Citation: Abdullah Alotaibi, M. Mursaleen. Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus[J]. AIMS Mathematics, 2020, 5(4): 3019-3034. doi: 10.3934/math.2020196
[1] | Mohra Zayed, Shahid Ahmad Wani, William Ramírez, Clemente Cesarano . Advancements in q-Hermite-Appell polynomials: a three-dimensional exploration. AIMS Mathematics, 2024, 9(10): 26799-26824. doi: 10.3934/math.20241303 |
[2] | Qing-Bo Cai, Melek Sofyalıoğlu, Kadir Kanat, Bayram Çekim . Some approximation results for the new modification of Bernstein-Beta operators. AIMS Mathematics, 2022, 7(2): 1831-1844. doi: 10.3934/math.2022105 |
[3] | B. B. Jena, S. K. Paikray, S. A. Mohiuddine, Vishnu Narayan Mishra . Relatively equi-statistical convergence via deferred Nörlund mean based on difference operator of fractional-order and related approximation theorems. AIMS Mathematics, 2020, 5(1): 650-672. doi: 10.3934/math.2020044 |
[4] | Nusrat Raza, Mohammed Fadel, Kottakkaran Sooppy Nisar, M. Zakarya . On 2-variable q-Hermite polynomials. AIMS Mathematics, 2021, 6(8): 8705-8727. doi: 10.3934/math.2021506 |
[5] | Waseem Ahmad Khan, Kottakkaran Sooppy Nisar, Dumitru Baleanu . A note on (p, q)-analogue type of Fubini numbers and polynomials. AIMS Mathematics, 2020, 5(3): 2743-2757. doi: 10.3934/math.2020177 |
[6] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482 |
[7] | Zhongbin Zheng, Jinwu Fang, Wentao Cheng, Zhidong Guo, Xiaoling Zhou . Approximation properties of modified (p, q)-Szász-Mirakyan-Kantorovich operators. AIMS Mathematics, 2020, 5(5): 4959-4973. doi: 10.3934/math.2020317 |
[8] | Tabinda Nahid, Mohd Saif, Serkan Araci . A new class of Appell-type Changhee-Euler polynomials and related properties. AIMS Mathematics, 2021, 6(12): 13566-13579. doi: 10.3934/math.2021788 |
[9] | Khadeejah Rasheed Alhindi, Khalid M. K. Alshammari, Huda Ali Aldweby . Classes of analytic functions involving the q-Ruschweyh operator and q-Bernardi operator. AIMS Mathematics, 2024, 9(11): 33301-33313. doi: 10.3934/math.20241589 |
[10] | Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377 |
In 1880, Appell investigated the polynomials named as Appell polynomials (see [1]). Jakimovski and Leviatan introduced and modified the Appell polynomials [2] in 1969 by the identity defined bellow
P(u)euy=∞∑k=0βk(y)uk, | (1.1) |
where βk(y)=∑ki=0αiyn−i(n−i)!(n∈N) and P(u)=∑∞k=0αkuk,P(1)≠0. Let E[0,∞) denote the set of functions defined on [0,∞) such that |f(x)|≤κeγx, where κ,γ are positive constants.
We recall some basic notations on q-calculus (see [3,4,5]). For each non-negative integer j, the q-integer is defined as
[j]q={1−qj1−q,q≠1j,q=1for j∈Nand[0]q=0, |
For |q|<1, the q-factorial [j]q! is defined by
[j]q!={1(j=0)j∏k=1[k]q(j∈N). | (1.2) |
In the standard approach the exponential functions for q-calculus:
eq(x)=∞∑k=0xk[k]q!. | (1.3) |
The improper integral of function f is defined by:
∫∞/A0f(x)dqx=(1−q)∑n∈Nf(qnA)qnA, A∈R−{0}. | (1.4) |
Al-Salam (see [6,7]) introduced the family of q-Appell polynomials through the generating functions Pq(t)=∞∑n=0Pn,qtn[n]q!,Pq(1)≠0. We have
Pn,q(x)=n∑k=0[nk]qAn−k,qxk,(n∈N) |
and q-differential, Dq,x(Pn,q(x))=[n]qPn−1,q(x),n=1,2,…, where P0,q(x) is a non zero constant let say P0,q and Dq,x(P1,q(x))=[1]qP0,q(x)=P0,q. Also Pq(t)eq(tx)=∞∑n=0Pn,q(x)tn[n]q!,0<q<1.
Recently in [8], authors studied the q-analogue of Jakimovski-Levitian operators involving q-Appell polynomials; and in [9], Stacu type Jakimovski-Levitian-Durmeyer operators have been studied. Recently such q-analogues operators have also been studied in [10,11,12,13]. Our aim is to construct Jakimovski-Leviatan-Beta type q−integral operators and show that these positive linear operators are uniformly convergent to a continuous functions. Further, we obtain the Korovkin type results, the rate of convergence as well as some direct theorems.
Let x∈[0,∞),Pr,q(x)≥0 and Pq(1)≠0. For every f∈Cζ[0,∞)={f∈C[0,∞):f(t)=O(tζ), t→∞}, and m∈N,0<q<1, we define
J∗m,q(f;x)=eq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)∞/A∫0tr(1+t)qr+m+1f(qrt)dqt, | (1.5) |
where ζ>m and
Bq(r,m)=K(A,r)∫∞/A0xr−1(1+x)r+mqdqx=[r−1]q[m]qBq(r−1,m+1),r>1, m>0, |
with
K(A,r+1)=qrK(A,r), |
K(A,r)=qr(r−1)2,K(A,0)=1 |
Lemma 1. Take ei=ti−1 for i=1,2,3,4,5. Then
(1)J∗m,q(e1;x)=1;(2)J∗m,q(e2;x)=1q[m−1]q+1[m−1]q([m]qx+P′q(1)Pq(1));(3)J∗m,q(e3;x)=(1+q)q3[m−1]q[m−2]q+(1+2q)q2[m−1]q[m−2]q(([m]qx+P′q(1)Pq(1))+1[m−1]q[m−2]q([m]2qx2+2[m]qP′q(1)Pq(1)x+P′′q(1)Pq(1));(4)J∗m,q(e4;x)=1+2q+2q2+q3q4[m−1]q[m−2]q[m−3]q+(1+3q+4q2+3q3q3[m−1]q[m−2]q[m−3]q(([m]qx+P′q(1)Pq(1))+(1+2q+3q2)q[m−1]q[m−2]q[m−3]q([m]2qx2+2[m]qP′q(1)Pq(1)x+P′′q(1)Pq(1))+q2[m−1]q[m−2]q[m−3]q([m]3qx3+3[m]2qP′q(1)Pq(1)x2+3[m]qP′′q(1)Pq(1)x+P′′′q(1)Pq(1));(5)J∗m,q(e5;x)=1+3q+5q2+6q3+5q4+3q5+q6q5[m−1]q[m−2]q[m−3]q[m−4]q+(1+5q+10q2+13q3+12q4+7q5+2q6)q3[m−1]q[m−2]q[m−3]q[m−4]q([n]qx+P′q(1)Pq(1))+(1+3q+7q2+9q3+9q4+6q5)q[m−1]q[m−2]q[m−3]q[m−4]q([m]2qx2+2[m]qP′q(1)Pq(1)x+P′′q(1)Pq(1))+(q2+2q3+2q4+2q5+q6+2q7)[m−1]q[m−2]q[m−3]q[m−4]q([m]3qx3+3[m]2qP′q(1)Pq(1)x2+3[m]qP′′q(1)Pq(1)x+P′′′q(1)Pq(1))+q6[m−1]q[m−2]q[m−3]q[m−4]q([m]4qx4+4[m]3qP′q(1)Pq(1)x3+6[m]2qP′′q(1)Pq(1)x2+4[m]qP′′′q(1)Pq(1)x+P(4)q(1)Pq(1)). |
Proof of Lemma 1.
∞∑r=0Pr,q([m]qx)[r]q!=Pq(1)eq([m]qx),∞∑r=0rPr,q([m]qx)[r]q!=[[m]qPq(1)x+P′q(1)]eq([m]qx),∞∑r=0r2Pr,q([m]qx)[r]q!=[[m]2qPq(1)x2+2[m]qP′q(1)x+P′′q(1)]eq([m]qx),∞∑r=0r3Pr,q([m]qx)[r]q!=[[m]3qPq(1)x3+3[m]2qP′q(1)x2+3[m]qP′′q(1)x+P′′′q(1)]eq([m]qx), |
∞∑r=0r4Pr,q([m]qx)[r]q!
=[[m]4qPq(1)x4+4[m]3qP′q(1)x3+6[m]2qP′′q(1)x2+4[m]qP′′′q(1)x+P(4)q(1)]eq([m]qx). |
Take f(t)=e1, then
J∗m,q(e1;x)=eq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)∞/A∫0tr(1+t)r+m+1dqt=eq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q!Bq(r+1,m)Bq(r+1,m)=1. |
Take f(t)=e2, then
J∗m,q(e2;x)=eq(−[m]qx)Pq(1)∞∑r=0Pr,q([n]qx)[r]q!qrK(A,r+1)Bq(r+1,m)∞/A∫0tr+1(1+t)r+m+1dqt=eq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q!qrK(A,r+1)Bq(r+1,m)Bq(r+2,m−1)K(A,r+2)=1q[m−1]qeq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q![r+1]q. |
By applying,
[r+1]q=1+q[r]q, | (2.1) |
J∗m,q(e2;x)=1q[m−1]qeq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q!+1[m−1]qeq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q![r]q=1q[m−1]q+1[m−1]q([m]qx+P′q(1)Pq(1)) |
Take f(t)=e3, then
J∗m,q(e3;x)=eq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q!q2rK(A,r+1)Bq(r+1,m)∞/A∫0tr+2(1+t)r+m+1dqt=eq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q!q2rK(A,r+1)K(A,r+3)Bq(r+3,m−2)Bq(r+1,m)=1q3[m−1]q[m−2]qeq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q![r+2]q[r+1]q. |
By applying (2.1) and [r+2]q=1+q+q2[r]q,
J∗m,q(e3;x)=1q3[m−1]q[m−2]qeq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q!×((1+q)+q(1+2q)[r]q+q3[r]2q)=(1+q)q3[m−1]q[m−2]q+(1+2q)q2[m−1]q[m−2]q(([m]qx+P′q(1)Pq(1))+1[m−1]q[m−2]q([m]2qx2+2[m]qP′q(1)Pq(1)x+P′′q(1)Pq(1)) |
Take f(t)=e4, then
J∗m,q(e4;x)=1q4[m−1]q[m−2]q[m−3]qeq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q![r+3]q[r+2]q[r+1]q |
By a simple calculation we have
[r+3]q[r+2]q[r+1]q
=(1+q)(1+q+q2)+{q(1+2q)(1+q+q2)+q3(1+q)}[r]q+{q3(1+q+q2)+q4(1+2q)}[r]2q+q6[r]3q. |
If f(t)=e5, then
J∗m,q(e5;x)=1q5[m−1]q[m−2]q[m−3]q[m−4]q×eq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q![r+4]q[r+3]q[r+2]q[r+1]q |
A simple calculation leads to
[r+4]q[r+3]q[r+2]q[r+1]q
=(1+q)(1+2q+3q2+3q3+2q4+q5)+{q(1+2q)(1+2q+3q2+3q3+2q4+q5)+q3(1+q)(1+2q+2q2+2q3)}[r]q+{q3(1+2q+3q2+3q3+2q4+q5)+q4(1+2q)(1+2q+2q2+2q3)+q7(1+q)}[r]2q+{q6(1+2q+2q2+2q3)+q8(1+2q)}[r]3q+q10[r]4q. |
Lemma 2.
Let μj=(e2−x)j for j=1,2. For all x∈[0,∞),0<q<1,Pr,q(x)≥0 and Pq(1)≠0, we have:
(δ∗m,q)2 =J∗m,q(μ2;x) for j=2,m>2;and (δ∗m,q)2 =J∗m,q(μ1;x) for j=1,m>1. | (2.2) |
That is,
(δ∗m,q)2 ={([m]2q[m−1]q[m−2]q+1−2[m]q[m−1]q)x2+1[m−1]q((1+2q)[m]qq2[m−2]q+2[m]q[m−2]qP′q(1)Pq(1)−2P′q(1)Pq(1)−2q)x+1q2[m−1]q[m−2]q((1+q)q+(1+2q)P′q(1)Pq(1))for j=2,m>2([m]q[m−1]q−1)x+1[m−1]q(1q+P′q(1)Pq(1))for j=1,m>1. |
We write CB(R+) for the set of all bounded and continuous { functions with
∥f∥CB=supx≥0∣f(x)∣. |
Let
E:={f:x∈[0,∞),f(x)1+x2isconvergentasx→∞}. |
We choose q=qm where 0<qm<1 such that
limmqm→1,limνqmm→α | (3.1) |
Theorem 1. For any function f∈C[0,∞)∩E, we have
limν→∞J∗m,qm(f;x)→f(x) |
uniformly on each compact subset of [0,∞).
Proof of Theorem 1. From the well-known Korovkin's theorem [14] (see [15,16]), it is enough to show
limm→∞J∗m,qm(ej;x)=xj−1,j=1,2,3 |
uniformly on [0,1].
Using (3.1), 1[m]qm→0 and [m]qm[m−1]qm→1(ν→∞), we have
limν→∞J∗m,qm(e2;x)=x,limm→∞J∗m,qm(e3;x)=x2. |
Which complete the proof.
Let ϱ(x)=1+ϕ2(x),limx→∞ϱ(x)=∞, where ϕ(x) is a continuous and strictly increasing function. Let Bϱ(R+) be a set of functions defined on R+ such that there is a constant Mf,
|f(x)|≤Mfϱ(x), |
Its subset of continuous functions is denoted by Cϱ(R+). Note that
‖f‖ϱ=supx≥0|f(x)|ϱ(x) |
is the usual norm on Bϱ(R+). Let C0ϱ(R+) be a subset of Cϱ(R+) such that
limx→∞f(x)ϱ(x)=Kf |
exists and is finite.
Theorem 2. Let {J∗m,q}m≥1 be the sequence of linear positive operators (1.5) from Cϱ(R+) into Bϱ(R+) such that
limm→∞‖J∗m,q(φi−1(t);x)−φi−1(x)‖ϱ=0 (i=1,2,3). |
Then for f∈C0ϱ(R+),
limm→∞‖J∗m,q(f(t);x)−f‖ϱ=0. |
Proof of Theorem 2. Consider φ(x)=x,ϱ(x)=1+x2, and
‖J∗m,q(ei;x)−xi−1‖ϱ=supx≥0∣J∗m,q(ei;x)−xi−1∣1+x2. |
Then for i=1,2,3 it is easily proved (by Theorem 1) that
limm→∞‖J∗m,q(ei;x)−xi−1‖ϱ=0. |
Using Korovkin's theorem, we get
limm→∞‖J∗m,q(f(t);x)−f‖ϱ=0. |
Theorem 3.
Let x∈[0,∞),f∈C0ϱ(R+) with ϱ(x)=1+x2. Then for Pr,q(x)≥0,Pq(1)≠0, the operators J∗m,q(⋅;⋅) defined by (1.5) satisfying
limm→∞‖J∗m,q(f;x)−f‖ϱ→0. |
Proof of Theorem 3. Using Theorem 2, consider
‖J∗m,q(ei;x)−xi−1‖ϱ=supx≥0∣J∗m,q(ei;x)−xi−1∣1+x2, |
for i=1,2,3.
From Lemma 1, for i=1, we have ∣J∗m,q(e1;x)−1∣→0, and therefore
limm→∞‖J∗m,q(e1;x)−1‖ϱ=0. |
For i=2
supx≥0∣J∗m,q(e2;x)−x∣1+x2≤|[m]q[m−1]q−1|supx≥0x1+x2+|1[m−1]q(P′q(1)Pq(1)+1q)|supx≥011+x2. |
Therefore
limm→∞‖J∗m,q(e2;x)−x‖ϱ=0. |
For i=3
supx≥0∣J∗m,q(e3;x)−x2∣1+x2≤|[m]2q[m−2]q[m−1]q−1|supx≥0x21+x2+|[m]q[m−2]q[m−1]q(2P′q(1)Pq(1)+1+2qq2)|supx≥0x1+x2+|1[m−2]q[m−1]q(P′′q(1)Pq(1)+(1+2q)q2P′q(1)Pq(1)+(1+q)q3)|supx≥011+x2. |
Hence we have
limm→∞‖J∗m,q(e3;x)−x2‖ϱ=0. |
The Korovkin's theorem completes the proof.
We recall the following spaces:
Pσ(R+)={f:∣f(x)∣≤Mfσ(x)},Qσ(R+)={f:f∈Pσ(R+)∩C[0,∞)},Qkσ(R+)={f:f∈Qσ(R+)andlimx→∞f(x)σ(x)=k (a constant)}, |
where σ(x)=1+x2. Note that ∥f∥σ=supx≥0∣f(x)∣σ(x) is the usual norm on Qσ(R+).
Theorem 4. Let 0<qm<1 and J∗m,q(⋅;⋅) be the operators defined by (1.5) with m>2. Then for f∈Qkσ(R+), we have
limm→∞∥J∗m,qm(f;x)−f∥σ=0. |
Proof of Theorem 4. Take j=1, then Lemma 1, yields the first condition. If we take j=2,3, then from Lemma 1, we get
limm→∞∥J∗m,qm(ej;x)−xj−1∥σ=0. |
The modulus of continuity of f∈C[0,∞) is defined by
ϖ(f;δ)=sup∣y1−y2∣≤δ∣f(y1)−f(y2)∣,y1,y2∈[0,∞), δ>0. | (4.1) |
Note that limδ→0+ϖ(f;δ)=0 for f∈C[0,∞) and (see ([17], p. 378)
∣f(y1)−f(y2)∣≤(∣y1−y2∣δ+1)ϖ(f;δ). | (4.2) |
Theorem 5. For f∈˜C[0,∞),x≥0,0<q<1 and Pq(1)≠0, we have
∣J∗m,q(f;x)−f(x)∣≤2ϖ(f;δ∗m,q), |
where ˜C[0,∞) is the space of uniformly continuous functions on R+ and δ∗m,q is defined in Lemma 2.
Proof of Theorem 5. Using Cauchy-Schwarz inequality and (4.1), (4.2), we get
∣J∗m,q(f;x)−f(x)∣
≤eq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)∞/A∫0tr(1+t)qr+m+1∣f(t)−f(x)∣dqt≤eq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)×∞/A∫0tr(1+t)r+m+1(1+1δ∣t−x∣)dq(t)ϖ(f;δ)={1+1δ(eq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)×∞/A∫0tr(1+t)r+m+1∣t−x∣dqt)}ϖ(f;δ)≤{1+1δ(eq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)×∞/A∫0tr(1+t)r+m+1(t−x)2dq(t))12(J∗m,q(1;x))12}ϖ(f;δ)={1+1δ(J∗m,q(μ2;x))12}ϖ(f;δ). |
Choosing δ=δ∗m,q=√J∗m,q((t−x)2;x), then we get our result.
For f∈C[0,∞), M>0 and 0<ν≤1, we define
LipM(ν)={f:∣f(ς1)−f(ς2)∣≤M∣ς1−ς2∣ν(ς1,ς2∈[0,∞))} | (5.1) |
Theorem 6. For each f∈LipM(ν),M>0,0<ν≤1 and 0<q<1, we have
∣J∗m,q(f;x)−f(x)∣≤M(λm,q(x))ν2 |
where λm,q(x)=J∗m,q(μ2;x).
Proof of Theorem 6. Hölder inequality and (5.1) imply that
∣J∗m,q(f;x)−f(x)∣≤∣J∗m,q(f(t)−f(x);x)∣≤J∗m,q(∣f(t)−f(x)∣;x)≤∣MJ∗m,q(∣t−x∣ν;x). |
So that
∣J∗m,q(f;x)−f(x)∣
≤Meq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)∞/A∫0tr(1+t)r+m+1∣t−x∣νdqt≤Meq(−[m]qx)Pq(1)∞∑r=0(Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m))2−ν2×(Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m))ν2∞/A∫0tr(1+t)r+m+1∣t−x∣νdqt≤M(eq(−[m]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)∞/A∫0tr(1+t)r+m+1dqt)2−ν2×(eq(−[n]qx)Pq(1)∞∑r=0Pr,q([m]qx)[r]q!K(A,r+1)Bq(r+1,m)∞/A∫0tr(1+t)r+m+1∣t−x∣2dqt)ν2=M(J∗m,q(μ2;x))ν2. |
Which complete the proof.
Denote
C2B(R+)={ψ∈CB(R+):ψ′,ψ′′∈CB(R+)}, | (5.2) |
with
∥ψ∥C2B(R+)=∥ψ∥CB(R+)+∥ψ′∥CB(R+)+∥ψ′′∥CB(R+), | (5.3) |
also
∥ψ∥CB(R+)=supx∈R+∣ψ(x)∣. | (5.4) |
Theorem 7. For any ψ∈C2B(R+), we have
∣J∗m,q(ψ;x)−ψ(x)∣≤{1[m−1]q(1q+P′q(1)Pq(1))+([m]q[m−1]q−1)x+λm,q(x)2}∥ψ∥C2B(R+) |
where λm,q(x) is given in Theorem 6.
Proof of Theorem 7. We applying the generalized mean value theorem in the Taylor series expansion, then
ψ(t)=ψ(x)+ψ′(x)(t−x)+ψ′′(c)(t−x)22,x<c<t. |
By linearity, we have
J∗m,q(ψ;x)−ψ(x)=ψ′(x)J∗m,q(t−x;x)+12J∗m,q(ψ′′(c)(t−x)2;x) |
which gives
∣J∗m,q(ψ;x)−ψ(x)∣
≤supx∈R+∣ψ′(x)∣∣J∗m,q(t−x;x)∣+12J∗m,q((supc∈R+∣ψ′′(c)∣)(t−x)2;x)=∥ψ′∥CB(R+)∣J∗m,q(t−x;x)∣+12∥ψ′′∥CB(R+)J∗m,q((t−x)2;x). |
Hence
∣J∗m,q(ψ;x)−ψ(x)∣
≤{1[m−1]q(1q+P′q(1)Pq(1))+([m]q[m−1]q−1)x}∥ψ′∥CB(R+)+{(δ∗m,q)2}∥ψ′′∥CB(R+)2. |
From (5.3), we have ∥ψ′∥CB[0,∞)≤∥ψ∥C2B[0,∞).
∣J∗m,q(ψ;x)−ψ(x)∣
≤{1[m−1]q(1q+P′q(1)Pq(1))+([m]q[m−1]q−1)x}∥ψ∥C2B(R+)+{(δ∗m,q)2}∥ψ∥C2B(R+)2. |
This completes the proof.
The Peetre's K-functional [18] is defined by
K2(f,δ)=infC2B(R+){(∥f−ψ∥CB(R+)+δ∥ψ′′∥C2B(R+)):ψ∈W2}, | (6.1) |
where
W2={ψ∈CB(R+):ψ′,ψ′′∈CB(R+)}. | (6.2) |
Note that K2(f,δ)≤Cϖ2(f,δ12),δ>0, C>0, where
ϖ2(f,δ12)=sup0<h<δ12supx∈R+∣f(x+2h)−2f(x+h)+f(x)∣. | (6.3) |
is the second order modulus of continuity.
Theorem 8. For f∈CB(R+), we have
∣J∗m,q(f;x)−f(x)∣≤2M{ϖ2(f;{1[m−1]q(1q+P′q(1)Pq(1))+([m]q[m−1]q−1)x+λm,q(x)}122)+min(1,1[m−1]q(1q+P′q(1)Pq(1))+([m]q[m−1]q−1)x+λm,q(x)4)∥f∥CB(R+)}. |
Proof of Theorem 8. Applying Theorem 7, we get
∣J∗m,q(f;x)−f(x)∣≤∣J∗m,q(f−ψ;x)∣+∣J∗m,q(ψ;x)−ψ(x)∣+∣f(x)−ψ(x)∣≤2∥f−ψ∥CB(R+)+λm,q(x)2∥ψ∥C2B(R+)+{1[m−1]q(1q+P′q(1)Pq(1))+([m]q[m−1]q−1)x}∥ψ∥CB(R+) |
From (5.3) clearly we have ∥ψ∥CB[0,∞)≤∥ψ∥C2B[0,∞).
Therefore
∣J∗m,q(f;x)−f(x)∣
≤2(∥f−ψ∥CB(R+)+1[m−1]q(1q+P′q(1)Pq(1))+([m]q[m−1]q−1)x+λm,q(x)4∥ψ∥C2B(R+)). |
Taking infimum over all ψ∈C2B(R+) and using (6.1), we get
∣J∗m,q(f;x)−f(x)∣≤2K2(f;1[m−1]q(1q+P′q(1)Pq(1))+([m]q[m−1]q−1)x+λm,q(x)4) |
For an absolute constant D>0, we use the relation [19]
K2(f;δ)≤D{ϖ2(f;√δ)+min(1,δ)∥f∥}. |
This complete the proof.
For an arbitrary f∈Qkσ(R+), we define (see [20])
Ω(f,δ)=supx∈[0,∞),∣h∣≤δ∣f(x+h)−f(x)∣(1+h2)(1+x2). | (6.4) |
Note that limδ→0Ω(f,δ)→0 and
∣f(t)−f(x)∣≤2(1+∣t−x∣δ)(1+δ2)(1+x2)(1+(t−x)2)Ω(f,δ), | (6.5) |
where f∈Qkσ(R+) and t,x∈[0,∞).
Theorem 9. Let q=qm, then for f∈Qkσ(R+), we have
supx∈[0,∞)∣J∗m,qm(f;x)−f(x)∣(1+x2)≤(1+A1+4A1A2)(1+Ψm,qm(m))Ω(f;√Ψm,qm(m)), |
where A1,A2>0 and
Ψm,qm(m)=max{[m]2qm[m−1]qm[m−2]qm+1−2[m]qm[m−1]qm,1[m−1]qm((1+2qm)[m]qmq2m[m−2]qm+2[m]qm[m−2]qmP′qm(1)Pqm(1)−2P′qm(1)Pqm(1)−2qm),1q2m[m−1]qm[m−2]qm((1+qm)qm+(1+2qm)P′qm(1)Pqm(1))}. |
Proof of Theorem 9. To prove this theorem our aim is to use the results (6.4), (6.5) and then apply Cauchy-Schwarz inequality, thus we see
|J∗m,qm(f;x)−f(x)|≤2(1+δ2)(1+x2)Ω(f;δ)(1+J∗m,qm((t−x)2;x)+J∗m,qm((1+(t−x)2)∣t−x∣δ;x)) | (6.6) |
and
J∗m,qm((1+(t−x)2)∣t−x∣δ;y)≤2(J∗m,qm(1+(t−x)4;x))12(J∗m,qm((t−x)2δ2;x))12. | (6.7) |
In the light of Lemma 2, we easily see that
J∗m,qm((t−x)2;x)≤Ψm,qm(m)(1+x+x2), | (6.8) |
where
Ψm,qm(m)=max{[m]2qm[m−1]qm[m−2]qm+1−2[m]qm[m−1]qm,1[m−1]qm((1+2qm)[m]qmq2m[m−2]qm+2[m]qm[m−2]qmP′qm(1)Pqm(1)−2P′qm(1)Pqm(1)−2qm),1q2m[m−1]qm[m−2]qm((1+qm)qm+(1+2qm)P′qm(1)Pqm(1))}, |
For a constant A1>0 we have
J∗m,qm((t−x)2;x)≤A1(1+x+x2). | (6.9) |
Similarly a small calculation lead us
J∗m,qm((t−x)4;x)=(α1,qmx2+α2,qmx+α3,qm)2≤ςm,qm(m)(1+x+x2+x3+x4), |
where
ςm,qm(m)=max{α21,qm(m),2α1,qm(m)α2,qm(m),(2α21,qm(m)α3,qm(m)+α22,qm(m)),2α2,qm(m)α3,qm(m),2α3,qm(m)α2,qm(m)}. |
and
α1,qm(m)=[m]2qm[m−1]qm[m−2]qm+1−2[m]qm[m−1]qm,α2,qm(m)=1[m−1]qm((1+2qm)[m]qmq2m[m−2]qm+2[m]qm[m−2]qmP′qm(1)Pqm(1)−2P′qm(1)Pqm(1)−2qm),α3,qm(m)=1q2m[m−1]qm[m−2]qm((1+qm)qm+(1+2qm)P′qm(1)Pqm(1)). |
As 1[m−i]qm=0 for all i=1,2 when m→∞, imply that for a constant A2>0, easily we have
(J∗m,qm(1+(t−x)4;x))12≤A2(2+x+x2+x3+x4)12. | (6.10) |
(6.8), imply that
(J∗m,qm((t−x)2δ2;x))12≤1δ(Ψκ,qm(m))12(1+x+x2)12. | (6.11) |
Hence, by combining (6.7)–(6.11) and (6.6), and finally if we choosing δ=√Ψm,qm(m) after taking supremum y∈[0,Ψm,qm(m)), we are denumerable to get the result.
This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. G: 1434-130-1440. The authors, therefore, acknowledge with thanks DSR for technical and financial support.
The authors declare no conflict of interest in this paper.
[1] |
P. Appell, Une classe de polynômes, Ann. Sci. École Norm. Sup., 9 (1880), 119-144. doi: 10.24033/asens.186
![]() |
[2] |
İ. Büyükyazıcı, H. Tanberkan, S. Serenbay, et al. Approximation by Chlodowsky type JakimovskiLeviatan operators, J. Comput. Appl. Math., 259 (2014), 153-163. doi: 10.1016/j.cam.2013.04.021
![]() |
[3] | F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203. |
[4] | V. Kac, P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002. |
[5] | V. Kac, A. De Sole, On integral representations of q-gamma and q-beta functions, Mathematica, 9 (2005), 11-29. |
[6] |
W. A. Al-Salam, q-Appell polynomials, Ann. Mat. Pura Appl., 4 (1967), 31-45. doi: 10.1007/BF02416939
![]() |
[7] | M. E. Keleshteri, N. I. Mahmudov, A study on q-Appell polynomials from determinantal point of view, Appl. Math. Comput., 260 (2015), 351-369. |
[8] |
M. Mursaleen, K. J. Ansari, M. Nasiruzzaman, Approximation by q-analogue of JakimovskiLeviatan operators involving q-Appell polynomials, Iranian J. Sci. Tech. A, 41 (2017), 891-900. doi: 10.1007/s40995-017-0331-9
![]() |
[9] | M. Mursaleen, T. Khan, On approximation by Stancu type Jakimovski-Leviatan-Durrmeyer operators, Azerbaijan J. Math., 7 (2017), 16-26. |
[10] | V. N. Mishra, P. Patel, On generalized integral Bernstein operators based on q-integers, Appl. Math. Comput., 242 (2014), 931-944. |
[11] | M. Mursaleen, M. Ahasan, The Dunkl generalization of Stancu type q-Szász-Mirakjan-Kantrovich operators and some approximation results, Carpathian J. Math., 34 (2018) 363-370. |
[12] | M. Mursaleen, S. Rahman, Dunkl generalization of q-Szász-Mirakjan operators which preserve x2, Filomat, 32 (2018), 733-747. |
[13] |
N. Rao, A. Wafi, A. M. Acu, q-Szász-Durrmeyer type operators based on Dunkl analogue, Complex Anal. Oper. Theory, 13 (2019), 915-934. doi: 10.1007/s11785-018-0816-3
![]() |
[14] | P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi 1960. |
[15] | A. D. Gadžiev, A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin's theorem, Dokl. Akad. Nauk SSSR (Russian), 218 (1974), 1001-1004. |
[16] | A. D. Gadžiev, Weighted approximation of continuous functions by positive linear operators on the whole real axis, Izv. Akad. Nauk Azerbaijan. SSR Ser. Fiz. Tehn. Mat. Nauk (Russian), 5 (1975), 41-45. |
[17] | E. Ibikli, A. D. Gadžiev, The order of approximation of some unbounded functions by the sequence of positive linear operators, Turk. J. Math. 19 (1995), 331-337. |
[18] | J. Peetre, Noteas de mathematica 39, Rio de Janeiro, Instituto de Mathematica Pura e Applicada, Conselho Nacional de Pesquidas, 1968. |
[19] | A. Ciupa, A class of integral Favard-Szász type operators, Stud. Univ. Babeş-Bolyai, Math., 40 (1995), 39-47. |
[20] |
C. Atakut, N. Ispir, Approximation by modified Szász-Mirakjan operators on weighted spaces, Proc. Indian Acad. Sci. Math. Sci., 112 (2002), 571-578. doi: 10.1007/BF02829690
![]() |
1. | M. Nasiruzzaman, M. Mursaleen, Approximation by Jakimovski–Leviatan-beta operators in weighted space, 2020, 2020, 1687-1847, 10.1186/s13662-020-02848-x | |
2. | Khursheed J. Ansari, M.A. Salman, M. Mursaleen, A.H.H. Al-Abied, On Jakimovski-Leviatan-Păltănea approximating operators involving Boas-Buck-type polynomials, 2020, 32, 10183647, 3018, 10.1016/j.jksus.2020.08.007 | |
3. | Md. Nasiruzzaman, A. F. Aljohani, Syed Abdul Mohiuddine, Approximation by Parametric Extension of Szász-Mirakjan-Kantorovich Operators Involving the Appell Polynomials, 2020, 2020, 2314-8888, 1, 10.1155/2020/8863664 | |
4. | Abdullah Alotaibi, Md. Nasiruzzaman, M. Mursaleen, Approximation by Phillips operators via q-Dunkl generalization based on a new parameter, 2021, 33, 10183647, 101413, 10.1016/j.jksus.2021.101413 | |
5. | Mohammad Nasiruzzaman, Convergence on sequences of Szász-Jakimovski-Leviatan type operators and related results, 2023, 6, 2577-8838, 218, 10.3934/mfc.2022019 | |
6. | Abdullah Alotaibi, Approximation of GBS Type q-Jakimovski-Leviatan-Beta Integral Operators in Bögel Space, 2022, 10, 2227-7390, 675, 10.3390/math10050675 | |
7. | Lei Xu, Kan Chen, Application Research of Mathematica Software in Calculus Teaching, 2022, 0, 2444-8656, 10.2478/amns.2022.2.0167 | |
8. | Mohd Raiz, Nadeem Rao, Vishnu Narayan Mishra, 2022, Chapter 10, 978-981-19-6115-1, 187, 10.1007/978-981-19-6116-8_10 | |
9. | Md. Nasiruzzaman, Khursheed J. Ansari, M. Mursaleen, On the Parametric Approximation Results of Phillips Operators Involving the q-Appell Polynomials, 2022, 46, 1028-6276, 251, 10.1007/s40995-021-01219-9 | |
10. |
Md. Nasiruzzaman, A. F. Aljohani,
Approximation by αα ‐Bernstein–Schurer operators and shape preserving properties via qq ‐analogue,
2023,
46,
0170-4214,
2354,
10.1002/mma.8649
|
|
11. | Abdullah Alotaibi, On the Approximation by Bivariate Szász–Jakimovski–Leviatan-Type Operators of Unbounded Sequences of Positive Numbers, 2023, 11, 2227-7390, 1009, 10.3390/math11041009 | |
12. | Shahid Ahmad Wani, M. Mursaleen, Kottakkaran Sooppy Nisar, Certain approximation properties of Brenke polynomials using Jakimovski–Leviatan operators, 2021, 2021, 1029-242X, 10.1186/s13660-021-02639-2 | |
13. | Md. Nasiruzzaman, M. Mursaleen, 2022, Chapter 7, 978-981-19-6115-1, 119, 10.1007/978-981-19-6116-8_7 | |
14. | Md. Nasiruzzaman, Mohammed Tom, Stefano Serra-Capizzano, Nadeem Rao, Mohammad Ayman-Mursaleen, Approximation results for beta Jakimovski-Leviatan type operators via q-analogue, 2023, 37, 0354-5180, 8389, 10.2298/FIL2324389N | |
15. | Md. Nasiruzzaman, Khursheed Ansari, M. Mursaleen, Weighted and voronovskaja type approximation by q-Szász-Kantorovich operators involving Appell polynomials, 2023, 37, 0354-5180, 67, 10.2298/FIL2301067N | |
16. | Md. Nasiruzzaman, Mohammad Dilshad, S. A. Mohiuddine, Bader Mufadhi Eid Albalawi, Mohammad Rehan Ajmal, Approximation in quantum calculus of the Phillips operators by using the sequences of q-Appell polynomials, 2024, 2024, 1029-242X, 10.1186/s13660-024-03215-0 |