm,q((tx)2;x).

    Hence

    Jm,q(ψ;x)ψ(x)

    {1[m1]q(1q+Pq(1)Pq(1))+([m]q[m1]q1)x}ψCB(R+)+{(δm,q)2}ψCB(R+)2.

    From (5.3), we have ψCB[0,)≤∥ψC2B[0,).

    Jm,q(ψ;x)ψ(x)

    {1[m1]q(1q+Pq(1)Pq(1))+([m]q[m1]q1)x}ψC2B(R+)+{(δm,q)2}ψC2B(R+)2.

    This completes the proof.

    The Peetre's K-functional [18] is defined by

    K2(f,δ)=infC2B(R+){(fψCB(R+)+δψC2B(R+)):ψW2}, (6.1)

    where

    W2={ψCB(R+):ψ,ψCB(R+)}. (6.2)

    Note that K2(f,δ)Cϖ2(f,δ12),δ>0, C>0, where

    ϖ2(f,δ12)=sup0<h<δ12supxR+f(x+2h)2f(x+h)+f(x). (6.3)

    is the second order modulus of continuity.

    Theorem 8. For fCB(R+), we have

    Jm,q(f;x)f(x)2M{ϖ2(f;{1[m1]q(1q+Pq(1)Pq(1))+([m]q[m1]q1)x+λm,q(x)}122)+min(1,1[m1]q(1q+Pq(1)Pq(1))+([m]q[m1]q1)x+λm,q(x)4)fCB(R+)}.

    Proof of Theorem 8. Applying Theorem 7, we get

    Jm,q(f;x)f(x)Jm,q(fψ;x)+Jm,q(ψ;x)ψ(x)+f(x)ψ(x)2fψCB(R+)+λm,q(x)2ψC2B(R+)+{1[m1]q(1q+Pq(1)Pq(1))+([m]q[m1]q1)x}ψCB(R+)

    From (5.3) clearly we have ψCB[0,)≤∥ψC2B[0,).

    Therefore

    Jm,q(f;x)f(x)

    2(fψCB(R+)+1[m1]q(1q+Pq(1)Pq(1))+([m]q[m1]q1)x+λm,q(x)4ψC2B(R+)).

    Taking infimum over all ψC2B(R+) and using (6.1), we get

    Jm,q(f;x)f(x)∣≤2K2(f;1[m1]q(1q+Pq(1)Pq(1))+([m]q[m1]q1)x+λm,q(x)4)

    For an absolute constant D>0, we use the relation [19]

    K2(f;δ)D{ϖ2(f;δ)+min(1,δ)f}.

    This complete the proof.

    For an arbitrary fQkσ(R+), we define (see [20])

    Ω(f,δ)=supx[0,),h∣≤δf(x+h)f(x)(1+h2)(1+x2). (6.4)

    Note that limδ0Ω(f,δ)0 and

    f(t)f(x)∣≤2(1+txδ)(1+δ2)(1+x2)(1+(tx)2)Ω(f,δ), (6.5)

    where fQkσ(R+) and t,x[0,).

    Theorem 9. Let q=qm, then for fQkσ(R+), we have

    supx[0,)Jm,qm(f;x)f(x)(1+x2)(1+A1+4A1A2)(1+Ψm,qm(m))Ω(f;Ψm,qm(m)),

    where A1,A2>0 and

    Ψm,qm(m)=max{[m]2qm[m1]qm[m2]qm+12[m]qm[m1]qm,1[m1]qm((1+2qm)[m]qmq2m[m2]qm+2[m]qm[m2]qmPqm(1)Pqm(1)2Pqm(1)Pqm(1)2qm),1q2m[m1]qm[m2]qm((1+qm)qm+(1+2qm)Pqm(1)Pqm(1))}.

    Proof of Theorem 9. To prove this theorem our aim is to use the results (6.4), (6.5) and then apply Cauchy-Schwarz inequality, thus we see

    |Jm,qm(f;x)f(x)|2(1+δ2)(1+x2)Ω(f;δ)(1+Jm,qm((tx)2;x)+Jm,qm((1+(tx)2)txδ;x)) (6.6)

    and

    Jm,qm((1+(tx)2)txδ;y)2(Jm,qm(1+(tx)4;x))12(Jm,qm((tx)2δ2;x))12. (6.7)

    In the light of Lemma 2, we easily see that

    Jm,qm((tx)2;x)Ψm,qm(m)(1+x+x2), (6.8)

    where

    Ψm,qm(m)=max{[m]2qm[m1]qm[m2]qm+12[m]qm[m1]qm,1[m1]qm((1+2qm)[m]qmq2m[m2]qm+2[m]qm[m2]qmPqm(1)Pqm(1)2Pqm(1)Pqm(1)2qm),1q2m[m1]qm[m2]qm((1+qm)qm+(1+2qm)Pqm(1)Pqm(1))},

    For a constant A1>0 we have

    Jm,qm((tx)2;x)A1(1+x+x2). (6.9)

    Similarly a small calculation lead us

    Jm,qm((tx)4;x)=(α1,qmx2+α2,qmx+α3,qm)2ςm,qm(m)(1+x+x2+x3+x4),

    where

    ςm,qm(m)=max{α21,qm(m),2α1,qm(m)α2,qm(m),(2α21,qm(m)α3,qm(m)+α22,qm(m)),2α2,qm(m)α3,qm(m),2α3,qm(m)α2,qm(m)}.

    and

    α1,qm(m)=[m]2qm[m1]qm[m2]qm+12[m]qm[m1]qm,α2,qm(m)=1[m1]qm((1+2qm)[m]qmq2m[m2]qm+2[m]qm[m2]qmPqm(1)Pqm(1)2Pqm(1)Pqm(1)2qm),α3,qm(m)=1q2m[m1]qm[m2]qm((1+qm)qm+(1+2qm)Pqm(1)Pqm(1)).

    As 1[mi]qm=0 for all i=1,2 when m, imply that for a constant A2>0, easily we have

    (Jm,qm(1+(tx)4;x))12A2(2+x+x2+x3+x4)12. (6.10)

    (6.8), imply that

    (Jm,qm((tx)2δ2;x))121δ(Ψκ,qm(m))12(1+x+x2)12. (6.11)

    Hence, by combining (6.7)–(6.11) and (6.6), and finally if we choosing δ=Ψm,qm(m) after taking supremum y[0,Ψm,qm(m)), we are denumerable to get the result.

    This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. G: 1434-130-1440. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

    The authors declare no conflict of interest in this paper.



    [1] P. Appell, Une classe de polynômes, Ann. Sci. École Norm. Sup., 9 (1880), 119-144. doi: 10.24033/asens.186
    [2] İ. Büyükyazıcı, H. Tanberkan, S. Serenbay, et al. Approximation by Chlodowsky type JakimovskiLeviatan operators, J. Comput. Appl. Math., 259 (2014), 153-163. doi: 10.1016/j.cam.2013.04.021
    [3] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
    [4] V. Kac, P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.
    [5] V. Kac, A. De Sole, On integral representations of q-gamma and q-beta functions, Mathematica, 9 (2005), 11-29.
    [6] W. A. Al-Salam, q-Appell polynomials, Ann. Mat. Pura Appl., 4 (1967), 31-45. doi: 10.1007/BF02416939
    [7] M. E. Keleshteri, N. I. Mahmudov, A study on q-Appell polynomials from determinantal point of view, Appl. Math. Comput., 260 (2015), 351-369.
    [8] M. Mursaleen, K. J. Ansari, M. Nasiruzzaman, Approximation by q-analogue of JakimovskiLeviatan operators involving q-Appell polynomials, Iranian J. Sci. Tech. A, 41 (2017), 891-900. doi: 10.1007/s40995-017-0331-9
    [9] M. Mursaleen, T. Khan, On approximation by Stancu type Jakimovski-Leviatan-Durrmeyer operators, Azerbaijan J. Math., 7 (2017), 16-26.
    [10] V. N. Mishra, P. Patel, On generalized integral Bernstein operators based on q-integers, Appl. Math. Comput., 242 (2014), 931-944.
    [11] M. Mursaleen, M. Ahasan, The Dunkl generalization of Stancu type q-Szász-Mirakjan-Kantrovich operators and some approximation results, Carpathian J. Math., 34 (2018) 363-370.
    [12] M. Mursaleen, S. Rahman, Dunkl generalization of q-Szász-Mirakjan operators which preserve x2, Filomat, 32 (2018), 733-747.
    [13] N. Rao, A. Wafi, A. M. Acu, q-Szász-Durrmeyer type operators based on Dunkl analogue, Complex Anal. Oper. Theory, 13 (2019), 915-934. doi: 10.1007/s11785-018-0816-3
    [14] P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi 1960.
    [15] A. D. Gadžiev, A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin's theorem, Dokl. Akad. Nauk SSSR (Russian), 218 (1974), 1001-1004.
    [16] A. D. Gadžiev, Weighted approximation of continuous functions by positive linear operators on the whole real axis, Izv. Akad. Nauk Azerbaijan. SSR Ser. Fiz. Tehn. Mat. Nauk (Russian), 5 (1975), 41-45.
    [17] E. Ibikli, A. D. Gadžiev, The order of approximation of some unbounded functions by the sequence of positive linear operators, Turk. J. Math. 19 (1995), 331-337.
    [18] J. Peetre, Noteas de mathematica 39, Rio de Janeiro, Instituto de Mathematica Pura e Applicada, Conselho Nacional de Pesquidas, 1968.
    [19] A. Ciupa, A class of integral Favard-Szász type operators, Stud. Univ. Babeş-Bolyai, Math., 40 (1995), 39-47.
    [20] C. Atakut, N. Ispir, Approximation by modified Szász-Mirakjan operators on weighted spaces, Proc. Indian Acad. Sci. Math. Sci., 112 (2002), 571-578. doi: 10.1007/BF02829690
  • This article has been cited by:

    1. M. Nasiruzzaman, M. Mursaleen, Approximation by Jakimovski–Leviatan-beta operators in weighted space, 2020, 2020, 1687-1847, 10.1186/s13662-020-02848-x
    2. Khursheed J. Ansari, M.A. Salman, M. Mursaleen, A.H.H. Al-Abied, On Jakimovski-Leviatan-Păltănea approximating operators involving Boas-Buck-type polynomials, 2020, 32, 10183647, 3018, 10.1016/j.jksus.2020.08.007
    3. Md. Nasiruzzaman, A. F. Aljohani, Syed Abdul Mohiuddine, Approximation by Parametric Extension of Szász-Mirakjan-Kantorovich Operators Involving the Appell Polynomials, 2020, 2020, 2314-8888, 1, 10.1155/2020/8863664
    4. Abdullah Alotaibi, Md. Nasiruzzaman, M. Mursaleen, Approximation by Phillips operators via q-Dunkl generalization based on a new parameter, 2021, 33, 10183647, 101413, 10.1016/j.jksus.2021.101413
    5. Mohammad Nasiruzzaman, Convergence on sequences of Szász-Jakimovski-Leviatan type operators and related results, 2023, 6, 2577-8838, 218, 10.3934/mfc.2022019
    6. Abdullah Alotaibi, Approximation of GBS Type q-Jakimovski-Leviatan-Beta Integral Operators in Bögel Space, 2022, 10, 2227-7390, 675, 10.3390/math10050675
    7. Lei Xu, Kan Chen, Application Research of Mathematica Software in Calculus Teaching, 2022, 0, 2444-8656, 10.2478/amns.2022.2.0167
    8. Mohd Raiz, Nadeem Rao, Vishnu Narayan Mishra, 2022, Chapter 10, 978-981-19-6115-1, 187, 10.1007/978-981-19-6116-8_10
    9. Md. Nasiruzzaman, Khursheed J. Ansari, M. Mursaleen, On the Parametric Approximation Results of Phillips Operators Involving the q-Appell Polynomials, 2022, 46, 1028-6276, 251, 10.1007/s40995-021-01219-9
    10. Md. Nasiruzzaman, A. F. Aljohani, Approximation by αα
    ‐Bernstein–Schurer operators and shape preserving properties via qq
    ‐analogue, 2023, 46, 0170-4214, 2354, 10.1002/mma.8649
    11. Abdullah Alotaibi, On the Approximation by Bivariate Szász–Jakimovski–Leviatan-Type Operators of Unbounded Sequences of Positive Numbers, 2023, 11, 2227-7390, 1009, 10.3390/math11041009
    12. Shahid Ahmad Wani, M. Mursaleen, Kottakkaran Sooppy Nisar, Certain approximation properties of Brenke polynomials using Jakimovski–Leviatan operators, 2021, 2021, 1029-242X, 10.1186/s13660-021-02639-2
    13. Md. Nasiruzzaman, M. Mursaleen, 2022, Chapter 7, 978-981-19-6115-1, 119, 10.1007/978-981-19-6116-8_7
    14. Md. Nasiruzzaman, Mohammed Tom, Stefano Serra-Capizzano, Nadeem Rao, Mohammad Ayman-Mursaleen, Approximation results for beta Jakimovski-Leviatan type operators via q-analogue, 2023, 37, 0354-5180, 8389, 10.2298/FIL2324389N
    15. Md. Nasiruzzaman, Khursheed Ansari, M. Mursaleen, Weighted and voronovskaja type approximation by q-Szász-Kantorovich operators involving Appell polynomials, 2023, 37, 0354-5180, 67, 10.2298/FIL2301067N
    16. Md. Nasiruzzaman, Mohammad Dilshad, S. A. Mohiuddine, Bader Mufadhi Eid Albalawi, Mohammad Rehan Ajmal, Approximation in quantum calculus of the Phillips operators by using the sequences of q-Appell polynomials, 2024, 2024, 1029-242X, 10.1186/s13660-024-03215-0
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3909) PDF downloads(411) Cited by(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog